% Oh Emacs, this is a -*- Lisp -*- file, despite appearance. \documentclass{article} \usepackage{axiom} \title{\$SPAD/src/interp util.lisp} \author{Timothy Daly} \begin{document} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{util.lisp} This file is a collection of utility functions that are useful for system level work. A couple of the functions, {\bf build-depsys} and {\bf build-interpsys} interface to the src/interp/Makefile. A second group of related functions allows us to rebuild portions of the system from the command prompt. This varies from rebuilding individual files to whole directories. The most complex functions like {\bf makespad} can rebuild the whole algebra tree. A third group of related functions are used to set up the {\bf autoload} mechanism. These enable whole subsystems to be kept out of memory until they are used. A fourth group of related functions are used to construct and search Emacs TAGS files. A fifth group of related functions are some translated boot functions we need to define here so they work and are available at load time. \subsection{Building Depsys (build-depsys)} The {\bf depsys} image is one of the two images we build from the src/interp subdirectory (the other is {\bf interpsys}). We use {\bf depsys} as a compile-time image as it contains all of the necessary functions and macros to compile any file. The {\bf depsys} image is almost the same as an {\bf interpsys} image but it does not have any autoload triggers or databases loaded. <>= (defun build-depsys (load-files spad) #+:CCL (setq *package* (find-package "BOOT")) #+:AKCL (in-package "BOOT") (mapcar #'load load-files) (initroot spad) #+:AKCL (init-memory-config :cons 1000 :fixnum 400 :symbol 1000 :package 16 :array 800 :string 1000 :cfun 200 :cpages 2000 :rpages 2000 :hole 4000) ) ;; (init-memory-config :cons 500 :fixnum 200 :symbol 500 :package 8 ;; :array 400 :string 500 :cfun 100 :cpages 1000 ;; :rpages 1000 :hole 2000) ) @ \subsection{Building Interpsys (build-interpsys)} \begin{verbatim} ;############################################################################ ;# autoload dependencies ;# ;# if you are adding a file which is to be autoloaded the following step ;# information is useful: ;# there are 2 cases: ;# 1) adding files to currently autoloaded parts ;# (as of 2/92: browser old parser and old compiler) ;# 2) adding new files ;# case 1: ;# a) you have to add the file to the list of files currently there ;# (e.g. see BROBJS above) ;# b) add an autolaod rule ;# (e.g. ${AUTO}/parsing.${O}: ${OUT}/parsing.${O}) ;# c) edit util.lisp to add the 'external' function (those that ;# should trigger the autoload ;# case 2: ;# build-interpsys (in util.lisp) needs an extra argument for the ;# new autoload things and several functions in util.lisp need hacking. ;############################################################################ \end{verbatim} The {\bf build-interpsys} function takes a list of files to load into the image ({\bf load-files}). It also takes several lists of files, one for each subsystem which will be autoloaded. Autoloading is explained below. Next it takes a set of shell variables, the most important of which is the {\bf spad} variable. This is normally set to be the same as the final build location. This function is called in the src/interp/Makefile. This function calls {\bf initroot} to set up pathnames we need. Next it sets up the lisp system memory (at present only for AKCL/GCL). Next it loads all of the named files, resets a few global state variables, loads the databases, sets up autoload triggers and clears out hash tables. After this function is called the image is clean and can be saved. <>= (defun build-interpsys (load-files translate-files nagbr-files asauto-files spad) (initroot spad) #+:AKCL (init-memory-config :cons 500 :fixnum 200 :symbol 500 :package 8 :array 400 :string 500 :cfun 100 :cpages 1000 :rpages 1000 :hole 2000) <> (mapcar #'|AxiomCore|::|importModule| load-files) (|resetWorkspaceVariables|) (|initHist|) (|initNewWorld|) (compressopen) (interpopen) (create-initializers) (|start| :fin) #+:CCL (resethashtables) (setq *load-verbose* nil) (|setBootAutloadProperties| translate-functions translate-files) (|setNAGBootAutloadProperties| nagbr-functions nagbr-files) (|setBootAutloadProperties| asauto-functions asauto-files) (setf (symbol-function 'boot::|addConsDB|) #'identity) (resethashtables) ; the databases into core, then close the streams ) @ \subsubsection{GCL porting changes} GCL likes to output lines of the form: \begin{verbatim} ;; Note: Tail-recursive call of |matSuperList1| was replaced by iteration. \end{verbatim} which is pointless and should be removed. Bill Schelter added this while he was debugging tail-recursive replacement and it never was removed. <>= #+:AKCL (setq compiler::*suppress-compiler-notes* t) @ \subsection{The variables} Various lisps use different ``extensions'' on the filename to indicate that a file has been compiled. We set this variable correctly depending on the system we are using. <>= (defvar *bin-path* #+kcl "o" #+lucid "bbin" #+symbolics "bin" #+cmulisp "fasl" #+:ccl "not done this way at all") @ \subsubsection{relative-directory-list} The relative directory list specifies a search path for files for the current directory structure. It has been changed from the NAG distribution back to the original form. <>= (defvar $relative-directory-list '("/../../src/input/" "/share/msgs/" "/../../src/algebra/" "/../../src/interp/" ; for boot and lisp files (helps fd) "/doc/spadhelp/" )) @ \subsubsection{relative-library-directory-list} The relative directory list specifies how to find the algebra directory from the current {\bf AXIOM} shell variable. <>= (defvar $relative-library-directory-list '("/algebra/")) @ \subsection{The autoload list} There are several subsystems within {\bf AXIOM} that are not normally loaded into a running system. They will be loaded only if you invoke one of the functions listed here. Each of these listed functions will have their definitions replaced by a special ``autoloader'' function. The first time a function named here is called it will trigger a load of the associated subsystem, the autoloader functions will get overwritten, the function call is retried and now succeeds. Files containing functions listed here are assumed to exist in the {\bf autoload} subdirectory. The list of files to load is defined in the src/interp/Makefile. \subsubsection{setBootAutloadProperties} This function is called by {\bf build-interpsys}. It takes two lists. The first is a list of functions that need to be used as ``autoload triggers''. The second is a list of files to load if one of the trigger functions is called. At system build time each of the functions in the first list is set up to load every file in the second list. In this way we will automatically load a whole subsystem if we touch any function in that subsystem. We call a helper function called {\bf setBootAutoLoadProperty} to set up the autoload trigger. This helper function is listed below. <>= (defun |setBootAutloadProperties| (fun-list file-list) #+:AKCL (mapc #'(lambda (fun) (|setBootAutoLoadProperty| fun file-list)) fun-list) #+:CCL (mapc #'(lambda (fun) (lisp::set-autoload fun file-list)) fun-list) ) @ \subsubsection{setBootAutoLoadProperty} This is a helper function to set up the autoload trigger. It sets the function cell of each symbol to {\bf mkBootAutoLoad} which is listed below. <>= (defun |setBootAutoLoadProperty| (func file-list) (setf (symbol-function func) (|mkBootAutoLoad| func file-list)) ) @ \subsubsection{mkBootAutoLoad} This is how the autoload magic happens. Every function named in the autoload lists is actually just another name for this function. When the named function is called we call {\bf boot-load} on all of the files in the subsystem. This overwrites all of the autoload triggers. We then look up the new (real) function definition and call it again with the real arguments. Thus the subsystem loads and the original call succeeds. <>= (defun |mkBootAutoLoad| (fn file-list) (function (lambda (&rest args) (mapc #'boot-load file-list) (unless (string= (subseq (string fn) 0 4) "LOAD") (apply (symbol-function fn) args))))) @ \subsubsection{boot-load} This function knows where the {\bf autoload} subdirectory lives. It is called by {\bf mkBootAutoLoad} above to find the necessary files. <>= (defun boot-load (file) (let ((name (concat $SPADROOT "/autoload/" (pathname-name file)))) (if |$printLoadMsgs| (format t " Loading ~A.~%" name)) (load name))) @ \subsubsection{setNAGBootAutloadProperties} This is a further refinement of the autoload scheme. Since the Numerical Algorithms Group (NAG) fortran library contains many functions we subdivide the NAG library subsystem into chapters. We use a different helper function {\bf get-NAG-chapter} to decide which files to load. <>= (defun |setNAGBootAutloadProperties| (function-list file-list) (mapcar #'(lambda (f) (|setBootAutloadProperties| (get-NAG-chapter (chapter-name f) function-list) (nag-files f file-list))) file-list)) @ \subsubsection{get-NAG-chapter} This function is used to find the names of the files to load. On solaris 9 under GCL the original implementation will fail because the max number of arguments is 63. We rewrite it to get around this problem. It originally read: \begin{verbatim} (defun get-NAG-chapter (chapter function-list) (apply 'append (mapcar #'(lambda (f) (cond ((equalp chapter (subseq (string f) 0 (length chapter))) (list f )))) function-list))) \end{verbatim} <>= (defun get-NAG-chapter (chapter function-list) (let ((l (length chapter)) r) (dolist (f function-list) (when (equalp chapter (subseq (string f) 0 l)) (push f r))) (nreverse r))) @ \subsubsection{nag-files} We analyze the function names to decide which chapter we are in. We load files based on the chapter. <>= (defun nag-files (filename filelist) (apply 'append (mapcar #'(lambda (f) (cond ((equalp (chapter-name filename) (chapter-name f)) (list f))) ) filelist))) @ \subsubsection{chapter-name} The library names follow a convention that allows us to extract the chapter name. <>= (defun chapter-name (f) #+:AKCL (apply #'(lambda (s) (cond ((equalp (aref s 0) #\s) "s") (T (reverse (subseq s 0 3))))) (list (string-left-trim "a.o" (reverse f) )) ) #+:CCL (subseq (string-downcase (string f)) 4 (length (string f))) ) @ \subsubsection{translate-functions} This is a little used subsystem to generate {\bf ALDOR} code from {\bf Spad} code. Frankly, I'd be amazed if it worked. <>= (setq translate-functions '( ;; .spad to .as translator, in particular ;; loadtranslate |spad2AsTranslatorAutoloadOnceTrigger| )) @ \subsubsection{asauto-functions} This is part of the {\bf ALDOR subsystem}. These will be loaded if you compile a {\bf .as} file rather than a {\bf .spad} file. {\bf ALDOR} is an external compiler that gets automatically called if the file extension is {\bf .as}. <>= (setq asauto-functions '( loadas ;; |as| ;; now in as.boot ;; |astran| ;; now in as.boot |spad2AxTranslatorAutoloadOnceTrigger| |sourceFilesToAxcliqueAxFile| |sourceFilesToAxFile| |setExtendedDomains| |makeAxFile| |makeAxcliqueAxFile| |nrlibsToAxFile| |attributesToAxFile| )) @ \subsubsection{debug-functions} These are some {\bf debugging} functions that I use. I can't imagine why you might autoload them but they don't need to be in a running system. <>= (setq debug-functions '( loaddebug |showSummary| |showPredicates| |showAttributes| |showFrom| |showImp|)) @ \subsubsection{anna-functions} The {\bf ANNA} subsystem, invoked thru {\bf hypertex}, is an expert system that understands the Numerical Algorithms Group (NAG) fortran library. <>= (setq anna-functions '( |annaInt| |annaMInt| |annaOde| |annaOpt| |annaOpt2| |annaPDESolve| |annaOptDefaultSolve1| |annaOptDefaultSolve2| |annaOptDefaultSolve3| |annaOptDefaultSolve4| |annaOptDefaultSolve5| |annaOpt2DefaultSolve| |annaFoo| |annaBar| |annaJoe| |annaSue| |annaAnn| |annaBab| |annaFnar| |annaDan| |annaBlah| |annaTub| |annaRats| |annaMInt| |annaOdeDefaultSolve1| |annaOdeDefaultSolve2|)) @ \subsubsection{nagbr-functions} The Numerical Algorithms Group (NAG) fortran library has a set of cover functions. These functions need to be loaded if you use the NAG library. <>= (setq nagbr-functions '( loadnag |c02aff| |c02agf| |c05adf| |c05nbf| |c05pbf| |c06eaf| |c06ebf| |c06ecf| |c06ekf| |c06fpf| |c06fqf| |c06frf| |c06fuf| |c06gbf| |c06gcf| |c06gqf| |c06gsf| |d01ajf| |d01akf| |d01alf| |d01amf| |d01anf| |d01apf| |d01aqf| |d01asf| |d01bbf| |d01fcf| |d01gaf| |d01gbf| |d02bbf| |d02bhf| |d02cjf| |d02ejf| |d02gaf| |d02gbf| |d02kef| |d02raf| |d03edf| |d03eef| |d03faf| |e01baf| |e01bef| |e01bff| |e01bgf| |e01bhf| |e01daf| |e01saf| |e01sbf| |e01sef| |e02adf| |e02aef| |e02agf| |e02ahf| |e02ajf| |e02akf| |e02baf| |e02bbf| |e02bcf| |e02bdf| |e02bef| |e02daf| |e02dcf| |e02ddf| |e02def| |e02dff| |e02gaf| |e02zaf| |e04dgf| |e04fdf| |e04gcf| |e04jaf| |e04mbf| |e04naf| |e04ucf| |e04ycf| |f01brf| |f01bsf| |f01maf| |f01mcf| |f01qcf| |f01qdf| |f01qef| |f01rcf| |f01rdf| |f01ref| |f02aaf| |f02abf| |f02adf| |f02aef| |f02aff| |f02agf| |f02ajf| |f02akf| |f02awf| |f02axf| |f02bbf| |f02bjf| |f02fjf| |f02wef| |f02xef| |f04adf| |f04arf| |f04asf| |f04atf| |f04axf| |f04faf| |f04jgf| |f04maf| |f04mbf| |f04mcf| |f04qaf| |f07adf| |f07aef| |f07fdf| |f07fef| |s01eaf| |s13aaf| |s13acf| |s13adf| |s14aaf| |s14abf| |s14baf| |s15adf| |s15aef| |s17acf| |s17adf| |s17aef| |s17aff| |s17agf| |s17ahf| |s17ajf| |s17akf| |s17dcf| |s17def| |s17dgf| |s17dhf| |s17dlf| |s18acf| |s18adf| |s18aef| |s18aff| |s18dcf| |s18def| |s19aaf| |s19abf| |s19acf| |s19adf| |s20acf| |s20adf| |s21baf| |s21bbf| |s21bcf| |s21bdf| )) @ \subsection{The command-line build functions} \subsubsection{translist} Translate a list of boot files to common lisp. <>= (defun translist (fns) (mapcar #'(lambda (f) (format t "translating ~a~%" (concat f ".boot")) (translate f)) fns)) @ \subsubsection{translate} Translate a single boot file to common lisp <>= (defun translate (file) ;; translates a single boot file #+:CCL (setq *package* (find-package "BOOT")) #+:AKCL (in-package "BOOT") (let (*print-level* *print-length* (fn (pathname-name file)) (bootfile (merge-pathnames file (concat $spadroot "nboot/.boot")))) (declare (special *print-level* *print-length*)) (boot bootfile (make-pathname :type "lisp" :defaults bootfile)))) @ \subsubsection{compile-boot-file} Translate a single boot file to common lisp, compile it and load it. <>= (defun compile-boot-file (file) "compile and load a boot file" (boot (concat file ".boot") (concat file ".lisp")) #+:AKCL (compile-file (concat file ".lisp")) #+:AKCL (load (concat file "." *bin-path*)) #+:CCL (load (concat file ".lisp")) ) @ \subsubsection{retranslate-file-if-necessary} Retranslate a single boot file if it has been changed. <>= (defun retranslate-file-if-necessary (bootfile) (let* ((lfile (make-pathname :type "lisp" :defaults bootfile)) (ldate (our-write-date lfile)) (binfile (make-pathname :type *bin-path* :defaults bootfile)) (bindate (our-write-date binfile)) (bootdate (our-write-date bootfile))) (if (and ldate bootdate (> ldate bootdate)) nil (if (and bindate bootdate (> bindate bootdate)) nil (progn (format t "translating ~a~%" bootfile) (boot bootfile lfile) (list bootfile)))))) @ \subsubsection{retranslate-directory} Translate a directory of boot code to common lisp if the boot code is newer. <>= (defun retranslate-directory (dir) (let* ((direc (make-directory dir)) (pattern (make-pathname :directory (pathname-directory direc) :name :wild :type "boot")) (files (directory pattern))) (mapcan #'retranslate-file-if-necessary files))) @ \subsubsection{recompile-NRLIB-if-necessary} Recompile a single library's lisp file if it is out of date. The {\bf recompile-lib-file-if-necessary} is defined in nlib.lisp. <>= (defun recompile-NRLIB-if-necessary (lib) (recompile-lib-file-if-necessary (concat (namestring lib) "/code.lsp")) (lift-NRLIB-name (namestring lib))) @ \subsubsection{lift-NRLIB-name} We used to use FOO.NRLIB/code.o files for algebra. However there was no need for this additional level of indirection since the rest of the information in an NRLIB is now kept in the daase files. Thus we lift the FOO.NRLIB/code.o to FOO.o in the final system. <>= (defun lift-NRLIB-name (f) (obey (concat "cp " f "/code.o " (subseq f 0 (position #\. f)) ".o")) nil) @ \subsubsection{recompile-lib-directory} Recompile library lisp code if necessary. <>= (defun recompile-lib-directory (dir) (let* ((direc (make-directory dir)) (pattern (make-pathname :directory (pathname-directory direc) :name :wild :type "NRLIB")) (files (directory pattern))) (mapcan #'recompile-NRLIB-if-necessary files))) @ \subsubsection{recompile-all-files} Force recompilation of all lisp files in a directory. <>= (defun recompile-all-files (dir) (let* ((direc (make-directory dir)) (pattern (make-pathname :directory (pathname-directory direc) :name :wild :type "lisp")) (files (directory pattern))) (mapcar #'compile-file files))) @ \subsubsection{recompile-directory} This function will compile any lisp code that has changed in a directory. <>= (defun recompile-directory (dir) (let* ((direc (make-directory dir)) (pattern (make-pathname :directory (pathname-directory direc) :name :wild :type "lisp")) (files (directory pattern))) (mapcan #'recompile-file-if-necessary files))) @ \subsubsection{recompile-file-if-necessary} This is a helper function that checks the time stamp between the given file and its compiled binary. If the file has changed since it was last compiled this function will recompile it. <>= (defun recompile-file-if-necessary (lfile) (let* ((bfile (make-pathname :type *bin-path* :defaults lfile)) (bdate (our-write-date bfile)) (ldate (our-write-date lfile))) (if (and bdate ldate (> bdate ldate)) nil (progn (format t "compiling ~a~%" lfile) (compile-file lfile) (list bfile))))) @ \subsubsection{our-write-date} Get the write date of a file. In GCL we need to check that it exists first. This is a simple helper function. <>= (defun our-write-date (file) (and #+kcl (probe-file file) (file-write-date file))) @ \subsubsection{fe} I'm unsure what this does but I believe it is related to an interpreter command. Invoking ``)fe'' in the interpreter tries to get at the src/interp/TAGS file. <>= (defun fe (function file &optional (compflag nil) &aux (fn (pathname-name file))) (let ((tbootfile (concat "/tmp/" fn ".boot")) (tlispfile (concat "/tmp/" fn ".lisp"))) (system::run-aix-program "fc" :arguments (list (string function) (namestring (merge-pathnames file (concat $SPADROOT "nboot/.boot")))) :if-output-exists :supersede :output tbootfile) (boot tbootfile tlispfile) (if compflag (progn (compile-file tlispfile) (load (make-pathname :type *bin-path* :defaults tlispfile))) (load tlispfile)))) @ \subsubsection{fc} I'm unsure what this does but I believe it is related to an interpreter command. Invoking ``)fc'' in the interpreter tries to get at the src/interp/TAGS file. <>= (defun fc (function file) (fe function file t)) @ \subsubsection{compspadfiles} The {\bf compspadfiles} function will recompile a list of {\bf spad} files. The filelist should be a file containing names of files to compile. <>= (defun compspadfiles (filelist ;; should be a file containing files to compile &optional (*default-pathname-defaults* (pathname (concat $SPADROOT "nalgebra/")))) (with-open-file (stream filelist) (do ((fname (read-line stream nil nil) (read-line stream nil nil))) ((null fname) 'done) (setq fname (string-right-trim " *" fname)) (when (not (equal (elt fname 0) #\*)) (spad fname (concat (pathname-name fname) ".out")))))) @ \subsubsection{load-directory} Load a whole subdirectory of compiled files <>= (defun load-directory (dir) (let* ((direc (make-directory dir)) (pattern (make-pathname :directory (pathname-directory direc) :name :wild :type *bin-path*)) (files (directory pattern))) (mapcar #'load files))) @ \subsubsection{interp-make-directory} This is used by the ")cd" system command. <>= (defun interp-make-directory (direc) (setq direc (namestring direc)) (if (string= direc "") $current-directory (if (or (memq :unix *features*) (memq 'unix *features*)) (progn (if (char/= (char $current-directory (1-(length $current-directory))) #\/) (setq $current-directory (concat $current-directory "/"))) (if (char/= (char direc 0) #\/) (setq direc (concat $current-directory direc))) (if (char/= (char direc (1- (length direc))) #\/) (setq direc (concat direc "/"))) direc) (progn ;; Assume Windows conventions (if (not (or (char= (char $current-directory (1- (length $current-directory))) #\/) (char= (char $current-directory (1- (length $current-directory))) #\\ ))) (setq $current-directory (concat $current-directory "\\"))) (if (not (or (char= (char direc 0) #\/) (char= (char direc 0) #\\) (find #\: direc))) (setq direc (concat $current-directory direc))) (if (not (or (char= (char direc (1- (length direc))) #\/) (char= (char direc (1- (length direc))) #\\ ))) (setq direc (concat direc "\\"))) direc)))) @ \subsubsection{make-directory} Make a directory relative to the {\bf \$spadroot} variable. <>= (defun make-directory (direc) (setq direc (namestring direc)) (if (string= direc "") $SPADROOT (if (or (memq :unix *features*) (memq 'unix *features*)) (progn (if (char/= (char direc 0) #\/) (setq direc (concat $SPADROOT "/" direc))) (if (char/= (char direc (1- (length direc))) #\/) (setq direc (concat direc "/"))) direc) (progn ;; Assume Windows conventions (if (not (or (char= (char direc 0) #\/) (char= (char direc 0) #\\) (find #\: direc))) (setq direc (concat $SPADROOT "\\" direc))) (if (not (or (char= (char direc (1- (length direc))) #\/) (char= (char direc (1- (length direc))) #\\ ))) (setq direc (concat direc "\\"))) direc)))) @ \subsubsection{recompile-all-libs} Occasionally it will be necessary to iterate over all of the NRLIB directories and compile each of the code.lsp files in every NRLIB. This function will do that. A correct call looks like: \begin{verbatim} (in-package "BOOT") (recompile-all-libs "/spad/mnt/${SYS}/algebra") \end{verbatim} where the [[${SYS}]] variable is same as the one set at build time. <>= (defun recompile-all-libs (dir) (let* ((direc (make-directory dir)) (pattern (make-pathname :directory (pathname-directory direc) :name :wild :type "NRLIB")) (files (directory pattern))) (mapcar #'(lambda (lib) (compile-lib-file (concat (namestring lib) "/code.lsp"))) files))) @ \subsubsection{recompile-all-algebra-files} We occasionally need to completely rebuild the algebra from the spad files. This function will iterate across a directory containing all of the spad files and attempt to recompile them. A correct call looks like: \begin{verbatim} (in-package "BOOT") (recompile-all-algebra-files "nalg") \end{verbatim} Note that it will build a pathname from the current {\bf AXIOM} shell variable. So if the {\bf AXIOM} shell variable had the value \begin{verbatim} /spad/mnt/${SYS} \end{verbatim} (where the [[${SYS}]] variable is the same one set at build time) then the wildcard expands to \begin{verbatim} /spad/mnt/${SYS}/nalg/*.spad \end{verbatim} and all of the matching files would be recompiled. <>= (defun recompile-all-algebra-files (dir) ;; a desperation measure (let* ((direc (make-directory dir)) (pattern (make-pathname :directory (pathname-directory direc) :name :wild :type "spad")) (files (directory pattern)) (*default-pathname-defaults* (pathname direc))) (mapcar #'(lambda (fname) (spad fname (concat (pathname-name fname) ".out"))) files))) @ \subsubsection{boottocl} The {\bf boottocl} function is the workhorse function that translates {\bf .boot} files to {\bf Common Lisp}. It basically wraps the actual {\bf boot} function call to ensure that we don't truncate lines because of {\bf *print-level*} or {\bf *print-length*}. <>= (in-package "OLD-BOOT") (defun boot (file) ;; translates a single boot file #+:CCL (setq *package* (find-package "BOOT")) #+:AKCL (in-package "BOOT") (let (*print-level* *print-length* (fn (pathname-name file)) (*print-pretty* t)) (declare (special *print-level* *print-length*)) (boot::boot file (merge-pathnames (make-pathname :type "clisp") file)))) @ \subsubsection{yearweek} We need a way of distinguishing different versions of the system. There used to be a way to touch the src/timestamp file whenever you checked in a change to the change control subsystem. During make PART=interp (the default for make) we set timestamp to the filename of this timestamp file. This function converts it to a luser readable string and sets the *yearweek* variable. The result of this function is a string that is printed as a banner when Axiom starts. The actual printing is done by the function [[spadStartUpMsgs]] in [[src/interp/msgdb.boot]]. It uses a format string from the file [[src/doc/msgs/s2-us.msgs]]. <>= (defun yearweek () "set *yearweek* to the current time string for the version banner" (declare (special timestamp) (special *yearweek*)) (if (and (boundp 'timestamp) (probe-file timestamp)) (let (sec min hour date month year day dayvec monvec) (setq dayvec '("Monday" "Tuesday" "Wednesday" "Thursday" "Friday" "Saturday" "Sunday")) (setq monvec '("January" "February" "March" "April" "May" "June" "July" "August" "September" "October" "November" "December")) (multiple-value-setq (sec min hour date month year day) (decode-universal-time (file-write-date timestamp))) (setq *yearweek* (copy-seq (format nil "~a ~a ~d, ~d at ~2,'0d:~2,'0d:~2,'0d " (elt dayvec day) (elt monvec (1- month)) date year hour min sec)))) (setq *yearweek* "no timestamp"))) @ \subsubsection{makelib} Make will not compare dates across directories. Rather than copy all of the code.lsp files to the MNT directory we run this function to compile the files that are out of date this function assumes that the shell variables INT and MNT are set. Also of note: on the rt some files (those in the nooptimize list) need to be compiled without optimize due to compiler bugs <>= (defun makelib (mid out stype btype) "iterate over the NRLIBs, compiling ones that are out of date. mid is the directory containing code.lsp out is the directory containing code.o" (let (libs lspdate odate nooptimize (alphabet #\space)) #+(and :akcl :rt) (setq nooptimize '("FFCAT-.NRLIB" "CHVAR.NRLIB" "PFO.NRLIB" "SUP.NRLIB" "INTG0.NRLIB" "FSPRMELT.NRLIB" "VECTOR.NRLIB" "EUCDOM-.NRLIB")) (if (and mid out) (format t "doing directory on ~s...~%" (concatenate 'string mid "/*")) (error "makelib:MID=~a OUT=~a~% these are not set properly~%" mid out)) #+:akcl (compiler::emit-fn nil) #+:akcl (si::chdir mid) #-:akcl (obey (concatenate 'string "cd " mid)) (setq libs (directory "*.NRLIB")) (unless libs (format t "makelib:directory of ~a returned NIL~%" mid) (bye -1)) (princ "checking ") (dolist (lib libs) (unless (char= (schar (pathname-name lib) 0) alphabet) (setq alphabet (schar (pathname-name lib) 0)) (princ alphabet) (finish-output)) (let (dotlsp doto mntlib intkaf mntkaf intkafdate mntkafdate) (setq dotlsp (concatenate 'string mid "/" (file-namestring lib) "/code." stype)) (setq doto (concatenate 'string out "/" (pathname-name lib) ".NRLIB/code." btype)) (setq mntlib (concatenate 'string out "/" (pathname-name lib) ".NRLIB")) (setq intkaf (concatenate 'string mid "/" (file-namestring lib) "/index.KAF*")) (setq mntkaf (concatenate 'string out "/" (pathname-name lib) ".NRLIB/index.KAF*")) (unless (probe-file mntlib) (format t "creating directory ~a~%" mntlib) (obey (concatenate 'string "cp -pr " (namestring lib) " " out)) (when (probe-file (concatenate 'string mntlib "/code." stype)) (delete-file (concatenate 'string mntlib "/code." stype)))) (setq intkafdate (and (probe-file intkaf) (file-write-date intkaf))) (setq mntkafdate (and (probe-file mntkaf) (file-write-date mntkaf))) (when intkafdate (unless (and mntkafdate (> mntkafdate intkafdate)) (format t "~©ing ~s to ~s" intkaf mntkaf) (obey (concatenate 'string "cp " (namestring intkaf) " " (namestring mntkaf))))) (setq lspdate (and (probe-file dotlsp) (file-write-date dotlsp))) (setq odate (and (probe-file doto) (file-write-date doto))) (when lspdate (unless (and odate (> odate lspdate)) #+(and :akcl :rt) (if (member (file-namestring lib) nooptimize :test #'string=) (setq compiler::*speed* 0) (setq compiler::*speed* 3)) (compile-lib-file dotlsp :output-file doto))))))) @ \subsubsection{makespad} Make will not compare dates across directories. In particular, it cannot compare the algebra files because there is a one-to-many correspondence. This function will walk over all of the algebra NRLIB files and find all of the spad files that are out of date and need to be recompiled. This function creates a file "/tmp/compile.input" to be used later in the makefile. Note that the file /tmp/compile.input is not currently used as algebra source recompiles are not necessarily something we want done automatically. Nevertheless, in the quest for quality we check anyway. <>= (defun makespad (src mid stype) "iterate over the spad files, compiling ones that are out of date. src is the directory containing .spad mid is the directory containing code.lsp out is the directory containing code.o" (let (mntlibs spadwork (alphabet #\space)) (labels ( (findsrc (mid libname) "return a string name of the source file given the library file name (eg PI) as a string" (let (kaffile index alist) (setq kaffile (concatenate 'string mid "/" libname ".NRLIB/index.KAF*")) (with-open-file (kaf kaffile) (setq index (read kaf)) (file-position kaf index) (setq alist (read kaf)) (setq index (third (assoc "sourceFile" alist :test #'string=))) (file-position kaf index) (pathname-name (pathname (read kaf index))))))) (format t "makespad:src=~s mid=~s stype=~s~%" src mid stype) (if (and src mid) (format t "doing directory on ~s...~%" (concatenate 'string src "/*")) (error "makespad:SRC=~a MID=~a not set properly~%" src mid)) #+:akcl (si::chdir mid) #-:akcl (obey (concatenate 'string "cd " mid)) (setq mntlibs (directory "*.NRLIB")) (unless mntlibs (format t "makespad:directory of ~a returned NIL~%" src) (bye 1)) (princ "checking ") (dolist (lib mntlibs) (unless (char= (schar (pathname-name lib) 0) alphabet) (setq alphabet (schar (pathname-name lib) 0)) (princ alphabet) (finish-output)) (let (spad spaddate lsp lspdate) (setq spad (concatenate 'string src "/" (findsrc mid (pathname-name lib)) ".spad")) (setq spaddate (and (probe-file spad) (file-write-date spad))) (setq lsp (concatenate 'string mid "/" (pathname-name lib) ".NRLIB/code." stype)) (setq lspdate (and (probe-file lsp) (file-write-date lsp))) (cond ((and spaddate lspdate (<= spaddate lspdate))) ((and spaddate lspdate (> spaddate lspdate)) (setq spadwork (adjoin spad spadwork :test #'string=))) ((and spaddate (not lspdate)) (setq spadwork (adjoin spad spadwork :test #'string=))) ((and (not spaddate) lspdate) (format t "makespad:missing spad file ~a for lisp file ~a~%" spad lsp)) ((and (not spaddate) (not lspdate)) (format t "makespad:NRLIB ~a exist but is spad ~a and lsp ~a don't~%" lib spad lsp))))) (with-open-file (tmp "/tmp/compile.input" :direction :output) (dolist (spad spadwork) (format t "~a is out of date~%" spad) (format tmp ")co ~a~%" spad)))))) @ \subsubsection{libcheck} We need to ensure that the INTERP.EXPOSED list, which is a list of the exposed constructors, is consistent with the actual libraries. <>= (defun libcheck (int) "check that INTERP.EXPOSED and NRLIBs are consistent" (let (interp nrlibs) (labels ( (CONSTRUCTORNAME (nrlib) "find the long name of a constructor given an abbreviation string" (let (file sourcefile name) (setq file (findsrc nrlib)) (setq sourcefile (concatenate 'string int "/" file ".spad")) (when (and file (probe-file sourcefile)) (setq name (searchsource sourcefile nrlib))))) (NOCAT (longnames) "remove the categories from the list of long names" (remove-if #'(lambda (x) (let ((c (schar x (1- (length x))))) (or (char= c #\&) (char= c #\-)))) longnames)) (FINDSRC (libname) "return a string name of the source file given the library file name (eg PI) as a string" (let (kaffile index alist result) (setq kaffile (concatenate 'string int "/" libname ".NRLIB/index.KAF*")) (if (probe-file kaffile) (with-open-file (kaf kaffile) (setq index (read kaf)) (file-position kaf index) (setq alist (read kaf)) (setq index (third (assoc "sourceFile" alist :test #'string=))) (file-position kaf index) (setq result (pathname-name (pathname (read kaf index)))))) (format t "~a does not exist~%" kaffile) result)) (READINTERP () "read INTERP.EXPOSED and return a sorted abbreviation list" (let (expr names longnames) (with-open-file (in (concatenate 'string int "/INTERP.EXPOSED")) (catch 'eof (loop (setq expr (read-line in nil 'eof)) (when (eq expr 'eof) (throw 'eof nil)) (when (and (> (length expr) 58) (char= (schar expr 0) #\space) (not (char= (schar expr 8) #\space))) (push (string-trim '(#\space) (subseq expr 8 57)) longnames) (push (string-right-trim '(#\space) (subseq expr 58)) names))))) (setq longnames (sort longnames #'string<)) (setq names (sort names #'string<)) (values names longnames))) (READLIBS (algebra) "read the NRLIB directory and return a sorted abbreviation list" (let (libs nrlibs) #+:akcl (si::chdir algebra) #-:akcl (obey (concatenate 'string "cd " algebra)) (setq nrlibs (directory "*.NRLIB")) (unless nrlibs (error "libcheck: (directory ~s) returned NIL~%" (concatenate 'string algebra "/*.NRLIB"))) (dolist (lib nrlibs) (push (pathname-name lib) libs)) (sort libs #'string<))) (SEARCHSOURCE (sourcefile nrlib) "search a sourcefile for the long constructor name of the nrlib string" (let (in expr start) (setq nrlib (concatenate 'string " " nrlib " ")) (catch 'done (with-open-file (in sourcefile) (loop (setq expr (read-line in nil 'done)) (when (eq expr 'done) (throw 'done nil)) (when (and (> (length expr) 4) (string= ")abb" (subseq expr 0 4)) (search nrlib expr :test #'string=) (setq start (position #\space expr :from-end t :test #'char=))) (throw 'done (string-trim '(#\space) (subseq expr start))))))))) (SRCABBREVS (sourcefile) (let (in expr start end names longnames) (catch 'done (with-open-file (in sourcefile) (loop (setq expr (read-line in nil 'done)) (when (eq expr 'done) (throw 'done nil)) (when (and (> (length expr) 4) (string= ")abb" (subseq expr 0 4))) (setq point (position #\space expr :from-end t :test #'char=)) (push (string-trim '(#\space) (subseq expr point)) longnames) (setq mark (position #\space (string-right-trim '(#\space) (subseq expr 0 (1- point))) :from-end t)) (push (string-trim '(#\space) (subseq expr mark point)) names))))) (values names longnames))) (SRCSCAN () (let (longnames names) #+:gcl (system::chdir int) #-:gcl (obey (concatenate 'string "cd " int)) (setq spads (directory "*.spad")) (dolist (spad spads) (multiple-value-setq (short long) (srcabbrevs spad)) (setq names (nconc names short)) (setq longnames (nconc longnames long))) (setq names (sort names #'string<)) (setq longnames (sort longnames #'string<)) (values names longnames)))) (multiple-value-setq (abbrevs constructors) (readinterp)) (setq nrlibs (readlibs int)) (dolist (lib (set-difference nrlibs abbrevs :test #'string=)) (format t "libcheck:~a/~a.NRLIB is not in INTERP.EXPOSED~%" int lib)) (dolist (expose (set-difference abbrevs nrlibs :test #'string=)) (format t "libcheck:~a is in INTERP.EXPOSED with no NRLIB~%" expose)) (multiple-value-setq (srcabbrevs srcconstructors) (srcscan)) (setq abbrevs (nocat abbrevs)) (setq constructors (nocat constructors)) (dolist (item (set-difference srcabbrevs abbrevs :test #'string=)) (format t "libcheck:~a is in ~a but not in INTERP.EXPOSED~%" item (findsrc item))) (dolist (item (set-difference abbrevs srcabbrevs :test #'string=)) (format t "libcheck:~a is in INTERP.EXPOSED but has no spad sourcfile~%" item)) (dolist (item (set-difference srcconstructors constructors :test #'string=)) (format t "libcheck:~a is not in INTERP.EXPOSED~%" item)) (dolist (item (set-difference constructors srcconstructors :test #'string=)) (format t "libcheck:~a has no spad source file~%" item))))) @ \subsection{Constructing TAGS} TAGS are useful for finding functions if you run Emacs. We have a set of functions that construct TAGS files for Axiom. \subsubsection{make-tags-file} Run the etags command on all of the lisp code. Then run the {\bf spadtags-from-directory} function on the boot code. The final TAGS file is constructed in the {\bf tmp} directory. <>= (defun make-tags-file () #+:gcl (system:chdir "/tmp") #-:gcl (obey (concatenate 'string "cd " "/tmp")) (obey (concat "etags " (make-absolute-filename "../../src/interp/*.lisp"))) (spadtags-from-directory "../../src/interp" "boot") (obey "cat /tmp/boot.TAGS >> /tmp/TAGS")) @ \subsubsection{spadtags-from-directory} This function will walk across a directory and call {\bf spadtags-from-file} on each file. <>= (defun spadtags-from-directory (dir type) (let* ((direc (make-directory dir)) (pattern (make-pathname :directory (pathname-directory direc) :name :wild :type type)) (files (directory pattern))) (with-open-file (tagstream (concatenate 'string "/tmp/" type ".TAGS") :direction :output :if-exists :supersede :if-does-not-exist :create) (dolist (file files (namestring tagstream)) (print (list "processing:" file)) (write-char #\page tagstream) (terpri tagstream) (write-string (namestring file) tagstream) (write-char #\, tagstream) (princ (spadtags-from-file file) tagstream) (terpri tagstream) (with-open-file (stream "/tmp/*TAGS") (do ((line (read-line stream nil nil) (read-line stream nil nil))) ((null line) nil) (write-line line tagstream))))))) @ \subsubsection{spadtags-from-file} This function knows how to find function names in {\bf boot} code so we can add them to the TAGS file using standard etags format. <>= (defun spadtags-from-file (spadfile) (with-open-file (tagstream "/tmp/*TAGS" :direction :output :if-exists :supersede :if-does-not-exist :create) (with-open-file (stream spadfile) (do ((char-count 0 (file-position stream)) (line (read-line stream nil nil) (read-line stream nil nil)) (line-count 1 (1+ line-count))) ((null line) (file-length tagstream)) (if (/= (length line) 0) (let ((firstchar (elt line 0)) (end nil) (len (length line))) (cond ((member firstchar '(#\space #\{ #\} #\tab ) :test #'char= ) "skip") ((string= line ")abb" :end1 (min 4 len)) (setq end (position #\space line :from-end t :test-not #'eql) end (and end (position #\space line :from-end t :end end))) (write-tag-line line tagstream end line-count char-count)) ((char= firstchar #\)) "skip") ((and (> len 1) (string= line "--" :end1 2)) "skip") ((and (> len 1) (string= line "++" :end1 2)) "skip") ((search "==>" line) "skip") ((and (setq end (position #\space line) end (or (position #\( line :end end) end) end (or (position #\: line :end end) end) end (or (position #\[ line :end end) end)) (equal end 0)) "skip") ((position #\] line :end end) "skip") ((string= line "SETANDFILEQ" :end1 end) "skip") ((string= line "EVALANDFILEACTQ" :end1 end) "skip") (t (write-tag-line line tagstream (if (numberp end) (+ end 1) end) line-count char-count)) ))))))) @ \subsubsection{write-tag-line} This function knows how to write a single line into a TAGS file using the etags file format. <>= (defun write-tag-line (line tagstream endcol line-count char-count) (write-string line tagstream :end endcol) (write-char #\rubout tagstream) (princ line-count tagstream) (write-char #\, tagstream) (princ char-count tagstream) (terpri tagstream)) @ \subsubsection{blankcharp} This is a trivial predicate for calls to {\bf position-if-not} in the {\bf findtag} function. <>= (defun blankcharp (c) (char= c #\Space)) @ \subsubsection{findtag} The {\bf findtag} function is a user-level function to figure out which file contains a given tag. This is sometimes useful if Emacs is not around or TAGS are not loaded. <>= (defun findtag (tag &optional (tagfile (concat $spadroot "/../../src/interp/TAGS")) ) ;; tag is an identifier (with-open-file (tagstream tagfile) (do ((tagline (read-line tagstream nil nil) (read-line tagstream nil nil)) (*package* (symbol-package tag)) (sourcefile) (stringtag (string tag)) (pos) (tpos) (type)) ((null tagline) ()) (cond ((char= (char tagline 0) #\Page) (setq tagline (read-line tagstream nil nil)) (setq sourcefile (subseq tagline 0 (position #\, tagline))) (setq type (pathname-type sourcefile))) ((string= type "lisp") (if (match-lisp-tag tag tagline) (return (cons sourcefile tagline)))) ((> (mismatch ")abb" tagline) 3) (setq pos (position #\Space tagline :start 3)) (setq pos (position-if-not #'blankcharp tagline :start pos)) (setq pos (position #\Space tagline :start pos)) (setq pos (position-if-not #'blankcharp tagline :start pos)) (setq tpos (mismatch stringtag tagline :start2 pos)) (if (and (= tpos (length (string tag))) (member (char tagline (+ pos tpos)) '(#\Space #\Rubout))) (return (cons sourcefile tagline)))) ((setq pos (mismatch stringtag tagline)) (if (and (= pos (length stringtag)) (> (length tagline) pos) (member (char tagline pos) '( #\Space #\( #\:) )) (return (cons sourcefile tagline)))))))) @ \subsubsection{match-lisp-tag} The {\bf match-lisp-tag} function is used by {\bf findtag}. This function assumes that \\ can only appear as first character of name. <>= (defun match-lisp-tag (tag tagline &optional (prefix nil) &aux (stringtag (string tag)) pos tpos) (when (and (if prefix (= (mismatch prefix tagline :test #'char-equal) (length prefix)) t) (numberp (setq pos (position #\Space tagline))) (numberp (setq pos (position-if-not #'blankcharp tagline :start pos)))) (if (char= (char tagline pos) #\') (incf pos)) (if (member (char tagline pos) '( #\\ #\|)) (setq tpos (1+ pos)) (setq tpos pos)) (and (= (mismatch stringtag tagline :start2 tpos :test #'char-equal) (length stringtag)) (eq tag (read-from-string tagline nil nil :start pos))) )) @ \subsection{Translated Boot functions} \subsubsection{string2BootTree} <>= (DEFUN |string2BootTree| (S) (init-boot/spad-reader) (LET* ((BOOT-LINE-STACK (LIST (CONS 1 S))) ($BOOT T) ($SPAD NIL) (XTOKENREADER 'GET-BOOT-TOKEN) (LINE-HANDLER 'NEXT-BOOT-LINE) (PARSEOUT (PROGN (|PARSE-Expression|) (POP-STACK-1)))) (DECLARE (SPECIAL BOOT-LINE-STACK $BOOT $SPAD XTOKENREADER LINE-HANDLER)) (DEF-RENAME (|new2OldLisp| PARSEOUT)))) @ \subsubsection{string2SpadTree} <>= (DEFUN |string2SpadTree| (LINE) (DECLARE (SPECIAL LINE)) (if (and (> (LENGTH LINE) 0) (EQ (CHAR LINE 0) #\) )) (|processSynonyms|)) (ioclear) (LET* ((BOOT-LINE-STACK (LIST (CONS 1 LINE))) ($BOOT NIL) ($SPAD T) (XTOKENREADER 'GET-BOOT-TOKEN) (LINE-HANDLER 'NEXT-BOOT-LINE) (PARSEOUT (PROG2 (|PARSE-NewExpr|) (POP-STACK-1)))) (DECLARE (SPECIAL BOOT-LINE-STACK $BOOT $SPAD XTOKENREADER LINE-HANDLER)) PARSEOUT)) @ \subsubsection{processSynonyms} ;;--------------------> NEW DEFINITION (see i-syscmd.boot.pamphlet) <>= (defun |processSynonyms| () nil) ;;dummy def for depsys, redefined later @ \section{License} <>= ;; Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are ;; met: ;; ;; - Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; ;; - Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in ;; the documentation and/or other materials provided with the ;; distribution. ;; ;; - Neither the name of The Numerical ALgorithms Group Ltd. nor the ;; names of its contributors may be used to endorse or promote products ;; derived from this software without specific prior written permission. ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <> (IMPORT-MODULE "vmlisp") (import-module "parsing") (in-package "BOOT") (export '($spadroot $directory-list $current-directory reroot make-absolute-filename |$msgDatabaseName| |$defaultMsgDatabaseName|)) <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> (in-package "BOOT") <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> <> ;; the following are for conditional reading #+:ieee-floating-point (setq $ieee t) #-:ieee-floating-point (setq $ieee nil) (setq |$opSysName| '"shell") #+:CCL (defun machine-type () "unknown") (setq |$machineType| (machine-type)) ; spad-clear-input patches around fact that akcl clear-input leaves newlines chars (defun spad-clear-input (st) (clear-input st) (if (listen st) (read-char st))) <> (defun sourcepath (f) "find the sourcefile in the system directories" (let (axiom algebra naglink) (setq axiom (|systemRootDirectory|)) (setq algebra (concatenate 'string axiom "/../../src/algebra/" f ".spad")) (setq naglink (concatenate 'string axiom "/../../src/naglink/" f ".spad")) (cond ((probe-file algebra) algebra) ((probe-file naglink) naglink) ('else nil)))) (defun srcabbrevs (sourcefile) "read spad source files and return the constructor names and abbrevs" (let (expr point mark names longnames) (catch 'done (with-open-file (in sourcefile) (loop (setq expr (read-line in nil 'done)) (when (eq expr 'done) (throw 'done nil)) (when (and (> (length expr) 4) (string= ")abb" (subseq expr 0 4))) (setq expr (string-right-trim '(#\space #\tab) expr)) (setq point (position #\space expr :from-end t :test #'char=)) (push (subseq expr (1+ point)) longnames) (setq expr (string-right-trim '(#\space #\tab) (subseq expr 0 point))) (setq mark (position #\space expr :from-end t)) (push (subseq expr (1+ mark)) names))))) (values longnames names))) #+(and :AKCL (not (or :dos :win32))) (in-package "COMPILER") #+(and :AKCL (not (or :dos :win32))) (defun gazonk-name ( &aux tem) "return the name of the intermediate compiler file" (dotimes (i 1000) (setq tem (merge-pathnames (format nil "/tmp/gazonk~d.lsp" i))) (unless (probe-file tem) (return-from gazonk-name (pathname tem)))) (error "1000 gazonk names used already!")) (in-package "BOOT") (defun |tr| (fn) (|spad2AsTranslatorAutoloadOnceTrigger|) (|convertSpadFile| fn) ) <> <> <> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}