1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
|
-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
-- All rights reserved.
-- Copyright (C) 2007-2011, Gabriel Dos Reis.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
-- - Redistributions of source code must retain the above copyright
-- notice, this list of conditions and the following disclaimer.
--
-- - Redistributions in binary form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in
-- the documentation and/or other materials provided with the
-- distribution.
--
-- - Neither the name of The Numerical ALgorithms Group Ltd. nor the
-- names of its contributors may be used to endorse or promote products
-- derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import g_-util
namespace BOOT
--%
$optimizableConstructorNames := $SystemInlinableConstructorNames
++ Return true if the domain `dom' is an instance of a functor
++ that has been nominated for inlining.
optimizableDomain? dom ==
symbolMember?(opOf dom,$optimizableConstructorNames)
++ Register the domain `dom' for inlining.
nominateForInlining dom ==
$optimizableConstructorNames := [opOf dom,:$optimizableConstructorNames]
--%
++ return the template of the instantiating functor for
++ the domain form `dom'.
getDomainTemplate dom ==
dom isnt [.,:.] => nil
getInfovec first dom
++ Emit code for an indirect call to domain-wide Spad function.
++ This is usually the case for exported functions.
emitIndirectCall(fn,args,x) ==
x.first := "SPADCALL"
fn.first := '%tref
x.rest := [:args,fn]
x
--% OPTIMIZER
++ Return the name of the iterator variable `it'.
++ NOTES: iterator variables are usually of the form `[sc,:id]'
++ where `sc' is a storage class, i.e. `%local' or `%free'.
++ Occasionally, they are just symbols with the storage
++ class `%local' implied.
iteratorName it ==
ident? it => it
rest it
++ Subroutine of changeVariableDefinitionToStore.
++ Same semantics as changeVariableDefinitionToStore for a loop
++ with body `body', iterator list `iters', return value `val' and
++ currently bound variable list `vars'.
changeLoopVarDefsToStore(iters,body,val,vars) ==
vars' := vars
-- Iterator variables are local to the the loop.
for it in iters repeat
it is ['STEP,idx,start,inc,:final] =>
vars' := changeVariableDefinitionToStore(start,vars')
vars' := changeVariableDefinitionToStore(inc,vars')
vars' := changeVariableDefinitionToStore(final,vars')
vars' := [iteratorName it,:vars']
it is [op,v,l] and op in '(IN ON) =>
vars' := changeVariableDefinitionToStore(l,vars')
vars' := [iteratorName it,:vars']
vars' := changeVariableDefinitionToStore(it,vars')
changeVariableDefinitionToStore(val,vars')
-- Variables defined in the loop body are also local to the loop
changeVariableDefinitionToStore(body,vars')
vars
++ Change (%LET id expr) to (%store id expr) if `id' is being
++ updated as opposed to being defined. `vars' is the list of
++ all variable definitions in scope.
changeVariableDefinitionToStore(form,vars) ==
atomic? form or form.op is 'CLOSEDFN or form.op is 'XLAM => vars
form is ['%LET,v,expr] =>
vars := changeVariableDefinitionToStore(expr,vars)
do
symbolMember?(v,vars) => form.op := '%store
vars := [v,:vars]
vars
form is ['%scope,.,expr] and expr is ['%seq,:.] =>
changeVariableDefinitionToStore(expr,vars)
vars
form is ['%when,:.] =>
for clause in form.args repeat
-- variable defined in clause predicates are visible
-- in subsequent predicates.
vars := changeVariableDefinitionToStore(first clause,vars)
-- but those defined in branches are local.
changeVariableDefinitionToStore(rest clause,vars)
vars
-- recursive binding
form is ['%bind,:.] =>
vars' := vars
for [v,init] in second form repeat
vars' := changeVariableDefinitionToStore(init,vars')
vars' := [v,:vars']
changeVariableDefinitionToStore(third form,vars')
vars
-- non-recursive binding.
form is ['LET,:.] =>
vars' := nil
for [v,init] in second form repeat
changeVariableDefinitionToStore(init,vars')
vars' := [v,:vars']
changeVariableDefinitionToStore(third form,[:vars',:vars])
vars
abstraction? form =>
changeVariableDefinitionToStore(form.absBody,[:form.absParms,:vars])
vars
form is ['%repeat,:iters,body,val] =>
changeLoopVarDefsToStore(iters,body,val,vars)
if form is ['%seq,:.] then
form.args := spliceSeqArgs form.args
for x in form repeat
vars := changeVariableDefinitionToStore(x,vars)
vars
++ Return true if `x' contains control transfer to a point outside itself.
jumpToToplevel? x ==
atomic? x => false
op := x.op
op is '%seq => CONTAINED('%leave,x.args) -- FIXME: what about GO?
op in '(%exit %leave) => true
or/[jumpToToplevel? x' for x' in x]
++ Return true if `form' is just one assignment expression.
nonExitingSingleAssignment? form ==
form is ['%LET,.,rhs]
and not CONTAINED('%LET,rhs) and not jumpToToplevel? rhs
++ Turns `form' into a `%bind'-expression if it starts with a
++ a sequence of first-time variable definitions.
groupVariableDefinitions form ==
atomic? form => form
form is ['%when,[p,s1],['%otherwise,s2]] and sideEffectFree? p =>
[form.op,[p,groupVariableDefinitions s1],
['%otherwise,groupVariableDefinitions s2]]
form.op is '%when =>
-- FIXME: we should not be generating store-modifying predicates
for clause in form.args while not CONTAINED('%LET, first clause) repeat
second(clause) := groupVariableDefinitions second clause
form
form is ['%scope,tag,expr] =>
mkScope(tag,groupVariableDefinitions expr)
form is ['%bind,inits,expr] =>
mkBind(inits,groupVariableDefinitions expr)
form is ['%lambda,:.] =>
[form.absKind,form.absParms,groupVariableDefinitions form.absBody]
form is ['%repeat,:iters,body,val] =>
[form.op,:iters,groupVariableDefinitions body,val]
form isnt ['%seq,:stmts,['%exit,val]] => form
form.args = nil => nil
form.args is [s] => groupVariableDefinitions s
defs := [s.args for s in stmts while nonExitingSingleAssignment? s]
defs = nil => form
stmts := drop(#defs,stmts)
expr :=
stmts = nil => val
['%seq,:stmts,['%exit,val]]
mkBind(defs,expr)
++ Group all %LET-definitions of artificial/temporary variables
++ into %bind-forms, appropriate for inlining in later stages.
groupTranscients! x == walkWith!(x,function f) where
f x ==
x is ['%scope,tag,y] and y is ['%seq,:.] =>
defs := [s.args for s in y.args while s is ['%LET,z,u]
and gensym? z and hasNoLeave?(u,tag)]
defs = nil => x
resetTo(x,mkBind(defs,mkScope(tag,mkSeq drop(#defs,y.args))))
x
++ Reduce all applications of XLAM-abstractions to arguments.
++ This is done before simplifyVMForm to expose more opportunities
++ for further reductions.
reduceXLAM! x == walkWith!(x,function f) where
f x ==
x is ['%call,y,:args] and y is ['XLAM,:.] =>
resetTo(x,doInlineCall(args,y.absParms,copyTree y.absBody))
x
++ Remove throw-away expressions, inline one-time temporaries
++ abstracting conditionals (generated by the parser) and remove
++ unnecessary %seq boxes around singleton expressions.
++ NOTES: this transformation must be run before any grouping
++ of intermediate result bindings.
removeJunk! x == walkWith!(x,function f) where
f x ==
x is ['%seq,:.] =>
x.args := g x.args
x.args is [y] => resetTo(x,y)
x
x
g xs ==
xs = nil => nil
x := first xs
x is "/throwAway" => g rest xs -- skip garbages
x is ['%LET,y,u] and gensym? y and numOfOccurencesOf(y,rest xs) = 1 =>
g substitute!(u,y,rest xs)
x is ['%seq,:.] => -- splice sub-sequences
ys := x.args =>
lastNode(ys).rest := rest xs
g ys
g rest xs -- skip empty statements
rest xs = nil => xs
sideEffectFree? x => g rest xs -- skip effect-less statements.
xs.rest := g rest xs
xs
inlineLocals! x == walkWith!(x,function f) where
f x ==
x is ['%bind,inits,:.] =>
kept := nil
while inits is [u,:inits] repeat
[y,z] := u
usedSymbol?(y,z) or usedSymbol?(y,inits) => kept := [u,:kept]
or/[usedSymbol?(v,z) for [v,.] in kept] => kept := [u,:kept]
canInlineVarDefinition(y,z,x.absBody) =>
x.absBody := substitute!(z,y,x.absBody)
kept := [u,:kept]
kept = nil => resetTo(x,x.absBody)
x.absParms := reverse! kept
x
x
++ Transform an IF-expression into a tower of %when-form.
transformIF! x == walkWith!(x,function f) where
f x ==
x is ['IF,p,s1,s2] =>
s2 is '%noBranch => resetTo(x,['%when,[p,s1]])
s1 is '%noBranch => resetTo(x,['%when,[['%not,p],s2]])
s2 is ['%when,:.] => resetTo(x,['%when,[p,s1],:s2.args])
resetTo(x,['%when,[p,s1],['%otherwise,s2]])
x
++ Subroutine of packWhen!
mkDefault(g,l) ==
l = nil => ['CONDERR]
mkScope(g,mkSeq l)
coagulateWhenSeries(l,tag) ==
f(l,tag) where
f(l,tag) ==
cl := nil
while l is [s,:.] and (cl' := g(s,tag)) repeat
cl := [:cl,:cl']
l := rest l
cl = nil => nil
[cl,l]
g(s,tag) ==
-- return list of reduced clauses if they all exit from same scope.
s is ['%when,:.] => exitClauses(s.args,tag)
nil
++ Return non-nil if the expression `x' exist the scope with tag `g'
++ by normal local transfer or by exiting the enclosing function
++ with a `return' statement. If non-nil, the return value is the
++ expression operand to the normal exit.
exitScope?(x,g) ==
x is ['%leave,=g,y] and hasNoLeave?(y,g) => y
x is ['%return,:.] => x
nil
unnestWhen! x == f x where
f x ==
x is ['%scope,tag,y] =>
y is ['%seq,:stmts] =>
while stmts is [s,:.] repeat
s := f s
s is ['%when,[p,u],['%otherwise,v]] and exitScope?(u,tag) =>
stmts.first := ['%when,[p,u]]
stmts.rest := spliceSeqArgs [f v,:rest stmts]
stmts.first := s
stmts := rest stmts
x
y is ['%when,[p,u:=['%leave,=tag,.]],['%otherwise,v]] =>
reset(x,f mkScope(tag,mkSeq [['%when,[p,u]],f v]))
second(x.args) := f y
x
do
abstraction? x => x.absBody := f x.absBody
x is ['%leave,.,y] or x is ['%return,.,y] => second(x.args) := f y
x is ['%when,:.] =>
for cl in x.args repeat
second(cl) := f second cl
x is ['%seq,:.] =>
for stmts in tails x.args repeat
stmts.first := f first stmts
x is ['%repeat,:.] =>
x.loopBody := unnestWhen! x.loopBody
x
++ Transform nested-to-tower.
packWhen! x == walkWith!(x,function f) where
f x ==
x is ['%when,[p1,['%when,[p2,s]]]] =>
resetTo(x,f ['%when,[['%and,p1,p2],s]])
x is ['%when,:cl,['%otherwise,y]] and y is ['%when,:.] =>
resetTo(x,f ['%when,:cl,:y.args])
x is ['%leave,g,['%when,[p,['%leave,=g,s]]]] =>
resetTo(x,['%leave,g,['%when,[p,s]]])
x is ['%scope,g,['%seq,:w]] and coagulateWhenSeries(w,g) is [u,v] =>
resetTo(x,f ['%when,:u,['%otherwise,f mkDefault(g,v)]])
x
spliceSeq! x == walkWith!(x,function f) where
f x ==
if x is ['%seq,:.] then
x.args := spliceSeqArgs x.args
x
++ Return the list of reduced clauses if every branch is a simple
++ normal exiting expression. Otherwise, return nil.
exitClauses(l,g) ==
[[p,x] for cl in l | cl is [p,u] and (x := exitScope?(u,g)) or leave nil]
++ Remove superfluous cancel/scope pairs exposed by running
++ removeJunk!.
cancelScopeLeave! x == walkWith!(x,function f) where
f x ==
x is ['%scope,g,u] =>
u is ['%when,:.] and (v := exitClauses(u.args,g)) =>
resetTo(x,[u.op,:v])
y := exitScope?(u,g) => resetTo(x,f y)
x
x
++ Remove redundant %leave opode around %return forms.
removeLeave! x == walkWith!(x,function f) where
f x ==
x is ['%leave,.,y] and y is ['%return,:.] => resetTo(x,y)
x
freeIteratorFirstValues iters ==
[u for it in iters | u := f it] where
f it ==
it is ['STEP,['%free,:id],lo,:.] => ['%LET,id,lo]
it is ['ON,['%free,:id],l] => ['%LET,id,l]
nil
cleanLoop! x == prefixWalk!(x,function f) where
f x ==
x is ['%scope,tag,['%repeat,:itl,body,val]] =>
body := g(body,tag)
val := g(val,tag)
firstVals := freeIteratorFirstValues itl =>
resetTo(x,mkSeq [:firstVals,f ['%repeat,:itl,body,val]])
resetTo(x,f ['%repeat,:itl,body,val])
x
g(x,tag) ==
atomic? x => x
x is ['%leave,=tag,y] =>
first(x.args) := nil
second(x.args) := g(y,tag)
x
for xs in tails x repeat
xs.first := g(first xs,tag)
x
removeScope! x == prefixWalk!(x,function f) where
f x ==
x is ['%scope,g,y] =>
y is ['%when,[p,['%leave,=g,u]],['%leave,=g,v]] =>
resetTo(x,['%when,[p,u],['%otherwise,v]])
hasNoLeave?(y,g) => resetTo(x,f y)
x
x
++ Transform an intermediate form (output of the elaborator) to
++ a lower intermediate form, applying several transformations
++ generaly intended to improve quality and efficiency.
optimize! x ==
x := unnestWhen! spliceSeq! packWhen! transformIF! removeLeave! cleanLoop! x
changeVariableDefinitionToStore(x,nil)
simplifyVMForm removeScope! cancelScopeLeave! spliceSeq! packWhen!
inlineLocals! groupTranscients! cancelScopeLeave!
removeJunk! reduceXLAM! x
++ A non-mutating version of `optimize!'.
optimize x ==
optimize! copyTree x
optimizeFunctionDef(def) ==
if $reportOptimization then
sayBrightlyI bright '"Original LISP code:"
pp def
expr := optimize! copyTree second def
if $reportOptimization then
sayBrightlyI bright '"Intermediate VM code:"
pp expr
[first def,expr]
resetTo(x,y) ==
y isnt [.,:.] => y
sameObject?(x,y) => y
x.first := y.first
x.rest := y.rest
x
++ Simplify the VM form `x'
simplifyVMForm x ==
x is '%icst0 => 0
x is '%icst1 => 1
atomic? x => x
x.op is 'CLOSEDFN => x
x.op isnt [.,:.] =>
symbol? x.op and abstractionOperator? x.op =>
x.absBody := groupVariableDefinitions simplifyVMForm x.absBody
x
for args in tails x.args repeat
args.first := simplifyVMForm first args
opt := subrname x.op has OPTIMIZE => resetTo(x,FUNCALL(opt,x))
x
for xs in tails x repeat
xs.first := simplifyVMForm first xs
x
subrname u ==
ident? u => u
COMPILED_-FUNCTION_-P u or MBPIP u => BPINAME u
nil
changeLeaveToExit(s,g) ==
atomic? s => nil
s.op in '(QUOTE %seq REPEAT COLLECT %collect %repeat) => nil
s is ['%leave, =g,:u] => (s.first := '%exit; s.rest := u)
changeLeaveToExit(first s,g)
changeLeaveToExit(rest s,g)
changeLeaveToGo(s,g) ==
s isnt [.,:.] or s.op is 'QUOTE => nil
s is ['%leave, =g,u] =>
changeLeaveToGo(u,g)
s.first := "PROGN"
s.rest := [["%LET",second g,u],["GO",second g]]
changeLeaveToGo(first s,g)
changeLeaveToGo(rest s,g)
optScope (x is ['%scope,g,a]) ==
a isnt [.,:.] => a
if a is ['%seq,:s,['%leave,=g,u]] then
changeLeaveToExit(s,g)
a.rest := [:s,['%exit,u]]
a := simplifyVMForm a
a isnt [.,:.] => a
do
hasNoLeave?(a,g) => resetTo(x,a)
changeLeaveToGo(a,g)
x.first := '%seq
x.rest := [['%exit,a],second g,['%exit,second g]]
x
optSPADCALL(form is ['SPADCALL,:argl]) ==
not $InteractiveMode => form
-- last arg is function/env, but may be a form
argl is [:argl,fun] and fun is ["ELT",dom,slot] =>
optCall ['%call,['ELT,dom,slot],:argl]
form
++ Inline a call with arguments `args' to a simple function with
++ parameter-list `parms' and body `body'.
doInlineCall(args,parms,body) ==
-- 1. almost constant functions are easy
parms = nil => body
-- 2. identity functions too
parms is [=body] => first args
-- 3. We know that the body is essentially side-effect-free (at best)
-- or simple expression (at worst.) The issue is whether it is
-- OK to directly substitute the arguments which may be
-- arbitrary expressions. The ideal semantics calls for introducting
-- a (fresh) temporary to hold the values of the argument expressions.
-- We attempt to short-circuit the native evaluation as follows:
-- a. side-effect-free arguments go by themselves.
-- b. Simple expression arguments go by themselves as long as
-- the corresponding parameter is used linearly in the body.
-- c. Others get evaluated to temporaries.
tmps := nil -- list of temporaries
inits := nil -- list of local bindings
subst := nil -- arguments substitution.
for arg in args for parm in parms repeat
g := gensym()
tmps := [g,:tmps]
n := numOfOccurencesOf(parm,body)
atomic? arg or (sideEffectFree? arg and n < 2) or n = 1 =>
subst := [[g,:arg],:subst]
inits := [[g,arg],:inits]
-- 4. Alpha-rename the body and substitute simple expression arguments.
body := applySubst(pairList(parms,reverse! tmps),body)
body := applySubst!(subst,body)
-- 5. Deliver.
inits = nil => body
['%bind,reverse! inits,body]
optCall (x is ['%call,:u]) ==
u is [['XLAM,vars,body],:args] =>
vars isnt [.,:.] => body
#vars > #args => systemErrorHere ['optCall,x]
resetTo(x,doInlineCall(args,vars,body))
[fn,:a] := u
fn isnt [.,:.] =>
opt := fn has OPTIMIZE => resetTo(x,FUNCALL(opt,u))
resetTo(x,u)
fn is ['applyFun,name] =>
x.first := 'SPADCALL
x.rest := [:a,name]
x
fn is ['%pair,['%function,op],env] =>
x.first := op
x.rest := [:a,env]
x
fn is ['%function,op] =>
x.first := op
x.rest := a
x
fn is [q,R,n] and q in '(ELT CONST) =>
q is 'CONST => ['spadConstant,R,n]
emitIndirectCall(fn,a,x)
systemErrorHere ['optCall,x]
optCons (x is ["CONS",a,b]) ==
a is "NIL" =>
b is 'NIL => (x.first := 'QUOTE; x.rest := ['NIL,:'NIL]; x)
b is ['QUOTE,:c] => (x.first := 'QUOTE; x.rest := ['NIL,:c]; x)
x
a is ['QUOTE,a'] =>
b is 'NIL => (x.first := 'QUOTE; x.rest := [a',:'NIL]; x)
b is ['QUOTE,:c] => (x.first := 'QUOTE; x.rest := [a',:c]; x)
x
x
optCond (x is ['%when,:l]) ==
l is [['%true,c],:.] => c
l is [['%false,.],:.] => optCond ['%when,:rest l]
l is [['%otherwise,c]] => c
if l is [a,[aa,b]] and aa is '%otherwise and b is ['%when,:c] then
x.rest.rest := c
if l is [[p1,:c1],[p2,:c2],:.] then
if (p1 is ['%not,=p2]) or (p2 is ['%not,=p1]) then
l:=[[p1,:c1],['%otherwise,:c2]]
x.rest := l
c1 is ['NIL] and p2 is '%otherwise and first c2 is '%otherwise =>
return optNot ['%not,p1]
l is [[p1,['%when,[p2,c2]]]] => optCond ['%when,[['%and,p1,p2],c2]]
l is [[p1,c1],['%otherwise,'%false]] => optAnd ['%and,p1,c1]
l is [[p1,c1],['%otherwise,'%true]] => optOr ['%or,optNot ['%not,p1],c1]
l is [[p1,'%false],['%otherwise,c2]] => optAnd ['%and,optNot ['%not,p1],c2]
l is [[p1,'%true],['%otherwise,c2]] => optOr ['%or,p1,c2]
l is [[p1,:c1],[p2,:c2],[p3,:c3]] and p3 is '%otherwise =>
EqualBarGensym(c1,c3) =>
optCond ['%when,[['%or,p1,optNot ['%not,p2]],:c1],['%otherwise,:c2]]
EqualBarGensym(c1,c2) =>
optCond ['%when,[['%or,p1,p2],:c1],['%otherwise,:c3]]
x
for y in tails l repeat
while y is [[a1,c1],[a2,c2],:y'] and EqualBarGensym(c1,c2) repeat
a := ['%or,a1,a2]
first(y).first := a
y.rest := y'
x
AssocBarGensym(key,l) ==
for x in l repeat
cons? x =>
EqualBarGensym(key,first x) => return x
EqualBarGensym(x,y) ==
$GensymAssoc: local := nil
fn(x,y) where
fn(x,y) ==
x=y => true
GENSYMP x and GENSYMP y =>
z:= assoc(x,$GensymAssoc) => y=rest z
$GensymAssoc:= [[x,:y],:$GensymAssoc]
true
null x => y is [g] and GENSYMP g
null y => x is [g] and GENSYMP g
x isnt [.,:.] or y isnt [.,:.] => false
fn(first x,first y) and fn(rest x,rest y)
optSuchthat [.,:u] == ["SUCHTHAT",:u]
++ List of VM side effect free operators.
$VMsideEffectFreeOperators ==
'(SPADfirst ASH FLOAT FLOAT_-SIGN %function %nullStream %nonNullStream
%funcall %nothing %when %false %true %otherwise %2bit %2bool
%and %or %not %peq %ieq %ilt %ile %igt %ige %head %tail %integer?
%beq %blt %ble %bgt %bge %bitand %bitior %bitxor %bitnot %bcompl
%ilength %ibit %icst0 %icst1 %icstmin %icstmax
%imul %iadd %isub %igcd %ilcm %ipow %imin %imax %ieven? %iodd? %iinc
%idec %irem %iquo %idivide %idec %irandom
%feq %flt %fle %fgt %fge %fmul %fadd %fsub %fexp %fmin %fmax %float?
%fpowi %fdiv %fneg %i2f %fminval %fmaxval %fbase %fprec %ftrunc
%fsqrt %fpowf %flog %flog2 %flog10 %fmanexp %fNaN? %fdecode
%fsin %fcos %ftan %fcot
%fasin %facos %fatan %facot
%fsinh %fcosh %ftanh
%fasinh %facosh %fatanh
%val2z %z2val %zlit %zreal %zimag
%zexp %zlog %zsin %zcos %ztan %zasin %zacos %zatan
%zsinh %zcosh %ztanh %zasinh %zacosh %zatanh
%nil %pair %list %pair? %lconcat %llength %lfirst %lsecond %lthird
%lreverse %lempty? %hash %ismall? %string? %f2s STRINGIMAGE
%ccst %ccstmax %ceq %clt %cle %cgt %cge %c2i %i2c %s2c %c2s %cup %cdown
%sname
%strlength %streq %i2s %schar %strlt %strconc
%strcopy %bytevec2str %str2bytevec
%vector %aref %vref %vlength %vcopy
%bitvector
%bitvecnot %bitvecand %bitvecnand %bivecor %bitvecnor %bitvecxor
%bitveccopy %bitvecconc %bitveclength %bitvecref %bitveceq %bitveclt
%before? %equal %sptreq %ident? %property %tref
%void %retract %pullback %lambda %closure)
++ List of simple VM operators
$simpleVMoperators ==
[:$VMsideEffectFreeOperators,
:['SPADCALL,'%apply, '%gensym, '%lreverse!, '%strstc]]
++ Return true if the `form' is semi-simple with respect to
++ to the list of operators `ops'.
semiSimpleRelativeTo?(form,ops) ==
atomic? form => true
not symbol?(form.op) or not symbolMember?(form.op,ops) => false
form.op is '%when =>
and/[sideEffectFree? p and semiSimpleRelativeTo?(c,ops)
for [p,c] in form.args]
and/[semiSimpleRelativeTo?(f,ops) for f in form.args]
++ Return true if `form' os a side-effect free form.
sideEffectFree? form ==
semiSimpleRelativeTo?(form,$VMsideEffectFreeOperators)
++ Return true if `form' is a VM form whose evaluation does not depend
++ on the program point where it is evaluated.
$FloatableOperators ==
['%bind,:$VMsideEffectFreeOperators]
floatableVMForm?: %Code -> %Boolean
floatableVMForm? form ==
semiSimpleRelativeTo?(form,$FloatableOperators)
++ Return true if the VM form `form' is one that we certify to
++ evaluate to a (compile time) constant. Note that this is a
++ fairly conservative approximation of compile time constants.
isVMConstantForm: %Code -> %Boolean
isVMConstantForm form ==
integer? form or string? form => true
form isnt [op,:args] => false
op in '(%list %pair %vector) => false
symbolMember?(op,$VMsideEffectFreeOperators) and
"and"/[isVMConstantForm arg for arg in args]
++ Return the set of free variables in the VM form `form'.
findVMFreeVars form ==
ident? form => [form]
form isnt [op,:args] => nil
op is 'QUOTE => nil
vars := union/[findVMFreeVars arg for arg in args]
op isnt [.,:.] => vars
setUnion(findVMFreeVars op,vars)
++ Return true is `var' is the left hand side of an assignment
++ or a sort of binding in `form'.
modified?(var,form) ==
atomic? form => false
form is [op,var',expr,:.] and op in '(%LET LETT SETQ %store) =>
modified?(var,expr) => true
symbol? var' => var' = var -- whole var is assigned
var' is [.,=var,:.] -- only part of it is modified
form is ['%bind,:.] and
(or/[symbolEq?(var,var') for [var',.] in form.absParms]) => true
form is ['%repeat,:iters,.,.] and
(or/[symbolEq?(var,iteratorName i) for i in iters]) => true
abstraction? form and symbolMember?(var,form.absParms) => true
or/[modified?(var,f) for f in form]
++ Return the list of variables referenced in `expr'.
dependentVars expr == main(expr,nil) where
main(x,vars) ==
ident? x =>
symbolMember?(x,vars) => vars
[x,:vars]
atomic? x => vars
x' :=
cons? x.op => x
x.args
for y in x' repeat
vars := main(y,vars)
vars
++ Subroutine of optBind. Return true if the variable `var' locally
++ defined in a binding form can be safely replaced by its initalization
++ `expr' in the `body' of the binding form.
canInlineVarDefinition(var,expr,body) ==
-- Occasional situation where `expr' evaluates to itself
gensym? var and sameObject?(var,body) => true
-- FIXME: We should not be inlining a side-effecting initializer.
-- If the variable is assigned to, that is a no no.
modified?(var,body) => false
-- Similarly, if the initial value depends on variables that are
-- side-effected latter, it is also a no no.
or/[modified?(x,body) for x in dependentVars expr] => false
-- If the initializer is a variable and not modified in body,
-- and the new var is not modified, then we can inline.
-- FIXME: except if the modification is done via normal function calls.
ident? expr => true
-- Conversatively stay out of loops
cons? body and body.op in '(%repeat %collect) => false
-- Linearly used internal temporaries should be replaced, and
-- so should side-effet free initializers for linear variables.
usageCount := numOfOccurencesOf(var,body)
usageCount < 2 and floatableVMForm? expr => true
gensym? var and usageCount = 1 => true
-- If the initializer is a variable and the body is
-- a series of choices with floatable predicates, then
-- no harm is done by inlining the local `var'.
ident? expr and body is ['%when,:branches] =>
and/[floatableVMForm? pred for [pred,:.] in branches]
false
++ Implement simple-minded LET-inlining. It seems we can't count
++ on Lisp implementations to do this simple transformation.
++ This transformation will probably be more effective when all
++ type informations are still around. Which is why we should
++ have a type directed compilation throughout.
optBind form ==
form isnt ['%bind,inits,.] => form -- accept only simple bodies
while inits ~= nil repeat
[var,expr] := first inits
usedSymbol?(var,rest inits) => leave nil -- no dependency, please.
body := third form
canInlineVarDefinition(var,expr,body) =>
third(form) := substitute!(expr,var,body)
inits := rest inits
leave nil
null inits => third form -- no local var left
second(form) := inits
form
optTry form ==
form isnt ['%try,e,hs,f] or not(floatableVMForm? e) or f ~= nil => form
e
optList form ==
form is ['%list] => '%nil
literalElts := [(x is ['QUOTE,y] => y; leave "failed") for x in form.args]
literalElts is "failed" => form
quote literalElts
++ Translate retraction of a value denoted by `e' to sub-domain `m'
++ defined by predicate `pred',
optRetract ["%retract",e,m,pred] ==
e isnt [.,:.] =>
cond := simplifyVMForm substitute(e,"#1",pred)
cond is '%true => e
['%when,[cond,e],['%otherwise,['moanRetract,e,MKQ m]]]
g := gensym()
['%bind,[[g,e]],
['%when,[substitute(g,"#1",pred),g],
['%otherwise,['moanRetract,g,MKQ m]]]]
++ We have an expression `x' of some Union type. Expand an attempted
++ pullback to the `n'th branch of type `t'.
optPullback ['%pullback,x,t,n] ==
y :=
ident? x => x
gensym()
expr :=
['%when,[['%ieq,['%head,y],n],['%tail,y]],
['%otherwise,['moanRetract,y,MKQ t]]]
symbolEq?(x,y) => expr
['%bind,[[y,x]],expr]
--% Boolean expression transformers
optNot(x is ['%not,a]) ==
a is '%true => '%false
a is '%false => '%true
a is ['%not,b] => b
a is ['%when,:.] =>
optCond [a.op, :[[p,optNot ['%not,c]] for [p,c] in a.args]]
x
optAnd(x is ['%and,a,b]) ==
a is '%true => b
b is '%true => a
a is '%false => '%false
x
optOr(x is ['%or,a,b]) ==
a is '%false => b
b is '%false => a
a is '%true => '%true
x
-- Boolean <-> bit conversion.
opt2bit ['%2bit,a] ==
optCond ['%when,[a,'%icst1],['%otherwise,'%icst0]]
opt2bool ['%2bool,a] ==
a is '%icst0 => '%false
a is '%icst1 => '%true
optIeq ['%ieq,a,'%icst1]
optIeq(x is ['%ieq,a,b]) ==
integer? a and integer? b =>
scalarEq?(a,b) => '%true
'%false
sameObject?(a,b) => '%true
x
optIlt(x is ['%ilt,a,b]) ==
-- 1. Don't delay if both operands are literals.
integer? a and integer? b =>
a < b => '%true
'%false
-- 2. max(a,b) cannot be negative if either a or b is zero.
b = 0 and a is ['%imax,:.] and (second a = 0 or third a = 0) => '%false
-- 3. min(a,b) cannot be positive if either a or b is zero.
a = 0 and b is ['%imin,:.] and (second b = 0 or third b = 0) => '%false
x
optIle(x is ['%ile,a,b]) ==
optNot ['%not,optIlt ['%ilt,b,a]]
optIgt x ==
optIlt ['%ilt,third x, second x]
optIge x ==
optNot ['%not,optIlt ['%ilt,second x,third x]]
--% Byte operations
optBle ['%ble,a,b] ==
optNot ['%not,['%blt,b,a]]
optBgt ['%bgt,a,b] ==
['%blt,b,a]
optBge ['%bge,a,b] ==
optBle ['%ble,b,a]
--% Integer operations
optIadd(x is ['%iadd,a,b]) ==
integer? a and integer? b => a + b
integer? a =>
a = 0 => b
b is [op,b1,b2] and op in '(%iadd %isub) =>
integer? b1 => simplifyVMForm [op,['%iadd,a,b1],b2]
integer? b2 => simplifyVMForm ['%iadd,b1,[op,a,b2]]
x
x
integer? b =>
b = 0 => a
a is [op,a1,a2] and op in '('%iadd %isub) =>
integer? a1 => simplifyVMForm [op,['%iadd,a1,b],a2]
integer? a2 => simplifyVMForm ['%iadd,a1,[op,b,a2]]
x
x
x
optIinc(x is ['%iinc,a]) ==
integer? a => a + 1
a is [op,b,c] and op in '(%isub %iadd) =>
integer? b => simplifyVMForm [op,[op,b,1],c]
integer? c => simplifyVMForm [op,b,[op,c,1]]
x
x
optIsub(x is ['%isub,a,b]) ==
integer? a and integer? b => a - b
integer? a =>
a = 0 => ['%ineg,b]
b is ['%iadd,b1,b2] =>
integer? b1 => simplifyVMForm ['%isub,['%isub,a,b1],b2]
integer? b2 => simplifyVMForm ['%isub,['%isub,a,b2],b1]
x
b is ['%isub,b1,b2] =>
integer? b1 => simplifyVMForm ['%iadd,['%isub,a,b1],b2]
integer? b2 => simplifyVMForm ['%isub,['%iadd,a,b2],b1]
x
x
integer? b =>
b = 0 => a
a is ['%iadd,a1,a2] =>
integer? a1 => simplifyVMForm ['%iadd,['%isub,a1,b],a2]
integer? a2 => simplifyVMForm ['%iadd,a1,['%isub,a2,b]]
x
a is ['%isub,a1,a2] =>
integer? a1 => simplifyVMForm ['%isub,['%isub,a1,b],a2]
integer? a2 => simplifyVMForm ['%isub,a1,['%iadd,a2,b]]
x
x
x
optIdec(x is ['%idec,a]) ==
integer? a => a - 1
a is ['%iadd,b,c] =>
integer? b => simplifyVMForm ['%iadd,['%isub,b,1],c]
integer? c => simplifyVMForm ['%iadd,b,['%isub,c,1]]
x
a is ['%isub,b,c] =>
integer? b => simplifyVMForm ['%isub,['%isub,b,1],c]
integer? c => simplifyVMForm ['%isub,b,['%iadd,c,1]]
x
x
optImul(x is ['%imul,a,b]) ==
integer? a and integer? b => a * b
integer? a and a = 1 => b
integer? b and b = 1 => a
x
optIneg(x is ['%ineg,a]) ==
integer? a => -a
x
optIrem(x is ['%irem,a,b]) ==
integer? a and integer? b => a rem b
x
optIquo(x is ['%iquo,a,b]) ==
integer? a and integer? b => a quo b
x
--%
--% optimizer hash table
--%
for x in '((%call optCall) _
(%bind optBind)_
(%try optTry)_
(%not optNot)_
(%and optAnd)_
(%or optOr)_
(%ble optBle)_
(%bgt optBgt)_
(%bge optBge)_
(%ieq optIeq)_
(%ilt optIlt)_
(%ile optIle)_
(%igt optIgt)_
(%ige optIge)_
(%ineg optIneg)_
(%iadd optIadd)_
(%iinc optIinc)_
(%isub optIsub)_
(%irem optIrem)_
(%iquo optIquo)_
(%imul optImul)_
(%2bit opt2bit)_
(%2bool opt2bool)_
(%list optList)_
(SPADCALL optSPADCALL)_
(_| optSuchthat)_
(%scope optScope)_
(%when optCond)_
(%retract optRetract)_
(%pullback optPullback)) _
repeat property(first x,'OPTIMIZE) := second x
--much quicker to call functions if they have an SBC
|