aboutsummaryrefslogtreecommitdiff
path: root/src/algebra/solvefor.spad.pamphlet
blob: 2d335fcb3ff87091d104a3b209934abb50219a85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
\documentclass{article}
\usepackage{open-axiom}
\begin{document}
\title{\$SPAD/src/algebra solvefor.spad}
\author{Stephen M. Watt, Barry Trager}
\maketitle
\begin{abstract}
\end{abstract}
\eject
\tableofcontents
\eject
\section{package SOLVEFOR PolynomialSolveByFormulas}
<<package SOLVEFOR PolynomialSolveByFormulas>>=
)abbrev package SOLVEFOR PolynomialSolveByFormulas
--  Current fields with **: (%, RationalNumber) -> % are
--     ComplexFloat, RadicalExtension(K) and RationalRadical
--  SMW June 86, BMT Sept 93
++ Description:
++ This package factors the formulas out of the general solve code,
++ allowing their recursive use over different domains.
++ Care is taken to introduce few radicals so that radical extension
++ domains can more easily simplify the results.

PolynomialSolveByFormulas(UP, F): PSFcat == PSFdef where

    UP: UnivariatePolynomialCategory F
    F:  Field with **: (%, Fraction Integer) -> %

    L  ==> List

    PSFcat == with
        solve:      UP -> L F
		++ solve(u) \undocumented
        particularSolution:  UP -> F
		++ particularSolution(u) \undocumented
        mapSolve:   (UP, F -> F) -> Record(solns: L F,
                                           maps: L Record(arg:F,res:F))
		++ mapSolve(u,f) \undocumented

        linear:     UP -> L F
		++ linear(u) \undocumented
        quadratic:  UP -> L F
		++ quadratic(u) \undocumented
        cubic:      UP -> L F
		++ cubic(u) \undocumented
        quartic:    UP -> L F
		++ quartic(u) \undocumented

        -- Arguments give coefs from high to low degree.
        linear:     (F, F)          -> L F
		++ linear(f,g) \undocumented
        quadratic:  (F, F, F)       -> L F
		++ quadratic(f,g,h) \undocumented
        cubic:      (F, F, F, F)    -> L F
		++ cubic(f,g,h,i) \undocumented
        quartic:    (F, F, F, F, F) -> L F
		++ quartic(f,g,h,i,j) \undocumented

        aLinear:    (F, F)          -> F
		++ aLinear(f,g) \undocumented
        aQuadratic: (F, F, F)       -> F
		++ aQuadratic(f,g,h) \undocumented
        aCubic:     (F, F, F, F)    -> F
		++ aCubic(f,g,h,j) \undocumented
        aQuartic:   (F, F, F, F, F) -> F
		++ aQuartic(f,g,h,i,k) \undocumented

    PSFdef == add

        -----------------------------------------------------------------
        -- Stuff for mapSolve
        -----------------------------------------------------------------
        id ==> (IDENTITY$Lisp)

        maplist: List Record(arg: F, res: F) := []
        mapSolving?: Boolean := false
        -- map: F -> F := id #1    replaced with line below
        map: Boolean := false

        mapSolve(p, fn) ==
            -- map := fn #1   replaced with line below
            locmap: F -> F := fn #1; map := id locmap
            mapSolving? := true;  maplist := []
            slist := solve p
            mapSolving? := false;
            -- map := id #1   replaced with line below
            locmap := id #1; map := id locmap
            [slist, maplist]

        part(s: F): F ==
            not mapSolving? => s
            -- t := map s     replaced with line below
            t: F := SPADCALL(s, map)$Lisp
            t = s => s
            maplist := cons([t, s], maplist)
            t

        -----------------------------------------------------------------
        -- Entry points and error handling
        -----------------------------------------------------------------
        cc ==> coefficient

        -- local intsolve
        intsolve(u:UP):L(F) ==
            u := (factors squareFree u).1.factor
            n := degree u
            n=1 => linear    (cc(u,1), cc(u,0))
            n=2 => quadratic (cc(u,2), cc(u,1), cc(u,0))
            n=3 => cubic     (cc(u,3), cc(u,2), cc(u,1), cc(u,0))
            n=4 => quartic   (cc(u,4), cc(u,3), cc(u,2), cc(u,1), cc(u,0))
            error "All sqfr factors of polynomial must be of degree < 5"

        solve u ==
            ls := nil$L(F)
            for f in factors squareFree u repeat
               lsf := intsolve f.factor
               for i in 1..(f.exponent) repeat ls := [:lsf,:ls]
            ls

        particularSolution u ==
            u := (factors squareFree u).1.factor
            n := degree u
            n=1 => aLinear    (cc(u,1), cc(u,0))
            n=2 => aQuadratic (cc(u,2), cc(u,1), cc(u,0))
            n=3 => aCubic     (cc(u,3), cc(u,2), cc(u,1), cc(u,0))
            n=4 => aQuartic   (cc(u,4), cc(u,3), cc(u,2), cc(u,1), cc(u,0))
            error "All sqfr factors of polynomial must be of degree < 5"

        needDegree(n: Integer, u: UP): Boolean ==
            degree u = n => true
            error concat("Polynomial must be of degree ", n::String)

        needLcoef(cn: F): Boolean ==
            cn ~= 0 => true
            error "Leading coefficient must not be 0."

        needChar0(): Boolean ==
            characteristic$F = 0 => true
            error "Formula defined only for fields of characteristic 0."

        linear u ==
            needDegree(1, u)
            linear (coefficient(u,1), coefficient(u,0))

        quadratic u ==
            needDegree(2, u)
            quadratic (coefficient(u,2), coefficient(u,1),
                       coefficient(u,0))

        cubic u ==
            needDegree(3, u)
            cubic (coefficient(u,3), coefficient(u,2),
                   coefficient(u,1), coefficient(u,0))

        quartic u ==
            needDegree(4, u)
            quartic (coefficient(u,4),coefficient(u,3),
                     coefficient(u,2),coefficient(u,1),coefficient(u,0))

        -----------------------------------------------------------------
        -- The formulas
        -----------------------------------------------------------------

        -- local function for testing equality of radicals.
        --  This function is necessary to detect at least some of the
        --  situations like sqrt(9)-3 = 0 --> false.
        equ(x:F,y:F):Boolean ==
            ( (recip(x-y)) case "failed" ) => true
            false

        linear(c1, c0) ==
            needLcoef c1
            [- c0/c1 ]

        aLinear(c1, c0) ==
            first linear(c1,c0)

        quadratic(c2, c1, c0) ==
            needLcoef c2; needChar0()
            (c0 = 0) => [0$F,:linear(c2, c1)]
            (c1 = 0) => [(-c0/c2)**(1/2),-(-c0/c2)**(1/2)]
            D := part(c1**2 - 4*c2*c0)**(1/2)
            [(-c1+D)/(2*c2), (-c1-D)/(2*c2)]

        aQuadratic(c2, c1, c0) ==
            needLcoef c2; needChar0()
            (c0 = 0) => 0$F
            (c1 = 0) => (-c0/c2)**(1/2)
            D := part(c1**2 - 4*c2*c0)**(1/2)
            (-c1+D)/(2*c2)

        w3: F := (-1 + (-3::F)**(1/2)) / 2::F

        cubic(c3, c2, c1, c0) ==
            needLcoef c3; needChar0()

            -- case one root = 0, not necessary but keeps result small
            (c0 = 0) => [0$F,:quadratic(c3, c2, c1)]
            a1 := c2/c3;  a2 := c1/c3;  a3 := c0/c3

            -- case x**3-a3 = 0, not necessary but keeps result small
            (a1 = 0 and a2 = 0) =>
                [ u*(-a3)**(1/3) for u in [1, w3, w3**2 ] ]

            -- case x**3 + a1*x**2 + a1**2*x/3 + a3 = 0, the general for-
            --   mula is not valid in this case, but solution is easy.
            P := part(-a1/3::F)
            equ(a1**2,3*a2) =>
              S := part((- a3 + (a1**3)/27::F)**(1/3))
              [ P + S*u for u in [1,w3,w3**2] ]

            -- general case
            Q := part((3*a2 - a1**2)/9::F)
            R := part((9*a1*a2 - 27*a3 - 2*a1**3)/54::F)
            D := part(Q**3 + R**2)**(1/2)
            S := part(R + D)**(1/3)
            -- S = 0 is done in the previous case
            [ P + S*u - Q/(S*u) for u in [1, w3, w3**2] ]

        aCubic(c3, c2, c1, c0) ==
            needLcoef c3; needChar0()
            (c0 = 0) => 0$F
            a1 := c2/c3;  a2 := c1/c3;  a3 := c0/c3
            (a1 = 0 and a2 = 0) => (-a3)**(1/3)
            P := part(-a1/3::F)
            equ(a1**2,3*a2) =>
              S := part((- a3 + (a1**3)/27::F)**(1/3))
              P + S
            Q := part((3*a2 - a1**2)/9::F)
            R := part((9*a1*a2 - 27*a3 - 2*a1**3)/54::F)
            D := part(Q**3 + R**2)**(1/2)
            S := part(R + D)**(1/3)
            P + S - Q/S

        quartic(c4, c3, c2, c1, c0) ==
            needLcoef c4; needChar0()

            -- case one root = 0, not necessary but keeps result small
            (c0 = 0) => [0$F,:cubic(c4, c3, c2, c1)]
            -- Make monic:
            a1 := c3/c4; a2 := c2/c4; a3 := c1/c4; a4 := c0/c4

            -- case x**4 + a4 = 0 <=> (x**2-sqrt(-a4))*(x**2+sqrt(-a4))
            -- not necessary but keeps result small.
            (a1 = 0 and a2 = 0 and a3 = 0) =>
                append( quadratic(1, 0, (-a4)**(1/2)),_
                        quadratic(1 ,0, -((-a4)**(1/2))) )

            -- Translate w = x+a1/4 to eliminate a1:  w**4+p*w**2+q*w+r
            p := part(a2-3*a1*a1/8::F)
            q := part(a3-a1*a2/2::F + a1**3/8::F)
            r := part(a4-a1*a3/4::F + a1**2*a2/16::F - 3*a1**4/256::F)
            -- t0 := the cubic resolvent of x**3-p*x**2-4*r*x+4*p*r-q**2
            -- The roots of the translated polynomial are those of
            -- two quadratics. (What about rt=0 ?)
            -- rt=0 can be avoided by picking a root ~= p of the cubic
            -- polynomial above. This is always possible provided that
            -- the input is squarefree. In this case the two other roots
            -- are +(-) 2*r**(1/2).
            if equ(q,0)            -- this means p is a root
              then t0 := part(2*(r**(1/2)))
              else t0 := aCubic(1, -p, -4*r, 4*p*r - q**2)
            rt    := part(t0 - p)**(1/2)
            slist := append( quadratic( 1,  rt, (-q/rt + t0)/2::F ),
                             quadratic( 1, -rt, ( q/rt + t0)/2::F ))
            -- Translate back:
            [s - a1/4::F for s in slist]

        aQuartic(c4, c3, c2, c1, c0) ==
            needLcoef c4; needChar0()
            (c0 = 0) => 0$F
            a1 := c3/c4; a2 := c2/c4; a3 := c1/c4; a4 := c0/c4
            (a1 = 0 and a2 = 0 and a3 = 0) => (-a4)**(1/4)
            p  := part(a2-3*a1*a1/8::F)
            q  := part(a3-a1*a2/2::F + a1**2*a1/8::F)
            r  := part(a4-a1*a3/4::F + a1**2*a2/16::F - 3*a1**4/256::F)
            if equ(q,0)
              then t0 := part(2*(r**(1/2)))
              else t0 := aCubic(1, -p, -4*r, 4*p*r - q**2)
            rt := part(t0 - p)**(1/2)
            s  := aQuadratic( 1,  rt, (-q/rt + t0)/2::F )
            s - a1/4::F

@
\section{License}
<<license>>=
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd.
--All rights reserved.
--
--Redistribution and use in source and binary forms, with or without
--modification, are permitted provided that the following conditions are
--met:
--
--    - Redistributions of source code must retain the above copyright
--      notice, this list of conditions and the following disclaimer.
--
--    - Redistributions in binary form must reproduce the above copyright
--      notice, this list of conditions and the following disclaimer in
--      the documentation and/or other materials provided with the
--      distribution.
--
--    - Neither the name of The Numerical ALgorithms Group Ltd. nor the
--      names of its contributors may be used to endorse or promote products
--      derived from this software without specific prior written permission.
--
--THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
--IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
--TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
--PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
--OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
--EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
--PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
--PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
--LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
--NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
--SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
@
<<*>>=
<<license>>

<<package SOLVEFOR PolynomialSolveByFormulas>>
@
\eject
\begin{thebibliography}{99}
\bibitem{1} nothing
\end{thebibliography}
\end{document}