aboutsummaryrefslogtreecommitdiff
path: root/src/graph/view3D/component3d.c
blob: 626790be8157f5707d8aa70ed699913d095487ce (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
/*
  Copyright (c) 1991-2002, The Numerical Algorithms Group Ltd.
  All rights reserved.
  Copyright (C) 2007-2010, Gabriel Dos Reis.
  All rights reserved.

  Redistribution and use in source and binary forms, with or without
  modification, are permitted provided that the following conditions are
  met:

      - Redistributions of source code must retain the above copyright
        notice, this list of conditions and the following disclaimer.

      - Redistributions in binary form must reproduce the above copyright
        notice, this list of conditions and the following disclaimer in
        the documentation and/or other materials provided with the
        distribution.

      - Neither the name of The Numerical Algorithms Group Ltd. nor the
        names of its contributors may be used to endorse or promote products
        derived from this software without specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
  PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
  OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#define _COMPONENT3D_C
#include "openaxiom-c-macros.h"

#include "header.h"
#include "draw.h"

#include "Gfun.H1"
#include "util.H1"
#include "XSpadFill.h"

#include "all_3d.H1"

#define axisLength      1.0   /* use 100.0, if data is not to be normalized */

#define samePoint(a,b) ((refPt3D(viewData,a)->x == refPt3D(viewData,b)->x) &&\
                        (refPt3D(viewData,a)->y == refPt3D(viewData,b)->y) &&\
                        (refPt3D(viewData,a)->z == refPt3D(viewData,b)->z))
#define MAX_POINT       1000.0
#define MIN_POINT       -1000.0


void 
scaleComponents (void)
{
  
  double xRange,yRange,zRange;
  int i;
  viewTriple *aPoint;
  
  /* Temporary range limits until the three dimensional clipping
     package is fully functional */
  
  if (viewData.xmin < MIN_POINT) viewData.xmin = MIN_POINT;
  if (viewData.xmax > MAX_POINT) viewData.xmax = MAX_POINT;
  if (viewData.ymin < MIN_POINT) viewData.ymin = MIN_POINT;
  if (viewData.ymax > MAX_POINT) viewData.ymax = MAX_POINT;
  if (viewData.zmin < MIN_POINT) viewData.zmin = MIN_POINT;
  if (viewData.zmax > MAX_POINT) viewData.zmax = MAX_POINT;
  
  xRange = viewData.xmax - viewData.xmin;
  yRange = viewData.ymax - viewData.ymin;
  zRange = viewData.zmax - viewData.zmin;
  
  /* We scale down, normalize the data, if it is coming from OpenAxiom
     (handled by viewman).  If the data is coming from a file (handled by
     viewAlone) then it should already been scaled down. 
     */
  
  /* Find the coordinate axis with the larges range of data and scale
     the others relative to it. 
     */
  /* compare x and y ranges */
  if (xRange > yRange) {
    if (xRange > zRange) {
      if (absolute(viewData.xmax) >= absolute(viewData.xmin))
        viewData.scaleToView = axisLength/(absolute(viewData.xmax));
      else
        viewData.scaleToView = axisLength/(absolute(viewData.xmin));
    } else {
      if (absolute(viewData.zmax) >= absolute(viewData.zmin))
        viewData.scaleToView = axisLength/(absolute(viewData.zmax));
      else
        viewData.scaleToView = axisLength/(absolute(viewData.zmin));
    }
  } else {
    if (yRange > zRange) {
      if (absolute(viewData.ymax) >= absolute(viewData.ymin))
        viewData.scaleToView = axisLength/(absolute(viewData.ymax));
      else
        viewData.scaleToView = axisLength/(absolute(viewData.ymin));
    } else {
      if (absolute(viewData.zmax) >= absolute(viewData.zmin))
        viewData.scaleToView = axisLength/(absolute(viewData.zmax));
      else
        viewData.scaleToView = axisLength/(absolute(viewData.zmin));
    }
  }
  
  /* We now normalize all the points in this program. The information
     needed to link the normalized set of points back to the real object
     space scale created in OpenAxiom is held in viewData.scaleToView. */
  viewData.xmin *= viewData.scaleToView;
  viewData.xmax *= viewData.scaleToView;
  viewData.ymin *= viewData.scaleToView;
  viewData.ymax *= viewData.scaleToView;
  viewData.zmin *= viewData.scaleToView;
  viewData.zmax *= viewData.scaleToView;
  viewData.clipXmin = viewData.xmin;
  viewData.clipXmax = viewData.xmax;
  viewData.clipYmin = viewData.ymin;
  viewData.clipYmax = viewData.ymax;
  viewData.clipZmin = viewData.zmin;
  viewData.clipZmax = viewData.zmax;
  
  for (i=0, aPoint=viewData.points; i<viewData.numOfPoints; i++,aPoint++) {
    aPoint->x *= viewData.scaleToView;
    aPoint->y *= viewData.scaleToView;
    aPoint->z *= viewData.scaleToView;
  }
  
} /* scaleComponents() */


/*
 void makeTriangle(a,b,c)   
 Given three indices to three points, a triangular polygon is created 
 and inserted into the polygon list of viewData. If two or more of the 
 points are coincidental, no polygon is created since that would be a 
 degenerate (collapsed) polygon.
 */

void
makeTriangle (int a, int b, int c)
{
  poly *aPoly;
  
  if (!(samePoint(a,b) || samePoint(b,c) || samePoint(c,a))) {
    /* create triangle only if the three vertex points are distinct */
    aPoly = (poly *)saymem("component.c",1,sizeof(poly));
    aPoly->num = aPoly->sortNum = viewData.numPolygons++;
    aPoly->split = aPoly->moved = no;
    aPoly->numpts = 3;
    aPoly->primitiveType = polygonComponent;
    aPoly->indexPtr = (int *)saymem("component.c",3,sizeof(int));
    *(aPoly->indexPtr)     = a;
    *(aPoly->indexPtr + 1) = b;
    *(aPoly->indexPtr + 2) = c;
    aPoly->doNotStopDraw = yes;
    aPoly->next = viewData.polygons;
    viewData.polygons = aPoly;
  } /* if all points are unique */
  
} /* makeTriangle() */




/*
  void triangulate()
 
  Only if there is more than one list do we triangulate; a single list 
  is used for either a space curve or simply a point.  Actually, in that 
  case, we now make "flat" *polygons, flagged by the primitiveType field 
  (pointComponent, etc. in tube.h).  We need to examine two lists at a time
  (and if the structure is closed, the last and first as well). For every 
  three points in the two lists, alternating between one in one and two in
  the other, we construct triangles. If one list is shorter, then its last 
  point becomes the vertex for the remaining pairs of points from the other
  list.  It turns out that any distribution of points in the two lists 
  (preserving cyclic order) will produce the same desired polygon.
  */

void
triangulate (void)
{
  
  int u,l;
  int uBound,lBound;
  int i,j,k;
  LLPoint *anLLPoint;
  LPoint *list1,*list2;
  poly *aPoly;
  
  anLLPoint = viewData.lllp.llp;
  for (i=0; i<viewData.lllp.numOfComponents; i++,anLLPoint++) {
    if (anLLPoint->numOfLists > 1) {
      list2 = anLLPoint->lp;
      for (j=1; j<anLLPoint->numOfLists; j++) {
        list1 = list2;
        list2 = list1 + 1;
        u = l = 0;
        uBound = u+1 < list1->numOfPoints;
        lBound = l+1 < list2->numOfPoints;
        while (uBound || lBound) {
          if (uBound) {
            makeTriangle(*(list1->indices + u + 1),
                         *(list1->indices + u), *(list2->indices + l));
            u++;
            uBound = u+1 < list1->numOfPoints;
          }
          if (lBound) {
            makeTriangle(*(list2->indices + l),
                         *(list2->indices + l + 1), *(list1->indices + u));
            l++;
            lBound = l+1 < list2->numOfPoints;
          }
        } /* while (uBound || lBound) */
      } /* for j<anLLPoint->numOfLists */
    } /* if anLLPoint->numOfLists > 1 */ 
    else {
      /* if anLLPoint->numOfLists <= 1...assume this means =1 */
      /* Flat polygons are to be drawn when hidden 
         surface algorithm is used.*/
      if (anLLPoint->numOfLists == 1) {
        if (anLLPoint->lp->numOfPoints == 1) {
          /* this graph is a single point */
          aPoly = (poly *)saymem("component.c",1,sizeof(poly));
          aPoly->num = aPoly->sortNum = viewData.numPolygons++;
          aPoly->split = aPoly->moved = no;
          aPoly->primitiveType = pointComponent;
          aPoly->numpts = 1;
          aPoly->indexPtr = (int *)saymem("component.c",1,intSize);
          *(aPoly->indexPtr) = *(anLLPoint->lp->indices);
          aPoly->doNotStopDraw = yes;
          aPoly->next = viewData.polygons;
          viewData.polygons = aPoly;
        } else {
          /* this graph is a curve */
          for (k=0; k<anLLPoint->lp->numOfPoints-1; k++) {
            aPoly = (poly *)saymem("component.c",1,sizeof(poly));
            aPoly->num = aPoly->sortNum = viewData.numPolygons++;
            aPoly->split = aPoly->moved = no;
            aPoly->primitiveType = lineComponent; /* curveComponent */
            aPoly->numpts = 2;
            aPoly->indexPtr =
              (int *)saymem("component.c",2,sizeof(int));
            *(aPoly->indexPtr)   = *(anLLPoint->lp->indices + k);
            *(aPoly->indexPtr+1) = *(anLLPoint->lp->indices + k + 1);
            aPoly->doNotStopDraw = yes;
            aPoly->next = viewData.polygons;
            viewData.polygons = aPoly;
          }  /* for k */
          if (anLLPoint->lp->prop.closed) {
            aPoly = (poly *)saymem("component.c",1,sizeof(poly));
            aPoly->num = aPoly->sortNum = viewData.numPolygons++;
            aPoly->split = aPoly->moved = no;
            aPoly->primitiveType = lineComponent; /* curveComponent */
            aPoly->numpts = 2;
            aPoly->indexPtr =
              (int *)saymem("component.c",2,sizeof(int));
            *(aPoly->indexPtr)   = *(anLLPoint->lp->indices + k);
            *(aPoly->indexPtr+1) = *(anLLPoint->lp->indices);
            aPoly->doNotStopDraw = yes;
            aPoly->next = viewData.polygons;
            viewData.polygons = aPoly;
          } /* if list of points is closed */
        }  /* else */
      } /* point, line, polygon, surface components are taken care of above */
    } /* else anLLPoint->numOfLists <= 1 */
  } /* for LLPoints in LLLPoints (i) */
  
} /* triangulate */



void
readComponentsFromViewman (void)
{
  int i,j,k;
  LLPoint *anLLPoint;
  LPoint *anLPoint;
  viewTriple *aPoint;
  /* maxLength holds the max(llp,lp) figure regarding how large to
     make the array of XPoints, i.e. quadMesh, for use in calling XDraw(). */
  int maxLength=0;
  
  int *anIndex;
  
  readViewman(&(viewData.numOfPoints),intSize);
  aPoint = viewData.points =
    (viewTriple *)saymem("component.c",viewData.numOfPoints,
                         sizeof(viewTriple));
  for (i=0; i<viewData.numOfPoints; i++, aPoint++) {
    readViewman(&(aPoint->x),floatSize);
    readViewman(&(aPoint->y),floatSize);
    readViewman(&(aPoint->z),floatSize);
    readViewman(&(aPoint->c),floatSize);
#ifdef NANQ_DEBUG
    if (!(aPoint->z < 0) && !(aPoint->z > 0) && !(aPoint->z == 0))
      fprintf(stderr,"%g\n", aPoint->z);
#endif
  }
  
  readViewman(&(viewData.lllp.numOfComponents),intSize);
  anLLPoint = viewData.lllp.llp =
    (LLPoint *)saymem("component.c, i",viewData.lllp.numOfComponents,
                      sizeof(LLPoint));
  for (i=0; i<viewData.lllp.numOfComponents; i++,anLLPoint++) {
    readViewman(&(anLLPoint->prop.closed),intSize);
    readViewman(&(anLLPoint->prop.solid),intSize);
    readViewman(&(anLLPoint->numOfLists),intSize);
    anLPoint = anLLPoint->lp =
      (LPoint *)saymem("component.c, ii",anLLPoint->numOfLists,
                       sizeof(LPoint));
    for (j=0; j<anLLPoint->numOfLists; j++,anLPoint++) {
      if (anLLPoint->numOfLists > maxLength)
        maxLength = anLLPoint->numOfLists;
      readViewman(&(anLPoint->prop.closed),intSize);
      readViewman(&(anLPoint->prop.solid),intSize);
      readViewman(&(anLPoint->numOfPoints),intSize);
      anIndex = anLPoint->indices =
        (int *)saymem("component.c, index",anLPoint->numOfPoints,intSize);
      if (anLPoint->numOfPoints > maxLength)
        maxLength = anLPoint->numOfPoints;
      for (k=0; k<anLPoint->numOfPoints; k++,anIndex++) {
        readViewman(anIndex,intSize);
        /* OpenAxiom arrays are one based, C arrays are zero based */
        if (!viewAloned) (*anIndex)--;
      }
    } /* for LPoints in LLPoints (j) */
  } /* for LLPoints in LLLPoints (i) */
  
  quadMesh = (XPoint *)saymem("component.c",maxLength+2,sizeof(XPoint));
  
} /* readComponentsFromViewman() */



/*
  void calcNormData()       *
  Calculates the surface normals for the polygons that make up the tube.
  Also finds the fourth coefficient to the plane equation:
  Ax + By + Cz + D = 0  
  A,B, and C are in the normal N[3] and D is the planeConst.
  Figures out the color as well (from the average of the points) and 
  resets the moved flag    
  */

void
calcNormData (void)
{
  
  poly *aPoly;
  int *index;
  
  for (aPoly = viewData.polygons; aPoly != NIL(poly); aPoly = aPoly->next) {
    index = aPoly->indexPtr;
    switch (aPoly->primitiveType) {
    case pointComponent:
    case lineComponent:
      aPoly->moved = 0;
      aPoly->color = refPt3D(viewData,*index)->c;
      break;
    default:
      /*
        The following line takes 3 consecutive points and asks
        for the normal vector defined by them. This assumes that
        these do not contain co-linear points. For some reason,
        co-linear points are allowed, this needs to be changed.
        */
      getMeshNormal(refPt3D(viewData,*index)->x,
                    refPt3D(viewData,*index)->y,
                    refPt3D(viewData,*index)->z,
                    refPt3D(viewData,*(index+1))->x,
                    refPt3D(viewData,*(index+1))->y,
                    refPt3D(viewData,*(index+1))->z,
                    refPt3D(viewData,*(index+2))->x,
                    refPt3D(viewData,*(index+2))->y,
                    refPt3D(viewData,*(index+2))->z, 0.0, 1.0, aPoly->N);
      
      /* calculate the constant term, D,  for the plane equation */
      aPoly->planeConst =
        -(aPoly->N[0] * refPt3D(viewData,*index)->x +
          aPoly->N[1] * refPt3D(viewData,*index)->y +
          aPoly->N[2] * refPt3D(viewData,*index)->z);
      aPoly->moved = 0;
      aPoly->color = (refPt3D(viewData,*index)->c +
                      (refPt3D(viewData,*(index+1)))->c +
                      (refPt3D(viewData,*(index+2)))->c) / 3.0;
      break;
    } /* switch */
  }
  
}  /* calcNormData() */



/*
  viewPoints *make3DComponents()

  Read in all the 3D data from the viewport manager and construct the 
  model of it. The model is based upon a list of lists of lists of points. 
  Each top level list makes a component in 3-space. The interpretation 
  really begins at the level below that, where the list of lists of 
  points is. For 3D explicit equations of two variables, the closed 
  boolean for this level is False and the closed boolean for each sublist 
  is False as well. For 3D parameterized curves of one variable, the 
  closed boolean for this level is defined by the user from OpenAxiom , 
  (which defaults to False) and the closed boolean for each sublist is True.
  */

viewPoints *
make3DComponents (void)
{
  viewPoints *graphData;

  readComponentsFromViewman();

  /* The initial boundaries for the clipping region are set to those
     of the boundaries of the data region. */
  viewData.clipXmin = viewData.xmin;  viewData.clipXmax = viewData.xmax;
  viewData.clipYmin = viewData.ymin;  viewData.clipYmax = viewData.ymax;
  viewData.clipZmin = viewData.zmin;  viewData.clipZmax = viewData.zmax;
  
  /* normalize the data coordinates */
  if (viewData.scaleDown) scaleComponents();
  viewData.numPolygons = 0;
  /* initially the list of polygons is empty */
  viewData.polygons = NIL(poly);
  /* create the polygons; (sets viewData.polygons and viewData.numPolygons) */
  triangulate();
  /* calculate the plane equations for all the polygons */
  calcNormData();
  
  graphData = makeViewport();
  
  imageX = XCreateImage(/* display */        dsply,
                        /* visual */         DefaultVisual(dsply,scrn),
                        /* depth */          DefaultDepth(dsply,scrn),
                        /* format */         ZPixmap,
                        /* offset */         0,
                        /* data */           NULL,
                        /* width */          vwInfo.width,
                        /* height */         1,
                        /* bitmap_pad */     32,
                        /* bytes_per_line */ 0);
  imageX->data = NIL(char);
  
  /* windowing displaying */
  writeTitle();
  postMakeViewport();
  drawViewport(Xoption);
  firstTime = yes;
  XMapWindow(dsply, graphData->viewWindow);
  XMapWindow(dsply, graphData->titleWindow);
  XFlush(dsply);
  
  return(graphData);
  
} /* make3DComponents */





void
draw3DComponents (int dFlag)
{
  
  int        i, j, k, hue, x1, y1, x2, y2;
  LLPoint    *anLLPoint;
  LPoint     *anLPoint;
  int        *anIndex;
  int        componentType;  /* what the component is to be interpreted as */
  int        clip_a,clip_i;  /* for use in wire mesh mode clipping */
  XEvent     peekEvent;
  viewTriple *aLPt;
  XPoint     line[2];
  RGB        col_rgb;
  
  calcEyePoint();
  while ((XPending(dsply) > 0) && (scanline > 0))
    XNextEvent(dsply,&peekEvent);
  switch (viewData.style) {
    
  case transparent:
    GSetLineAttributes(componentGC,0,LineSolid,CapButt,JoinMiter,dFlag);
    if (dFlag==Xoption) {
      if (mono || viewport->monoOn)
        GSetForeground(componentGC, (float)foregroundColor, dFlag);
      else
        GSetForeground(componentGC, (float) meshOutline, dFlag);
    } else {
      GSetForeground(componentGC, psBlack, dFlag);
    }
    /* no need to check "keep drawing" for ps */
    if (dFlag == Xoption) drawMore = keepDrawingViewport();
    
    /*
      This is where we interpret the list of lists of lists of points struct.
      We want to extract the following forms of data:
      - individual points (drawn as filled points)
      - lines (space curves)
      - defined polygon primitives
      - surfaces
      the last one is the one that will replace the function of 2 variables,
      tubes as well as 3D parameterized functions of 2 variables.
      Since there could be many other ways of constructing L L L Pts - much
      more than could be usefully interpreted - any other formats are
      currently not allowed. When they are, this comment should be updated
      appropriately.

      ************************************************************************
      
      Traverse each component.
      We decide here, before we begin traversing the
      component what we want to interpret it as.
      Here's the convention used to figure that out:
      - points: #anLLPoint->numOfLists was 1
      #anLPoint->numOfPoints is 1
      - lines:  #anLLPoint->numOfLists was 1
      #anLPoint->numOfPoints > 1
      - polygons: #anLLPoint->numOfLists was 2
      #anLPoint->numOfPoints is 1
      - surface:        #anLLPoint->numOfLists was some m>1
      #anLPoint->numOfPoints all point lists are the same.
      
      */

    anLLPoint = viewData.lllp.llp;
    for (i=0; i<viewData.lllp.numOfComponents; i++,anLLPoint++) {
      /* initially, component type is unknown */
      componentType = stillDontKnow;
      if (anLLPoint->numOfLists == 1) {
        if (anLLPoint->lp->numOfPoints == 1) componentType = pointComponent;
        else componentType = lineComponent;
      } else if (anLLPoint->numOfLists == 2) {
        if ((anLLPoint->lp->numOfPoints == 1) &&
            ((anLLPoint->lp+1)->numOfPoints > 2))
          componentType = polygonComponent;
      }
      /* Check for corrupt data and NaN data is made in OpenAxiom . */
      if (componentType == stillDontKnow)
        componentType = surfaceComponent;
      
      anLPoint = anLLPoint->lp;
      
      switch (componentType) {
        
      case pointComponent:
        /* anLLPoint->numOfLists == anLLPoint->lp->numOfPoints == 1 here */
        aLPt = refPt3D(viewData,*(anLPoint->indices));
        project(aLPt,quadMesh,0);
        if (dFlag==Xoption) {
          if (mono || viewport->monoOn)
            GSetForeground(componentGC, (float)foregroundColor, dFlag);
          else {
            hue = hueValue(aLPt->c);
            GSetForeground(componentGC, (float)XSolidColor(hue,2), dFlag);
          }
        } else GSetForeground(componentGC, psBlack, dFlag);
        GFillArc(componentGC,viewport->viewWindow,quadMesh->x,quadMesh->y,
                 viewData.pointSize,viewData.pointSize,0,360*64,dFlag);
        break;
        
      case lineComponent:
        /* anLLPoint->numOfLists == 1 here */
        anIndex = anLPoint->indices;
        aLPt = refPt3D(viewData,*anIndex);
        project(aLPt,quadMesh,0);
        x1 = quadMesh[0].x;  y1 = quadMesh[0].y;  anIndex++;
        for (k=1; k<anLPoint->numOfPoints; k++,anIndex++) {
          aLPt = refPt3D(viewData,*anIndex);
          project(aLPt,quadMesh,k);
          x2 = quadMesh[k].x; y2 = quadMesh[k].y;
          if (dFlag==Xoption) {
            if (mono || viewport->monoOn)
              GSetForeground(componentGC, (float)foregroundColor, dFlag);
            else {
              hue = hueValue(aLPt->c);
              GSetForeground(componentGC, (float)XSolidColor(hue,2), dFlag);
            }
            if (!eqNANQ(x1) && !eqNANQ(y1) && !eqNANQ(x2) && !eqNANQ(y2))
              GDrawLine(componentGC,viewport->viewWindow,x1,y1,x2,y2,dFlag);
          } else {
            if (dFlag==PSoption && !mono && !viewport->monoOn) {
              hue = getHue(aLPt->c);
              col_rgb = hlsTOrgb((float)hue,0.5,0.8);
              line[0].x = x1;  line[0].y = y1;
              line[1].x = x2;  line[1].y = y2;
              PSDrawColor(col_rgb.r,col_rgb.g,col_rgb.b,line,2);
            } else {
              if (foregroundColor == white)
                GSetForeground(componentGC, 0.0, dFlag);
              else
                GSetForeground(componentGC, psBlack, dFlag);
              if (!eqNANQ(x1) && !eqNANQ(y1) && !eqNANQ(x2) && !eqNANQ(y2))
                GDrawLine(componentGC,viewport->viewWindow,x1,y1,x2,y2,dFlag);
            }
          }
          x1 = x2; y1 = y2;
        } /* for points in LPoints (k) */
        if (anLPoint->prop.closed) {
          project(refPt3D(viewData,*(anLPoint->indices)),quadMesh,
                  anLPoint->numOfPoints);
          x2 = quadMesh[anLPoint->numOfPoints].x;
          y2 = quadMesh[anLPoint->numOfPoints].y;
          if (dFlag==Xoption) {
            if (mono || viewport->monoOn)
              GSetForeground(componentGC, (float)foregroundColor, dFlag);
            else {
              hue = hueValue(aLPt->c);
              GSetForeground(componentGC, (float)XSolidColor(hue,2), dFlag);
            }
            if (!eqNANQ(x1) && !eqNANQ(y1) && !eqNANQ(x2) && !eqNANQ(y2))
              GDrawLine(componentGC,viewport->viewWindow,x1,y1,x2,y2,dFlag);
          } 
          else {
            if (dFlag==PSoption && !mono && !viewport->monoOn) {
              hue = getHue(aLPt->c);
              col_rgb = hlsTOrgb((float)hue,0.5,0.8);
              line[0].x = x1;  line[0].y = y1;
              line[1].x = x2;  line[1].y = y2;
              PSDrawColor(col_rgb.r,col_rgb.g,col_rgb.b,line,2);
            } 
            else {
              if (foregroundColor == white)
                GSetForeground(componentGC, 0.0, dFlag);
              else
                GSetForeground(componentGC, psBlack, dFlag);
              if (!eqNANQ(x1) && !eqNANQ(y1) && !eqNANQ(x2) && !eqNANQ(y2))
                GDrawLine(componentGC,viewport->viewWindow,x1,y1,x2,y2,dFlag);
            }
          }
        }
        break;
        
      case polygonComponent:
        /* first pt of polygon is a single list */
        project(refPt3D(viewData,*(anLPoint->indices)),quadMesh,0);
        /* remaining points in the 2nd list (always of size 2 or greater) */
        x1 = quadMesh[0].x;  y1 = quadMesh[0].y;
        anLPoint = anLLPoint->lp + 1;
        anIndex = anLPoint->indices;
        for (k=1; k<=anLPoint->numOfPoints; k++,anIndex++) {
          aLPt = refPt3D(viewData,*anIndex);
          project(aLPt,quadMesh,k);
          x2 = quadMesh[k].x;  y2 = quadMesh[k].y;
          if (dFlag==Xoption) {
            if (mono || viewport->monoOn)
              GSetForeground(componentGC, (float)foregroundColor, dFlag);
            else {
              hue = hueValue(aLPt->c);
              GSetForeground(componentGC, (float)XSolidColor(hue,2), dFlag);
            }
            if (!eqNANQ(x1) && !eqNANQ(y1) && !eqNANQ(x2) && !eqNANQ(y2))
              GDrawLine(componentGC,viewport->viewWindow,x1,y1,x2,y2,dFlag);
          } 
          else {
            if (dFlag==PSoption && !mono && !viewport->monoOn) {
              hue = getHue(aLPt->c);
              col_rgb = hlsTOrgb((float)hue,0.5,0.8);
              line[0].x = x1;  line[0].y = y1;
              line[1].x = x2;  line[1].y = y2;
              PSDrawColor(col_rgb.r,col_rgb.g,col_rgb.b,line,2);
            } 
            else {
              if (foregroundColor == white)
                GSetForeground(componentGC, 0.0, dFlag);
              else
                GSetForeground(componentGC, psBlack, dFlag);
              if (!eqNANQ(x1) && !eqNANQ(y1) && !eqNANQ(x2) && !eqNANQ(y2))
                GDrawLine(componentGC,viewport->viewWindow,x1,y1,x2,y2,dFlag);
            }
          }
          x1 = x2; y1 = y2;
        } /* for points in LPoints (k) */
        project(refPt3D(viewData,*(anLLPoint->lp->indices)),quadMesh,k);
        x2 = quadMesh[k].x;  y2 = quadMesh[k].y;
        if (dFlag==Xoption) {
          if (mono || viewport->monoOn)
            GSetForeground(componentGC, (float)foregroundColor, dFlag);
          else {
            hue = hueValue(refPt3D(viewData,*anIndex)->c);
            GSetForeground(componentGC, (float)XSolidColor(hue,2), dFlag);
          }
          if (!eqNANQ(x1) && !eqNANQ(y1) && !eqNANQ(x2) && !eqNANQ(y2))
            GDrawLine(componentGC,viewport->viewWindow,x1,y1,x2,y2,dFlag);
        } else {
          if (dFlag==PSoption && !mono && !viewport->monoOn) {
            hue = getHue(refPt3D(viewData,*anIndex)->c);
            col_rgb = hlsTOrgb((float)hue,0.5,0.8);
            line[0].x = x1;  line[0].y = y1;
            line[1].x = x2;  line[1].y = y2;
            PSDrawColor(col_rgb.r,col_rgb.g,col_rgb.b,line,2);
          } 
          else {
            if (foregroundColor == white)
              GSetForeground(componentGC, 0.0, dFlag);
            else
              GSetForeground(componentGC, psBlack, dFlag);
            if (!eqNANQ(x1) && !eqNANQ(y1) && !eqNANQ(x2) && !eqNANQ(y2))
              GDrawLine(componentGC,viewport->viewWindow,x1,y1,x2,y2,dFlag);
          }
        }
        /* close a polygon */
        break;
        
      case surfaceComponent:
        if (dFlag==Xoption) {
          if (mono || viewport->monoOn)
            GSetForeground(componentGC, (float)foregroundColor, dFlag);
          else
            GSetForeground(componentGC, (float) meshOutline, dFlag);
        }
        else {
          GSetForeground(componentGC, psBlack, dFlag);
        }
        
        /* traverse down one direction first (all points 
           in a list at a time) */
        for (j=0; drawMore && j<anLLPoint->numOfLists; j++,anLPoint++) {
          anIndex = anLPoint->indices;
          clip_a = 0;
          for (k=0, clip_i=0;
               drawMore && k<anLPoint->numOfPoints;
               k++, anIndex++, clip_i++) {
            aLPt = refPt3D(viewData,*anIndex);
            project(aLPt,quadMesh,k);
            
            if (behindClipPlane(aLPt->pz) || 
                (viewData.clipStuff && 
                 outsideClippedBoundary(aLPt->x, aLPt->y, aLPt->z))) {
              if (clip_i - clip_a > 1) {
                GDrawLines(componentGC,viewport->viewWindow,(quadMesh+clip_a),
                           clip_i-clip_a, CoordModeOrigin, dFlag );
              }
              clip_a = clip_i + 1;
            }
            
            drawMore = keepDrawingViewport();
          } /* for points in LPoints (k) */
          if (drawMore) {
            /* if drawMore is true, then the above loop terminated with
               clip_i incremented properly */
            if (anLPoint->prop.closed) {
              /* If closed, then do the first point again - no need to project
                 just copy over from the first one */
              aLPt = refPt3D(viewData,*(anLPoint->indices));
              project(aLPt,quadMesh, anLPoint->numOfPoints);
              if (behindClipPlane(aLPt->pz) || 
                  (viewData.clipStuff &&
                   outsideClippedBoundary(aLPt->x, aLPt->y, aLPt->z))) {
                if (clip_i - clip_a > 1) {
                  GDrawLines(componentGC, viewport->viewWindow,
                             (quadMesh+clip_a), clip_i-clip_a,
                             CoordModeOrigin, dFlag);
                }
                clip_a = clip_i + 1;
              }
              clip_i++;
            } /* closed */
            if (clip_i - clip_a > 1) {
              GDrawLines(componentGC, viewport->viewWindow, (quadMesh+clip_a),
                         clip_i-clip_a, CoordModeOrigin, dFlag);
            }
          } /* drawMore */
        } /* for LPoints in LLPoints (j) */
        
        /* now traverse down the list in the other direction
           (one point from each list at a time) */
        for (j=0; drawMore && j<anLLPoint->lp->numOfPoints; j++) {
          clip_a = 0;
          for (k=0, clip_i=0;
               drawMore && k<anLLPoint->numOfLists;
               k++, clip_i++) {
            aLPt = refPt3D(viewData,*((anLLPoint->lp + k)->indices + j));
            project(aLPt, quadMesh,k);
            
            if (behindClipPlane(aLPt->pz) || 
                (viewData.clipStuff &&
                 outsideClippedBoundary(aLPt->x, aLPt->y, aLPt->z))) {
              if (clip_i - clip_a > 1) {
                GDrawLines(componentGC,viewport->viewWindow,quadMesh+clip_a,
                           clip_i-clip_a, CoordModeOrigin, dFlag );
              }
              clip_a = clip_i + 1;
            }
            drawMore = keepDrawingViewport();
          } /* for points in LPoints (k) */
          
          if (drawMore) {
            /* if drawMore is true, then the above loop terminated with
               clip_i incremented properly */
            if (anLLPoint->prop.closed) {
              /* if closed, do the first point again - no need to project
                 just copy over from the first one */
              aLPt = refPt3D(viewData,*((anLLPoint->lp + 0)->indices + j));
              project(aLPt, quadMesh, anLLPoint->numOfLists);
              if (behindClipPlane(aLPt->pz) || 
                  (viewData.clipStuff &&
                   outsideClippedBoundary(aLPt->x, aLPt->y, aLPt->z))) {
                if (clip_i - clip_a > 1) {
                  GDrawLines(componentGC, viewport->viewWindow,
                             quadMesh + clip_a, clip_i - clip_a,
                             CoordModeOrigin, dFlag);
                }
                clip_a = clip_i + 1;
              }
              clip_i++;
            } /* closed */
            if (clip_i - clip_a > 1) {
              GDrawLines(componentGC, viewport->viewWindow, quadMesh+clip_a,
                         clip_i-clip_a, CoordModeOrigin, dFlag);
            }
          } /* drawMore */
        } /* for a point in each LPoint (j) */
        break;
      } /* switch componentType */
    } /* for LLPoints in LLLPoints (i) */
    break;
    
  case opaqueMesh:
    if (dFlag==Xoption) {
      GSetForeground(globGC, (float)opaqueForeground, dFlag);
      GSetForeground(opaqueGC, (float)opaqueOutline, dFlag);
    }
    else {
      GSetForeground(globGC, psBlack, dFlag);
      GSetForeground(opaqueGC, psBlack, dFlag);
    }
    GSetLineAttributes(opaqueGC,0,LineSolid,CapButt,JoinRound,dFlag);
    drawPolygons(dFlag);
    break;
    
  case render:
    if (viewData.outlineRenderOn) {
      GSetLineAttributes(renderGC,0,LineSolid,CapButt,JoinRound,dFlag);
      if (dFlag==Xoption) GSetForeground(renderGC,(float)black, dFlag);
      else GSetForeground(renderGC,psBlack, dFlag );
    }
    drawPolygons(dFlag);
    break;
    
  case smooth:
    drawPhong(dFlag);
    break;
    
  } /* switch on style */
  
} /* draw3DComponents() */