\documentclass{article} \usepackage{axiom} \author{Gabriel Dos~Reis} \begin{document} \begin{abstract} \end{abstract} \tableofcontents \eject \section{domain Syntax} <>= )abbrev domain SYNTAX Syntax ++ Author: Gabriel Dos Reis ++ Date Created: November 10, 2007 ++ Date Last Updated: December 05, 2007 ++ Description: This domain provides a simple, general, and arguably ++ complete representation of Spad programs as objects of a term algebra ++ built from ground terms of type boolean, integers, foats, symbols, ++ and strings. This domain differs from InputForm in that it represents ++ any entity from a Spad program, not just expressions. ++ Related Constructors: Boolean, Integer, Float, symbol, String, SExpression. ++ See Also: SExpression. ++ Fixme: Provide direct support for boolean values, arbritrary ++ precision float point values. Syntax(): Public == Private where Public ==> Join(UnionType, CoercibleTo(OutputForm)) with convert: % -> SExpression ++ convert(s) returns the s-expression representation of a syntax. convert: SExpression -> % ++ convert(s) converts an s-expression to syntax. Note, when `s' ++ is not an atom, it is expected that it designates a proper list, ++ e.g. a sequence of cons cell ending with nil. coerce: Integer -> % ++ coerce(i) injects the integer value `i' into the Syntax domain coerce: % -> Integer ++ coerce(s) extracts and integer value from the syntax `s' autoCoerce: % -> Integer ++ autoCoerce(s) forcibly extracts an integer value from ++ the syntax `s'; no check performed. To be called only ++ at the discretion of the compiler. coerce: DoubleFloat -> % ++ coerce(f) injects the float value `f' into the Syntax domain coerce: % -> DoubleFloat ++ coerce(s) extracts a float value from the syntax `s'. autoCoerce: % -> DoubleFloat ++ autoCoerce(s) forcibly extracts a float value from the syntax `s'; ++ no check performed. To be called only at the discretion of ++ the compiler coerce: Symbol -> % ++ coerce(s) injects the symbol `s' into the Syntax domain. coerce: % -> Symbol ++ coerce(s) extracts a symbol from the syntax `s'. autoCoerce: % -> Symbol ++ autoCoerce(s) forcibly extracts a symbo from the Syntax ++ domain `s'; no check performed. To be called only at ++ at the discretion of the compiler. coerce: String -> % ++ coerce(s) injects the string value `s' into the syntax domain coerce: % -> String ++ coerce(s) extracts a string value from the syntax `s'. autoCoerce: % -> String ++ autoCoerce(s) forcibly extracts a string value from ++ the syntax `s'; no check performed. To be called only at ++ the discretion of the compiler. buildSyntax: (Symbol, List %) -> % ++ buildSyntax(op, [a1, ..., an]) builds a syntax object for op(a1,...,an). buildSyntax: (%, List %) -> % ++ buildSyntax(op, [a1, ..., an]) builds a syntax object for op(a1,...,an). nil?: % -> Boolean ++ nil?(s) is true when `s' is a syntax for the constant nil. getOperator: % -> Union(Integer, DoubleFloat, Symbol, String, %) ++ getOperator(x) returns the operator, or tag, of the syntax `x'. ++ The return value is itself a syntax if `x' really is an ++ application of a function symbol as opposed to being an ++ atomic ground term. getOperands: % -> List % ++ getOperands(x) returns the list of operands to the operator in `x'. compound?: % -> Boolean ++ compound? x is true when not an atomic syntax. _case: (%, [|Integer|]) -> Boolean ++ x case Integer is true is x really is an Integer _case: (%, [|DoubleFloat|]) -> Boolean ++ x case DoubleFloat is true is x really is a DoubleFloat _case: (%, [|Symbol|]) -> Boolean ++ x case Symbol is true is x really is a Symbol _case: (%, [|String|]) -> Boolean ++ x case String is true is x really is a String Private ==> SExpression add rep(x: %): SExpression == x pretend SExpression per(x: SExpression): % == x pretend % s case Integer == integer? rep s s case DoubleFloat == float? rep s s case String == string? rep s s case Symbol == symbol? rep s convert(x: %): SExpression == rep x convert(x: SExpression): % == per x coerce(i: Integer): % == i pretend % autoCoerce(i: %): Integer == -- used for hard coercion i : Integer coerce(i: %): Integer == i case Integer => i userError "invalid conversion target type" coerce(f: DoubleFloat): % == f pretend % autoCoerce(f: %): DoubleFloat == -- used for hard coercion f : DoubleFloat coerce(f: %): DoubleFloat == f case DoubleFloat => f userError "invalid conversion target type" coerce(s: Symbol): % == s pretend % autoCoerce(s: %): Symbol == -- used for hard coercion s : Symbol coerce(s: %): Symbol == s case Symbol => s userError "invalid conversion target type" coerce(s: String): % == s pretend % autoCoerce(s: %): String == -- used for hard coercion s : String coerce(s: %): String == s case String => s userError "invalid conversion target type" buildSyntax(s: Symbol, l: List %): % == -- ??? ideally we should have overloaded operator `per' that convert -- from list of syntax to syntax. But the compiler is at the -- moment defective for non-exported overloaded operations. -- Furthermore, this direct call to `CONS' is currently necessary -- in order to have the Syntax domain compiled as early as possible -- in algebra boostrapping process. It should be removed once -- the bootstrap process is improved. CONS(s,l)$Lisp @ % buildSyntax(op: %, l: List %): % == CONS(op,l)$Lisp @ % nil? x == null? rep x getOperator x == atom? rep x => userError "atom as operand to getOperator" op := car rep x symbol? op => symbol op integer? op => integer op float? op => float op string? op => string op convert op compound? x == pair? rep x getOperands x == s := rep x atom? s => [] [per t for t in destruct cdr s] @ \section{domain ConstructorCall} <>= )abbrev domain CTORCALL ConstructorCall ++ Author: Gabriel Dos Reis ++ Date Created: January 19, 2008 ++ Date Last Updated: January 19, 2008 ++ Description: This domains represents a syntax object that ++ designates a category, domain, or a package. ++ See Also: Syntax, Domain ConstructorCall(): Public == Private where Public ==> CoercibleTo OutputForm with constructorName: % -> Symbol ++ constructorName c returns the name of the constructor arguments: % -> List Syntax ++ arguments returns the list of syntax objects for the ++ arguments used to invoke the constructor. Private ==> add rep(x: %): List Syntax == x pretend List(Syntax) constructorName x == (first rep x)::Symbol arguments x == rest rep x coerce x == outputDomainConstructor(x)$Lisp @ \section{domain ElaboratedExpression} <>= )abbrev domain ELABEXPR ElaboratedExpression ++ Author: Gabriel Dos Reis ++ Date Created: January 19, 2008 ++ Date Last Updated: January 20, 2008 ++ Description: This domains an expresion as elaborated by the interpreter. ++ See Also: ElaboratedExpression(): Public == Private where Public ==> CoercibleTo OutputForm with type: % -> ConstructorCall ++ type(e) returns the type of the expression as computed by ++ the interpreter. constant?: % -> Boolean ++ constant?(e) returns true if `e' is a constant. getConstant: % -> Union(SExpression,"failed") ++ getConstant(e) retrieves the constant value of `e'e. variable?: % -> Boolean ++ variable?(e) returns true if `e' is a variable. getVariable: % -> Union(Symbol,"failed") ++ getVariable(e) retrieves the name of the variable `e'. callForm?: % -> Boolean ++ callForm?(e) is true when `e' is a call expression. getOperator: % -> Union(Symbol, "failed") ++ getOperator(e) retrieves the operator being invoked in `e', ++ when `e' is an expression. getOperands: % -> Union(List %, "failed") ++ getOperands(e) returns the of operands in `e'e, assuming it ++ is a call form. Private ==> add immediateDataTag := INTERN("--immediateData--")$Lisp isAtomic(x: %): Boolean == ATOM(x)$Lisp @ Boolean type x == getMode(x)$Lisp @ ConstructorCall callForm? x == CONSP(x)$Lisp @ Boolean getOperator x == op: SExpression := getUnnameIfCan(x)$Lisp null? op => "failed" op pretend Symbol constant? x == isAtomic x and EQ(getUnnameIfCan(x)$Lisp, immediateDataTag)$Lisp : Boolean getConstant x == constant? x => getValue(x)$Lisp @ SExpression "failed" variable? x == isAtomic x and not constant? x getVariable x == variable? x => symbol (getUnname(x)$Lisp@SExpression) "failed" @ \section{License} <>= --Copyright (C) 2007, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical Algorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <> <> <> <> @ \end{document}