aboutsummaryrefslogtreecommitdiff
path: root/src/interp/g-opt.boot
blob: 8dfff858c6478c479031059d19d54610babcad74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
-- Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
-- All rights reserved.
-- Copyright (C) 2007-2011, Gabriel Dos Reis.
-- All rights reserved.
--
-- Redistribution and use in source and binary forms, with or without
-- modification, are permitted provided that the following conditions are
-- met:
--
--     - Redistributions of source code must retain the above copyright
--       notice, this list of conditions and the following disclaimer.
--
--     - Redistributions in binary form must reproduce the above copyright
--       notice, this list of conditions and the following disclaimer in
--       the documentation and/or other materials provided with the
--       distribution.
--
--     - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--       names of its contributors may be used to endorse or promote products
--       derived from this software without specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
-- IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
-- TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
-- PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
-- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.


import g_-util
namespace BOOT

--% 

$optimizableConstructorNames := $SystemInlinableConstructorNames

++ Return true if the domain `dom' is an instance of a functor
++ that has been nominated for inlining.
optimizableDomain? dom ==
  symbolMember?(opOf dom,$optimizableConstructorNames)

++ Register the domain `dom' for inlining.
nominateForInlining dom ==
  $optimizableConstructorNames := [opOf dom,:$optimizableConstructorNames]
  
--%

++ return the template of the instantiating functor for
++ the domain form `dom'.
getDomainTemplate dom ==
  atom dom => nil
  getInfovec first dom

++ Emit code for an indirect call to domain-wide Spad function.  
++ This is usually the case for exported functions.
emitIndirectCall(fn,args,x) ==
  x.first := "SPADCALL"
  fn.first := '%tref
  x.rest := [:args,fn]
  x

--% OPTIMIZER

++ Change (%LET id expr) to (%store id expr) if `id' is being
++ updated as opposed to being defined. `vars' is the list of
++ all variable definitions in scope.
changeVariableDefinitionToStore(form,vars) ==
  atomic? form or form.op is 'CLOSEDFN => vars
  form is ['%LET,v,expr] =>
    vars := changeVariableDefinitionToStore(expr,vars)
    if symbolMember?(v,vars) then
      form.op := '%store
    else
      vars := [v,:vars]
    vars
  form.op is '%when =>
    for clause in form.args repeat
      -- variable defined in clause predicates are visible
      -- subsequent predicates
      vars := changeVariableDefinitionToStore(first clause,vars)
      -- but those defined in branches are local.
      changeVariableDefinitionToStore(rest clause,vars)
    vars
  -- local bindings are, well, local.
  form.op in '(%bind LET) =>
    vars' := vars
    for [v,init] in second form repeat
      vars' := changeVariableDefinitionToStore(init,vars')
      vars' := [v,:vars']
    changeVariableDefinitionToStore(third form,vars')
    vars
  abstractionOperator? form.op =>
    changeVariableDefinitionToStore(third form,[:second form,:vars])
    vars
  for x in form repeat
    vars := changeVariableDefinitionToStore(x,vars)
  vars

++ Return true if `x' contains control transfer to a point outside itself.
jumpToToplevel? x ==
  atomic? x => false
  op := x.op
  op is 'SEQ => CONTAINED('THROW,x.args) -- FIXME: what about GO?
  op in '(EXIT THROW %leave) => true
  or/[jumpToToplevel? x' for x' in x]

++ Return true if `form' is just one assignment expression.
nonExitingSingleAssignment? form ==
  form is ['%LET,.,rhs]
    and not CONTAINED('%LET,rhs) and not jumpToToplevel? rhs

++ Turns `form' into a `%bind'-expression if it starts with a
++ a sequence of first-time variable definitions.
groupVariableDefinitions form ==
  atomic? form => form
  form.op is '%when =>
    -- FIXME: we should not be generating store-modifying predicates
    for clause in form.args while not CONTAINED('%LET, first clause) repeat
      second(clause) := groupVariableDefinitions second clause
    form
  form isnt ['SEQ,:stmts,['EXIT,val]] => form
  defs := nil
  for x in stmts while nonExitingSingleAssignment? x  repeat
    defs := [x.args,:defs]
  defs = nil or jumpToToplevel? defs => form
  stmts := drop(#defs,stmts)
  expr :=
    stmts = nil => val
    ['SEQ,:stmts,['EXIT,val]]
  ['%bind,reverse! defs,expr]

optimizeFunctionDef(def) ==
  if $reportOptimization then
    sayBrightlyI bright '"Original LISP code:"
    pp def
 
  def' := simplifyVMForm COPY def
 
  if $reportOptimization then
    sayBrightlyI bright '"Intermediate VM code:"
    pp def'

  [name,[slamOrLam,args,body]] := def'
 
  body':=
    removeTopLevelCatch body where
      removeTopLevelCatch body ==
        body is ["CATCH",g,u] =>
          removeTopLevelCatch replaceThrowByReturn(u,g)
        body
      replaceThrowByReturn(x,g) ==
        fn(x,g)
        x
      fn(x,g) ==
        x is ["THROW", =g,:u] =>
          x.first := "RETURN"
          x.rest := replaceThrowByReturn(u,g)
        atom x => nil
        replaceThrowByReturn(first x,g)
        replaceThrowByReturn(rest x,g)
  changeVariableDefinitionToStore(body',args)
  [name,[slamOrLam,args,groupVariableDefinitions body']]

resetTo(x,y) ==
  atom y => x := y
  sameObject?(x,y) => x
  x.first := y.first
  x.rest := y.rest
  x

++ Simplify the VM form `x'
simplifyVMForm x ==
  x is '%icst0 => 0
  x is '%icst1 => 1
  atomic? x => x
  x.op is 'CLOSEDFN => x
  atom x.op =>
    x is [op,vars,body] and abstractionOperator? op =>
      third(x) := simplifyVMForm body
      x
    if x.op is 'IF then
      resetTo(x,optIF2COND x)
    for args in tails x.args repeat
      args.first := simplifyVMForm first args
    opt := subrname x.op has OPTIMIZE => resetTo(x,FUNCALL(opt,x))
    x
  for xs in tails x repeat
    xs.first := simplifyVMForm first xs
  x
 
subrname u ==
  IDENTP u => u
  COMPILED_-FUNCTION_-P u or MBPIP u => BPINAME u
  nil
 
changeThrowToExit(s,g) ==
  atom s or s.op in '(QUOTE SEQ REPEAT COLLECT %collect %loop) => nil
  s is ["THROW", =g,:u] => (s.first := "EXIT"; s.rest := u)
  changeThrowToExit(first s,g)
  changeThrowToExit(rest s,g)

hasNoThrows(a,g) ==
  a is ["THROW", =g,:.] => false
  atom a => true
  hasNoThrows(first a,g) and hasNoThrows(rest a,g)

changeThrowToGo(s,g) ==
  atom s or first s is 'QUOTE => nil
  s is ["THROW", =g,u] =>
    changeThrowToGo(u,g)
    s.first := "PROGN"
    s.rest := [["%LET",second g,u],["GO",second g]]
  changeThrowToGo(first s,g)
  changeThrowToGo(rest s,g)

++ Change any `(THROW tag (%return expr))' in x to just
++ `(%return expr) since a %return-expression transfers control
++ out of the function body anyway.  Similarly, transform
++ reudant `(THROW tag (THROW tag expr))' to `(THROW tag expr)'.
removeNeedlessThrow x ==
  atomic? x => x
  x is ['THROW,.,y] and y is ['%return,:.] =>
    removeNeedlessThrow third y
    x.op := y.op
    x.args := y.args
  x is ['THROW,g,y] and y is ['THROW,=g,z] =>
    removeNeedlessThrow z
    second(x.args) := z
  for x' in x repeat
    removeNeedlessThrow x'

optCatch (x is ["CATCH",g,a]) ==
  $InteractiveMode => x
  atom a => a
  removeNeedlessThrow a
  if a is ["SEQ",:s,["THROW", =g,u]] then
    changeThrowToExit(s,g)
    a.rest := [:s,["EXIT",u]]
    a := simplifyVMForm a
  if hasNoThrows(a,g) then
    resetTo(x,a)
  else
    changeThrowToGo(a,g)
    x.first := "SEQ"
    x.rest := [["EXIT",a],second g,["EXIT",second g]]
  x
 
optSPADCALL(form is ['SPADCALL,:argl]) ==
  not $InteractiveMode => form
  -- last arg is function/env, but may be a form
  argl is [:argl,fun] and fun is ["ELT",dom,slot] =>
    optCall ['%call,['ELT,dom,slot],:argl]
  form
 
optCall (x is ['%call,:u]) ==
  u is [['XLAM,vars,body],:args] =>
    atom vars => body
    #vars > #args => systemErrorHere ['optCall,x]
    resetTo(x,optXLAMCond applySubst(pairList(vars,args),body))
  [fn,:a] := u
  atom fn =>
    opt := fn has OPTIMIZE => resetTo(x,FUNCALL(opt,u))
    resetTo(x,u)
  fn is ['applyFun,name] =>
    x.first := 'SPADCALL
    x.rest := [:a,name]
    x
  fn is [q,R,n] and q in '(ELT CONST) =>
    q is 'CONST => ['spadConstant,R,n]
    emitIndirectCall(fn,a,x)
  systemErrorHere ['optCall,x]
 
optCons (x is ["CONS",a,b]) ==
  a is "NIL" =>
    b is 'NIL => (x.first := 'QUOTE; x.rest := ['NIL,:'NIL]; x)
    b is ['QUOTE,:c] => (x.first := 'QUOTE; x.rest := ['NIL,:c]; x)
    x
  a is ['QUOTE,a'] =>
    b is 'NIL => (x.first := 'QUOTE; x.rest := [a',:'NIL]; x)
    b is ['QUOTE,:c] => (x.first := 'QUOTE; x.rest := [a',:c]; x)
    x
  x
 
optCond (x is ['%when,:l]) ==
  l is [['%true,c],:.] => c
  l is [['%false,.],:.] => optCond ['%when,:rest l]
  l is [['%otherwise,c]] => c
  if l is [a,[aa,b]] and aa is '%otherwise and b is ['%when,:c] then
    x.rest.rest := c
  if l is [[p1,:c1],[p2,:c2],:.] then
    if (p1 is ['%not,=p2]) or (p2 is ['%not,=p1]) then
      l:=[[p1,:c1],['%otherwise,:c2]]
      x.rest := l
    c1 is ['NIL] and p2 is '%otherwise and first c2 is '%otherwise =>
      return optNot ['%not,p1]
  l is [[p1,['%when,[p2,c2]]]] => optCond ['%when,[['%and,p1,p2],c2]]
  l is [[p1,c1],['%otherwise,'%false]] => optAnd ['%and,p1,c1]
  l is [[p1,c1],['%otherwise,'%true]] => optOr ['%or,optNot ['%not,p1],c1]
  l is [[p1,'%false],['%otherwise,c2]] => optAnd ['%and,optNot ['%not,p1],c2]
  l is [[p1,'%true],['%otherwise,c2]] => optOr ['%or,p1,c2]
  l is [[p1,:c1],[p2,:c2],[p3,:c3]] and p3 is '%otherwise =>
    EqualBarGensym(c1,c3) =>
      optCond ['%when,[['%or,p1,optNot ['%not,p2]],:c1],['%otherwise,:c2]]
    EqualBarGensym(c1,c2) =>
      optCond ['%when,[['%or,p1,p2],:c1],['%otherwise,:c3]]
    x
  for y in tails l repeat
    while y is [[a1,c1],[a2,c2],:y'] and EqualBarGensym(c1,c2) repeat
      a := ['%or,a1,a2]
      first(y).first := a
      y.rest := y'
  x
 
AssocBarGensym(key,l) ==
  for x in l repeat
    cons? x =>
      EqualBarGensym(key,first x) => return x
 
EqualBarGensym(x,y) ==
  $GensymAssoc: local := nil
  fn(x,y) where
    fn(x,y) ==
      x=y => true
      GENSYMP x and GENSYMP y =>
        z:= assoc(x,$GensymAssoc) => y=rest z
        $GensymAssoc:= [[x,:y],:$GensymAssoc]
        true
      null x => y is [g] and GENSYMP g
      null y => x is [g] and GENSYMP g
      atom x or atom y => false
      fn(first x,first y) and fn(rest x,rest y)
 
--Called early, to change IF to conditional form
 
optIF2COND ["IF",a,b,c] ==
  b is "%noBranch" => ['%when,[['%not,a],c]]
  c is "%noBranch" => ['%when,[a,b]]
  c is ["IF",:.] => ['%when,[a,b],:rest optIF2COND c]
  c is ['%when,:p] => ['%when,[a,b],:p]
  ['%when,[a,b],['%otherwise,c]]
 
optXLAMCond x ==
  x is ['%when,u:= [p,c],:l] =>
    p is '%otherwise => c
    ['%when,u,:optCONDtail l]
  atom x => x
  x.first := optXLAMCond first x
  x.rest := optXLAMCond rest x
  x
 
optCONDtail l ==
  null l => nil
  [frst:= [p,c],:l']:= l
  p is '%otherwise => [['%otherwise,c]]
  null rest l => [frst,['%otherwise,["CondError"]]]
  [frst,:optCONDtail l']

++ Determine whether the symbol `g' is the name of a temporary that
++ can be replaced in the form `x', if it is of linear usage and not
++ the name of a program point.  The latter occurs when THROW forms
++ are changed to %LET form followed by a GO form -- see optCatch.
replaceableTemporary?(g,x) ==
  GENSYMP g and numOfOccurencesOf(g,x) < 2 and not jumpTarget?(g,x) where
    jumpTarget?(g,x) ==
      atomic? x => false
      x is ['GO,=g] => true
      or/[jumpTarget?(g,x') for x' in x]

optSEQ ["SEQ",:l] ==
  tryToRemoveSEQ SEQToCOND getRidOfTemps splicePROGN l where
    splicePROGN l ==
      atomic? l => l
      l is [["PROGN",:stmts],:l'] => [:stmts,:l']
      l.rest := splicePROGN rest l
    getRidOfTemps l ==
      null l => nil
      l is [["%LET",g,x],:r] and replaceableTemporary?(g,r) =>
        getRidOfTemps substitute(x,g,r)
      first l is "/throwAway" => getRidOfTemps rest l
      --this gets rid of unwanted labels generated by declarations in SEQs
      [first l,:getRidOfTemps rest l]
    SEQToCOND l ==
      transform:= [[a,b] for x in l while (x is ['%when,[a,["EXIT",b]]])]
      before:= take(#transform,l)
      aft:= after(l,before)
      null before => ["SEQ",:aft]
      null aft => ['%when,:transform,'(%otherwise (conderr))]
      optCond ['%when,:transform,['%otherwise,optSEQ ["SEQ",:aft]]]
    tryToRemoveSEQ l ==
      l is ["SEQ",[op,a]] and op in '(EXIT RETURN THROW) => a
      l
 
optSuchthat [.,:u] == ["SUCHTHAT",:u]
 
++ List of VM side effect free operators.
$VMsideEffectFreeOperators ==
  '(FUNCALL
    SPADfirst ASH IDENTP FLOAT_-RADIX FLOAT FLOAT_-SIGN
    %funcall %nothing %when %false %true %otherwise %2bit %2bool
    %and %or %not %peq %ieq %ilt %ile %igt %ige %head %tail %integer?
    %beq %blt %ble %bgt %bge %bitand %bitior %bitxor %bitnot %bcompl
    %ilength %ibit %icst0 %icst1 %icstmin %icstmax
    %imul %iadd %isub %igcd %ilcm %ipow %imin %imax %ieven? %iodd? %iinc
    %irem %iquo %idivide %idec %irandom
    %feq %flt %fle %fgt %fge %fmul %fadd %fsub %fexp %fmin %fmax %float?
    %fpowi %fdiv %fneg %i2f %fminval %fmaxval %fbase %fprec %ftrunc
    %fsqrt %fpowf %flog %flog2 %flog10 %fmanexp %fNaN?
    %fsin  %fcos  %ftan  %fcot  
    %fasin %facos %fatan %facot 
    %fsinh  %fcosh  %ftanh 
    %fasinh %facosh %fatanh
    %val2z %z2val %zlit %zreal %zimag
    %zexp %zlog %zsin %zcos %ztan %zasin %zacos %zatan
    %zsinh %zcosh %ztanh %zasinh %zacosh %zatanh
    %nil %pair %list %pair? %lconcat %llength %lfirst %lsecond %lthird
    %lreverse %lempty? %hash %ismall? %string? %f2s
    %ccst %ccstmax %ceq %clt %cle %cgt %cge %c2i %i2c %s2c %c2s %cup %cdown
    %sname
    %strlength %streq %i2s %schar %strlt %strconc
    %strcopy %bytevec2str %str2bytevec
    %vector %aref %vref %vlength %vcopy
    %bitvector
    %bitvecnot %bitvecand %bitvecnand %bivecor %bitvecnor %bitvecxor
    %bitveccopy %bitvecconc %bitveclength %bitvecref %bitveceq %bitveclt
    %before? %equal %sptreq %ident? %property %tref
    %writeString %writeNewline %writeLine)

++ List of simple VM operators
$simpleVMoperators == 
  append($VMsideEffectFreeOperators,
    ['SPADCALL,'STRINGIMAGE,'%gensym, '%lreverse!,
      '%strstc,"MAKE-FULL-CVEC"])

++ Return true if the `form' is semi-simple with respect to
++ to the list of operators `ops'.
semiSimpleRelativeTo?(form,ops) ==
  atomic? form => true
  not symbol?(form.op) or not symbolMember?(form.op,ops) => false
  form.op is '%when =>
    and/[sideEffectFree? p and semiSimpleRelativeTo?(c,ops)
           for [p,c] in form.args]
  and/[semiSimpleRelativeTo?(f,ops) for f in form.args]

++ Return true if `form' os a side-effect free form.  
sideEffectFree? form ==
  semiSimpleRelativeTo?(form,$VMsideEffectFreeOperators)

++ Return true if `form' is a simple VM form.
++ See $simpleVMoperators for the definition of simple operators.
isSimpleVMForm form ==
  semiSimpleRelativeTo?(form,$simpleVMoperators)

++ Return true if `form' is a VM form whose evaluation does not depend
++ on the program point where it is evaluated. 
isFloatableVMForm: %Code -> %Boolean
isFloatableVMForm form ==
  atom form => form isnt "$"
  form is ["QUOTE",:.] => true
  symbolMember?(form.op, $simpleVMoperators) and
    "and"/[isFloatableVMForm arg for arg in form.args]
    

++ Return true if the VM form `form' is one that we certify to 
++ evaluate to a (compile time) constant.  Note that this is a
++ fairly conservative approximation of compile time constants.
isVMConstantForm: %Code -> %Boolean
isVMConstantForm form ==
  integer? form or string? form => true
  form isnt [op,:args] => false
  op in '(%list %pair %vector) => false
  symbolMember?(op,$VMsideEffectFreeOperators) and 
    "and"/[isVMConstantForm arg for arg in args]

++ Return the set of free variables in the VM form `form'.
findVMFreeVars form ==
  IDENTP form => [form]
  form isnt [op,:args] => nil  
  op is "QUOTE" => nil
  vars := union/[findVMFreeVars arg for arg in args]
  atom op => vars
  union(findVMFreeVars op,vars)

++ Return true is `var' is the left hand side of an assignment
++ in `form'.
varIsAssigned(var,form) ==
  atomic? form => false
  form is [op,var',:.] and op in '(%LET LETT SETQ %store) =>
    symbol? var' => var' = var   -- whole var is assigned
    var' is [.,=var]             -- only part of it is modified
  or/[varIsAssigned(var,f) for f in form]


++ Return the list of variables referenced in `expr'.  
dependentVars expr == main(expr,nil) where
  main(x,vars) ==
    IDENTP x =>
      symbolMember?(x,vars) => vars
      [x,:vars]
    atomic? x => vars
    x' :=
      cons? x.op => x
      x.args
    for y in x' repeat
      vars := main(y,vars)
    vars

++ Subroutine of optLET and optBind.  Return true if the variable `var' locally
++ defined in a binding form can be safely replaced by its initalization
++ `expr' in the `body' of the binding form.
canInlineVarDefinition(var,expr,body) ==
  -- FIXME: We should not be inlining a side-effecting initializer.
  -- If the variable is assigned to, that is a no no.
  varIsAssigned(var,body) => false
  -- Similarly, if the initial value depends on variables that are
  -- side-effected latter, it is alos a no no.
  or/[varIsAssigned(x,body) for x in dependentVars expr] => false
  -- Conversatively preserve order of inialization
  cons? body and body.op in '(%bind LET %loop %collect) => false
  -- Linearly used internal temporaries should be replaced, and
  -- so should side-effet free initializers for linear variables.
  usageCount := numOfOccurencesOf(var,body)
  usageCount < 2 and (gensym? var or sideEffectFree? expr) => true
  -- If the initializer is a variable and the body is
  -- a series of choices with side-effect free predicates, then
  -- no harm is done by removing the local `var'.
  IDENTP expr and body is ['%when,:branches] =>
    and/[sideEffectFree? pred for [pred,:.] in branches]
  false

++ Implement simple-minded LET-inlining.  It seems we can't count
++ on Lisp implementations to do this simple transformation.
++ This transformation will probably be more effective when all
++ type informations are still around.   Which is why we should
++ have a type directed compilation throughout. 
optLET u ==
  -- Hands off non-simple cases.
  u isnt ["LET",inits,body] => u
  -- Inline functionally used local variables with their initializers.
  inits := [:newInit for (init := [var,expr]) in inits] where 
    newInit() ==
      canInlineVarDefinition(var,expr,body) =>
        body := substitute(expr,var,body)
        nil  -- remove this initialization
      [init] -- otherwwise keep it.
  null inits => body
  u.rest.first := inits
  u.rest.rest.first := body
  -- Avoid initialization forms that may not be floatable.
  not(and/[isFloatableVMForm init for [.,init] in inits]) => u
  -- Identity function.
  inits is [[=body,init]] => init
  -- Handle only most trivial operators.
  body isnt [op,:args] => u
  -- Well, with case-patterns, it is beneficial to try a bit harder
  -- with conditional forms.
  op is '%when =>
    continue := true      -- shall be continue let-inlining?
    -- Since we do a single pass, we can't reuse the inits list
    -- as we may find later that we can't really inline into
    -- all forms due to excessive conversatism.  So we build a 
    -- substitution list ahead of time.
    substPairs := [[var,:init] for [var,init] in inits]
    for clauses in tails args while continue repeat
      clause := first clauses
      -- we do not attempt more complicated clauses yet.
      clause isnt [test,stmt] => continue := false
      -- Stop inlining at least one test is not simple
      not isSimpleVMForm test => continue := false
      clause.first := applySubst(substPairs,test)
      isSimpleVMForm stmt =>
        clause.rest.first := applySubst(substPairs,stmt)
      continue := false
    continue => body
    u
  not symbolMember?(op,$simpleVMoperators) => u
  not(and/[atomic? arg for arg in args]) => u
  -- Inline only if all parameters are used.  Get cute later.
  not(and/[symbolMember?(x,args) for [x,.] in inits]) => u
  -- Munge inits into list of dotted-pairs.  Lovely Lisp.
  for defs in tails inits repeat
    def := first defs
    atom def => systemErrorHere ["optLET",def] -- cannot happen
    def.rest := second def
  applySubst(inits,body)

optBind form ==
  form isnt ['%bind,inits,.] => form           -- accept only simple bodies
  ok := true
  while ok and inits ~= nil repeat
    [var,expr] := first inits
    usedSymbol?(var,rest inits) => ok := false -- no dependency, please.
    body := third form
    canInlineVarDefinition(var,expr,body) and isSimpleVMForm expr =>
      third(form) := substitute!(expr,var,body)
      inits := rest inits
    ok := false
  null inits => third form                        -- no local var left
  second(form) := inits
  form

optTry form ==
  form isnt ['%try,e,hs,f] or not(isFloatableVMForm e) or f ~= nil => form
  e

optList form ==
  form is ['%list] => '%nil
  form

optCollectVector form ==
  [.,eltType,:iters,body] := form
  fromList := false      -- are we drawing from a list?
  vecSize := nil         -- size of vector
  index := nil           -- loop/vector index.
  for iter in iters while not fromList repeat
    [op,:.] := iter
    op in '(SUCHTHAT WHILE UNTIL) => fromList := true
    op in '(IN ON) => vecSize := [["SIZE",third iter],:vecSize]
    op in '(STEP ISTEP) =>
      -- pick a loop variable that we can use as the loop index.
      [.,var,lo,inc,:etc] := iter
      if lo = 0 and inc = 1 then
        index := var
      if [hi] := etc then
        sz :=
          inc = 1 =>
            lo = 1 => hi
            lo = 0 => MKQSADD1 hi
            MKQSADD1 ["-",hi,lo]
          lo = 1 => ["/",hi,inc]
          lo = 0 => ["/",MKQSADD1 hi,inc]
          ["/",["-",MKQSADD1 hi, lo],inc]
        vecSize := [sz, :vecSize]
    systemErrorHere ["optCollectVector", iter]
  -- if we draw from a list, then just build a list and convert to vector.
  fromList => 
    ["homogeneousListToVector",["getVMType",eltType], ['%collect,:iters,body]]
  vecSize = nil => systemErrorHere ["optCollectVector",form]
  -- get the actual size of the vector.
  vecSize :=
    vecSize is [hi] => hi
    ["MIN",:reverse! vecSize]
  -- if no suitable loop index was found, introduce one.
  if index = nil then
    index := gensym()
    iters := [:iters,['STEP,index,0,1]]
  vec := gensym()
  ['%bind,[[vec,["makeSimpleArray",["getVMType",eltType],vecSize]]],
    ['%loop,:iters,["setSimpleArrayEntry",vec,index,body],vec]]

++ Translate retraction of a value denoted by `e' to sub-domain `m'
++ defined by predicate `pred',
optRetract ["%retract",e,m,pred] ==
  atom e =>
    cond := simplifyVMForm substitute(e,"#1",pred)
    cond is '%true => e
    ["check-subtype",cond,MKQ m,e]
  g := gensym()
  ['%bind,[[g,e]],["check-subtype",substitute(g,"#1",pred),MKQ m,g]]


--%  Boolean expression transformers

optNot(x is ['%not,a]) ==
  a is '%true => '%false
  a is '%false => '%true
  a is ['%not,b] => b
  a is ['%when,:.] =>
    optCond [a.op, :[[p,optNot ['%not,c]] for [p,c] in a.args]]
  x

optAnd(x is ['%and,a,b]) ==
  a is '%true => b
  b is '%true => a
  a is '%false => '%false
  x

optOr(x is ['%or,a,b]) ==
  a is '%false => b
  b is '%false => a
  a is '%true => '%true
  x

-- Boolean <-> bit conversion.
opt2bit ['%2bit,a] ==
  optCond ['%when,[a,'%icst1],['%otherwise,'%icst0]]

opt2bool ['%2bool,a] ==
  a is '%icst0 => '%false
  a is '%icst1 => '%true
  optIeq ['%ieq,a,'%icst1]

optIeq(x is ['%ieq,a,b]) ==
  integer? a and integer? b =>
    scalarEq?(a,b) => '%true
    '%false
  sameObject?(a,b) => '%true
  x

optIlt(x is ['%ilt,a,b]) ==
  -- 1. Don't delay if both operands are literals.
  integer? a and integer? b =>
    a < b => '%true
    '%false
  -- 2. max(a,b) cannot be negative if either a or b is zero.
  b = 0 and a is ['%imax,:.] and (second a = 0 or third a = 0) => '%false
  -- 3. min(a,b) cannot be positive if either a or b is zero.
  a = 0 and b is ['%imin,:.] and (second b = 0 or third b = 0) => '%false
  x

optIle(x is ['%ile,a,b]) ==
  optNot ['%not,optIlt ['%ilt,b,a]]

optIgt x ==
  optIlt ['%ilt,third x, second x]

optIge x ==
  optNot ['%not,optIlt ['%ilt,second x,third x]]

--% Byte operations

optBle ['%ble,a,b] ==
  optNot ['%not,['%blt,b,a]]

optBgt ['%bgt,a,b] ==
  ['%blt,b,a]

optBge ['%bge,a,b] ==
  optBle ['%ble,b,a]




--% Integer operations

optIadd(x is ['%iadd,a,b]) ==
  integer? a and integer? b => a + b
  integer? a and a = 0 => b
  integer? b and b = 0 => a
  x

optIsub(x is ['%isub,a,b]) ==
  integer? a and integer? b => a - b
  integer? a and a = 0 => ['%ineg,b]
  integer? b and b = 0 => a
  x

optImul(x is ['%imul,a,b]) ==
  integer? a and integer? b => a * b
  integer? a and a = 1 => b
  integer? b and b = 1 => a
  x

optIneg(x is ['%ineg,a]) ==
  integer? a => -a
  x

optIrem(x is ['%irem,a,b]) ==
  integer? a and integer? b => a rem b
  x

optIquo(x is ['%iquo,a,b]) ==
  integer? a and integer? b => a quo b
  x

--%  
--% optimizer hash table
--%
 
for x in '((%call         optCall) _
           (SEQ          optSEQ)_
           (LET          optLET)_
           (%bind        optBind)_
           (%try         optTry)_
           (%not         optNot)_
           (%and         optAnd)_
           (%or          optOr)_
           (%ble         optBle)_
           (%bgt         optBgt)_
           (%bge         optBge)_
           (%ieq         optIeq)_
           (%ilt         optIlt)_
           (%ile         optIle)_
           (%igt         optIgt)_
           (%ige         optIge)_
           (%ineg        optIneg)_
           (%iadd        optIadd)_
           (%isub        optIsub)_
           (%irem        optIrem)_
           (%iquo        optIquo)_
           (%imul        optImul)_
           (%2bit        opt2bit)_
           (%2bool       opt2bool)_
           (%list        optList)_
           (SPADCALL     optSPADCALL)_
           (_|           optSuchthat)_
           (CATCH        optCatch)_
           (%when        optCond)_
           (%retract     optRetract)_
           (%CollectV    optCollectVector)) _
   repeat property(first x,'OPTIMIZE) := second x
       --much quicker to call functions if they have an SBC