\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/input repa6.input} \author{The Axiom Team} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject <<*>>= )cls -- This file demonstrates Representation Theory in Scratchpad -- using the packages REP1, REP2, IRSN and SGCF, which are the -- abbreviations for RepresentationPackage1, RepresentationPackage2 -- IrrRepSymNatPackage and SymmetricGroupCombinatoricFunctions. -- authors: Holger Gollan, Johannes Grabmeier -- release 1.0 09/30/87 -- release 2.0 11/10/88: J. Grabmeier: add functions from IRSN -- release 2.1 08/04/89: J. Grabmeier: adjusting to new PERM -- and modified REP1 -- release 2.2 06/05/89: J. Grabmeier: adjusting to new algebra -- release 2.3 08/20/89: J. Grabmeier: minor adjustments -- In the sequel we show how to get all 2-modular irreducible -- representations of the alternating group A6. -- We generate A6 by the permutations threecycle x=(1,2,3) -- and the 5-cycle y=(2,3,4,5,6) genA6 : List PERM INT := [cycle [1,2,3], cycle [2,3,4,5,6]] -- pRA6 is the permutation representation over the Integers... pRA6 := permutationRepresentation (genA6, 6) -- ... and pRA6m2 is the permutation representation over PrimeField 2: pRA6m2 : List Matrix PrimeField 2 := pRA6 -- Now try to split pRA6m2: sp0 := meatAxe pRA6m2 -- We have found the trivial module as a factormodule -- and a 5-dimensional submodule. dA6d1 := sp0.2 -- Try to split again... sp1 := meatAxe sp0.1 -- ... and find a 4-dimensional submodule, say dA6d4a, and the -- trivial one again. dA6d4a := sp1.2 -- Now we want to test, whether dA6d4a is absolutely irreducible... isAbsolutelyIrreducible? dA6d4a -- ...and see: dA6d4a is absolutely irreducible. -- So we have found a second irreducible representation. -- Now construct a representation from reducing an irreducible one -- of the symmetric group S_6 over the integers taken mod 2 -- What is the degree of the representation belonging to partition -- [2,2,1,1]? -- lambda : PRTITION := partition [2,2,1,1] lambda := [2,2,1,1] dimIrrRepSym lambda -- now create the restriction to A6: d2211 := irrRepSymNat(lambda, genA6) -- ... and d2211m2 is the representation over PrimeField 2: d2211m2 : List Matrix PrimeField 2 := d2211 -- and split it: sp2 := meatAxe d2211m2 -- A 5 and a 4-dimensional one. -- we take the 4-dimensional one, say dA6d4b: dA6d4b := sp2.1 -- This is absolutely irreducible, too ... isAbsolutelyIrreducible? dA6d4b -- ... and dA6d4a and dA6d4b are not equivalent: areEquivalent? ( dA6d4a , dA6d4b ) -- So the third irreducible representation is found. -- Now construct a new representation with the help of the tensorproduct dA6d16 := tensorProduct ( dA6d4a , dA6d4b ) -- and try to split it... sp3 := meatAxe dA6d16 -- The representation is irreducible, but may be not -- absolutely irreducible. isAbsolutelyIrreducible? dA6d16 -- So let's try the same over the field with 4 elements: gf4 := FiniteField(2,2) dA6d16gf4 : List Matrix gf4 := dA6d16 sp4 := meatAxe dA6d16gf4 -- Now we find two 8-dimensional ones, dA6d8a and dA6d8b. dA6d8a : List Matrix gf4 := sp4.1 dA6d8b : List Matrix gf4 := sp4.2 -- Both are absolutely irreducible... isAbsolutelyIrreducible? dA6d8a isAbsolutelyIrreducible? dA6d8b -- and they are not equivalent... areEquivalent? ( dA6d8a, dA6d8b ) -- So we have found five absolutely irreducible representations of A6 -- in characteristic 2. -- The theory tells us that there are no more irreducible ones. -- Here again are all absolutely irreducible 2-modular -- representations of A6 dA6d1 dA6d4a dA6d4b dA6d8a dA6d8b -- And here again is the irreducible, but not absolutely irreducible -- representations of A6 over PrimeField 2 dA6d16 @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}