\documentclass{article} \usepackage{axiom} \begin{document} \title{\$SPAD/src/algebra expr.spad} \author{Manuel Bronstein, Barry Trager} \maketitle \begin{abstract} \end{abstract} \eject \tableofcontents \eject \section{domain EXPR Expression} <>= )abbrev domain EXPR Expression ++ Top-level mathematical expressions ++ Author: Manuel Bronstein ++ Date Created: 19 July 1988 ++ Date Last Updated: October 1993 (P.Gianni), February 1995 (MB) ++ Description: Expressions involving symbolic functions. ++ Keywords: operator, kernel, function. Expression(R:OrderedSet): Exports == Implementation where Q ==> Fraction Integer K ==> Kernel % MP ==> SparseMultivariatePolynomial(R, K) AF ==> AlgebraicFunction(R, %) EF ==> ElementaryFunction(R, %) CF ==> CombinatorialFunction(R, %) LF ==> LiouvillianFunction(R, %) AN ==> AlgebraicNumber KAN ==> Kernel AN FSF ==> FunctionalSpecialFunction(R, %) ESD ==> ExpressionSpace_&(%) FSD ==> FunctionSpace_&(%, R) SUP ==> SparseUnivariatePolynomial Exports ==> FunctionSpace R with if R has IntegralDomain then AlgebraicallyClosedFunctionSpace R TranscendentalFunctionCategory CombinatorialOpsCategory LiouvillianFunctionCategory SpecialFunctionCategory reduce: % -> % ++ reduce(f) simplifies all the unreduced algebraic quantities ++ present in f by applying their defining relations. number?: % -> Boolean ++ number?(f) tests if f is rational simplifyPower: (%,Integer) -> % ++ simplifyPower?(f,n) \undocumented{} if R has GcdDomain then factorPolynomial : SUP % -> Factored SUP % ++ factorPolynomial(p) \undocumented{} squareFreePolynomial : SUP % -> Factored SUP % ++ squareFreePolynomial(p) \undocumented{} if R has RetractableTo Integer then RetractableTo AN Implementation ==> add macro SYMBOL == '%symbol macro ALGOP == '%alg macro POWER == '%power import KernelFunctions2(R, %) retNotUnit : % -> R retNotUnitIfCan: % -> Union(R, "failed") belong? op == true retNotUnit x == (u := constantIfCan(k := retract(x)@K)) case R => u::R error "Not retractable" retNotUnitIfCan x == (r := retractIfCan(x)@Union(K,"failed")) case "failed" => "failed" constantIfCan(r::K) if R has IntegralDomain then reduc : (%, List Kernel %) -> % commonk : (%, %) -> List K commonk0 : (List K, List K) -> List K toprat : % -> % algkernels: List K -> List K evl : (MP, K, SparseUnivariatePolynomial %) -> Fraction MP evl0 : (MP, K) -> SparseUnivariatePolynomial Fraction MP Rep := Fraction MP 0 == 0$Rep 1 == 1$Rep one? x == one?(x)$Rep zero? x == zero?(x)$Rep - x:% == -$Rep x n:Integer * x:% == n *$Rep x coerce(n:Integer) == coerce(n)$Rep@Rep::% x:% * y:% == reduc(x *$Rep y, commonk(x, y)) x:% + y:% == reduc(x +$Rep y, commonk(x, y)) (x:% - y:%):% == reduc(x -$Rep y, commonk(x, y)) x:% / y:% == reduc(x /$Rep y, commonk(x, y)) number?(x:%):Boolean == if R has RetractableTo(Integer) then ground?(x) or ((retractIfCan(x)@Union(Q,"failed")) case Q) else ground?(x) simplifyPower(x:%,n:Integer):% == k : List K := kernels x is?(x,POWER) => -- Look for a power of a number in case we can do a simplification args : List % := argument first k not(#args = 2) => error "Too many arguments to **" number?(args.1) => reduc((args.1) **$Rep n, algkernels kernels (args.1))**(args.2) (first args)**(n*second(args)) reduc(x **$Rep n, algkernels k) x:% ** n:NonNegativeInteger == n = 0 => 1$% n = 1 => x simplifyPower(numerator x,n pretend Integer) / simplifyPower(denominator x,n pretend Integer) x:% ** n:Integer == n = 0 => 1$% n = 1 => x n = -1 => 1/x simplifyPower(numerator x,n) / simplifyPower(denominator x,n) x:% ** n:PositiveInteger == n = 1 => x simplifyPower(numerator x,n pretend Integer) / simplifyPower(denominator x,n pretend Integer) x:% < y:% == x <$Rep y x:% = y:% == x =$Rep y numer x == numer(x)$Rep denom x == denom(x)$Rep coerce(p:MP):% == coerce(p)$Rep reduce x == reduc(x, algkernels kernels x) commonk(x, y) == commonk0(algkernels kernels x, algkernels kernels y) algkernels l == select!(has?(operator #1, ALGOP), l) toprat f == ratDenom(f, algkernels kernels f)$AlgebraicManipulations(R, %) x:MP / y:MP == reduc(x /$Rep y,commonk0(algkernels variables x,algkernels variables y)) -- since we use the reduction from FRAC SMP which asssumes that the -- variables are independent, we must remove algebraic from the denominators reducedSystem(m:Matrix %):Matrix(R) == mm:Matrix(MP) := reducedSystem(map(toprat, m))$Rep reducedSystem(mm)$MP -- since we use the reduction from FRAC SMP which asssumes that the -- variables are independent, we must remove algebraic from the denominators reducedSystem(m:Matrix %, v:Vector %): Record(mat:Matrix R, vec:Vector R) == r:Record(mat:Matrix MP, vec:Vector MP) := reducedSystem(map(toprat, m), map(toprat, v))$Rep reducedSystem(r.mat, r.vec)$MP -- The result MUST be left sorted deepest first MB 3/90 commonk0(x, y) == ans := empty()$List(K) for k in reverse_! x repeat if member?(k, y) then ans := concat(k, ans) ans rootOf(x:SparseUnivariatePolynomial %, v:Symbol) == rootOf(x,v)$AF pi() == pi()$EF exp x == exp(x)$EF log x == log(x)$EF sin x == sin(x)$EF cos x == cos(x)$EF tan x == tan(x)$EF cot x == cot(x)$EF sec x == sec(x)$EF csc x == csc(x)$EF asin x == asin(x)$EF acos x == acos(x)$EF atan x == atan(x)$EF acot x == acot(x)$EF asec x == asec(x)$EF acsc x == acsc(x)$EF sinh x == sinh(x)$EF cosh x == cosh(x)$EF tanh x == tanh(x)$EF coth x == coth(x)$EF sech x == sech(x)$EF csch x == csch(x)$EF asinh x == asinh(x)$EF acosh x == acosh(x)$EF atanh x == atanh(x)$EF acoth x == acoth(x)$EF asech x == asech(x)$EF acsch x == acsch(x)$EF abs x == abs(x)$FSF Gamma x == Gamma(x)$FSF Gamma(a, x) == Gamma(a, x)$FSF Beta(x,y) == Beta(x,y)$FSF digamma x == digamma(x)$FSF polygamma(k,x) == polygamma(k,x)$FSF besselJ(v,x) == besselJ(v,x)$FSF besselY(v,x) == besselY(v,x)$FSF besselI(v,x) == besselI(v,x)$FSF besselK(v,x) == besselK(v,x)$FSF airyAi x == airyAi(x)$FSF airyBi x == airyBi(x)$FSF x:% ** y:% == x **$CF y factorial x == factorial(x)$CF binomial(n, m) == binomial(n, m)$CF permutation(n, m) == permutation(n, m)$CF factorials x == factorials(x)$CF factorials(x, n) == factorials(x, n)$CF summation(x:%, n:Symbol) == summation(x, n)$CF summation(x:%, s:SegmentBinding %) == summation(x, s)$CF product(x:%, n:Symbol) == product(x, n)$CF product(x:%, s:SegmentBinding %) == product(x, s)$CF erf x == erf(x)$LF Ei x == Ei(x)$LF Si x == Si(x)$LF Ci x == Ci(x)$LF li x == li(x)$LF dilog x == dilog(x)$LF integral(x:%, n:Symbol) == integral(x, n)$LF integral(x:%, s:SegmentBinding %) == integral(x, s)$LF operator op == belong?(op)$AF => operator(op)$AF belong?(op)$EF => operator(op)$EF belong?(op)$CF => operator(op)$CF belong?(op)$LF => operator(op)$LF belong?(op)$FSF => operator(op)$FSF belong?(op)$FSD => operator(op)$FSD belong?(op)$ESD => operator(op)$ESD nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K) operator(name op, arity op) reduc(x, l) == for k in l repeat p := minPoly k x := evl(numer x, k, p) /$Rep evl(denom x, k, p) x evl0(p, k) == numer univariate(p::Fraction(MP), k)$PolynomialCategoryQuotientFunctions(IndexedExponents K, K,R,MP,Fraction MP) -- uses some operations from Rep instead of % in order not to -- reduce recursively during those operations. evl(p, k, m) == degree(p, k) < degree m => p::Fraction(MP) (((evl0(p, k) pretend SparseUnivariatePolynomial($)) rem m) pretend SparseUnivariatePolynomial Fraction MP) (k::MP::Fraction(MP)) if R has GcdDomain then noalg?: SUP % -> Boolean noalg? p == while p ~= 0 repeat not empty? algkernels kernels leadingCoefficient p => return false p := reductum p true gcdPolynomial(p:SUP %, q:SUP %) == noalg? p and noalg? q => gcdPolynomial(p, q)$Rep gcdPolynomial(p, q)$GcdDomain_&(%) factorPolynomial(x:SUP %) : Factored SUP % == uf:= factor(x pretend SUP(Rep))$SupFractionFactorizer( IndexedExponents K,K,R,MP) uf pretend Factored SUP % squareFreePolynomial(x:SUP %) : Factored SUP % == uf:= squareFree(x pretend SUP(Rep))$SupFractionFactorizer( IndexedExponents K,K,R,MP) uf pretend Factored SUP % if R is AN then -- this is to force the coercion R -> EXPR R to be used -- instead of the coercioon AN -> EXPR R which loops. -- simpler looking code will fail! MB 10/91 coerce(x:AN):% == (monomial(x, 0$IndexedExponents(K))$MP)::% if (R has RetractableTo Integer) then x:% ** r:Q == x **$AF r minPoly k == minPoly(k)$AF definingPolynomial x == definingPolynomial(x)$AF retract(x:%):Q == retract(x)$Rep retractIfCan(x:%):Union(Q, "failed") == retractIfCan(x)$Rep if not(R is AN) then k2expr : KAN -> % smp2expr: SparseMultivariatePolynomial(Integer, KAN) -> % R2AN : R -> Union(AN, "failed") k2an : K -> Union(AN, "failed") smp2an : MP -> Union(AN, "failed") coerce(x:AN):% == smp2expr(numer x) / smp2expr(denom x) k2expr k == map(#1::%, k)$ExpressionSpaceFunctions2(AN, %) smp2expr p == map(k2expr,#1::%,p)$PolynomialCategoryLifting(IndexedExponents KAN, KAN, Integer, SparseMultivariatePolynomial(Integer, KAN), %) retractIfCan(x:%):Union(AN, "failed") == ((n:= smp2an numer x) case AN) and ((d:= smp2an denom x) case AN) => (n::AN) / (d::AN) "failed" R2AN r == (u := retractIfCan(r::%)@Union(Q, "failed")) case Q => u::Q::AN "failed" k2an k == not(belong?(op := operator k)$AN) => "failed" arg:List(AN) := empty() for x in argument k repeat if (a := retractIfCan(x)@Union(AN, "failed")) case "failed" then return "failed" else arg := concat(a::AN, arg) (operator(op)$AN) reverse_!(arg) smp2an p == (x1 := mainVariable p) case "failed" => R2AN leadingCoefficient p up := univariate(p, k := x1::K) (t := k2an k) case "failed" => "failed" ans:AN := 0 while not ground? up repeat (c:=smp2an leadingCoefficient up) case "failed" => return "failed" ans := ans + (c::AN) * (t::AN) ** (degree up) up := reductum up (c := smp2an leadingCoefficient up) case "failed" => "failed" ans + c::AN if R has ConvertibleTo InputForm then convert(x:%):InputForm == convert(x)$Rep import MakeUnaryCompiledFunction(%, %, %) eval(f:%, op: BasicOperator, g:%, x:Symbol):% == eval(f,[op],[g],x) eval(f:%, ls:List BasicOperator, lg:List %, x:Symbol) == -- handle subsrcipted symbols by renaming -> eval -> renaming back llsym:List List Symbol:=[variables g for g in lg] lsym:List Symbol:= removeDuplicates concat llsym lsd:List Symbol:=select (scripted?,lsym) empty? lsd=> eval(f,ls,[compiledFunction(g, x) for g in lg]) ns:List Symbol:=[new()$Symbol for i in lsd] lforwardSubs:List Equation % := [(i::%)= (j::%) for i in lsd for j in ns] lbackwardSubs:List Equation % := [(j::%)= (i::%) for i in lsd for j in ns] nlg:List % :=[subst(g,lforwardSubs) for g in lg] res:% :=eval(f, ls, [compiledFunction(g, x) for g in nlg]) subst(res,lbackwardSubs) if R has PatternMatchable Integer then patternMatch(x:%, p:Pattern Integer, l:PatternMatchResult(Integer, %)) == patternMatch(x, p, l)$PatternMatchFunctionSpace(Integer, R, %) if R has PatternMatchable Float then patternMatch(x:%, p:Pattern Float, l:PatternMatchResult(Float, %)) == patternMatch(x, p, l)$PatternMatchFunctionSpace(Float, R, %) else -- R is not an integral domain operator op == belong?(op)$FSD => operator(op)$FSD belong?(op)$ESD => operator(op)$ESD nullary? op and has?(op, SYMBOL) => operator(kernel(name op)$K) operator(name op, arity op) if R has Ring then Rep := MP 0 == 0$Rep 1 == 1$Rep - x:% == -$Rep x n:Integer *x:% == n *$Rep x x:% * y:% == x *$Rep y x:% + y:% == x +$Rep y x:% = y:% == x =$Rep y x:% < y:% == x <$Rep y numer x == x@Rep coerce(p:MP):% == p reducedSystem(m:Matrix %):Matrix(R) == reducedSystem(m)$Rep reducedSystem(m:Matrix %, v:Vector %): Record(mat:Matrix R, vec:Vector R) == reducedSystem(m, v)$Rep if R has ConvertibleTo InputForm then convert(x:%):InputForm == convert(x)$Rep if R has PatternMatchable Integer then kintmatch: (K,Pattern Integer,PatternMatchResult(Integer,Rep)) -> PatternMatchResult(Integer, Rep) kintmatch(k, p, l) == patternMatch(k, p, l pretend PatternMatchResult(Integer, %) )$PatternMatchKernel(Integer, %) pretend PatternMatchResult(Integer, Rep) patternMatch(x:%, p:Pattern Integer, l:PatternMatchResult(Integer, %)) == patternMatch(x@Rep, p, l pretend PatternMatchResult(Integer, Rep), kintmatch )$PatternMatchPolynomialCategory(Integer, IndexedExponents K, K, R, Rep) pretend PatternMatchResult(Integer, %) if R has PatternMatchable Float then kfltmatch: (K, Pattern Float, PatternMatchResult(Float, Rep)) -> PatternMatchResult(Float, Rep) kfltmatch(k, p, l) == patternMatch(k, p, l pretend PatternMatchResult(Float, %) )$PatternMatchKernel(Float, %) pretend PatternMatchResult(Float, Rep) patternMatch(x:%, p:Pattern Float, l:PatternMatchResult(Float, %)) == patternMatch(x@Rep, p, l pretend PatternMatchResult(Float, Rep), kfltmatch )$PatternMatchPolynomialCategory(Float, IndexedExponents K, K, R, Rep) pretend PatternMatchResult(Float, %) else -- R is not even a ring if R has AbelianMonoid then import ListToMap(K, %) kereval : (K, List K, List %) -> % subeval : (K, List K, List %) -> % Rep := FreeAbelianGroup K 0 == 0$Rep x:% + y:% == x +$Rep y x:% = y:% == x =$Rep y x:% < y:% == x <$Rep y coerce(k:K):% == coerce(k)$Rep kernels x == [f.gen for f in terms x] coerce(x:R):% == (zero? x => 0; constantKernel(x)::%) retract(x:%):R == (zero? x => 0; retNotUnit x) coerce(x:%):OutputForm == coerce(x)$Rep kereval(k, lk, lv) == match(lk, lv, k, map(eval(#1, lk, lv), #1)) subeval(k, lk, lv) == match(lk, lv, k, kernel(operator #1, [subst(a, lk, lv) for a in argument #1])) isPlus x == empty?(l := terms x) or empty? rest l => "failed" [t.exp *$Rep t.gen for t in l]$List(%) isMult x == empty?(l := terms x) or not empty? rest l => "failed" t := first l [t.exp, t.gen] eval(x:%, lk:List K, lv:List %) == _+/[t.exp * kereval(t.gen, lk, lv) for t in terms x] subst(x:%, lk:List K, lv:List %) == _+/[t.exp * subeval(t.gen, lk, lv) for t in terms x] retractIfCan(x:%):Union(R, "failed") == zero? x => 0 retNotUnitIfCan x if R has AbelianGroup then -(x:%) == -$Rep x -- else -- R is not an AbelianMonoid -- if R has SemiGroup then -- Rep := FreeGroup K -- 1 == 1$Rep -- x:% * y:% == x *$Rep y -- x:% = y:% == x =$Rep y -- coerce(k:K):% == k::Rep -- kernels x == [f.gen for f in factors x] -- coerce(x:R):% == (one? x => 1; constantKernel x) -- retract(x:%):R == (one? x => 1; retNotUnit x) -- coerce(x:%):OutputForm == coerce(x)$Rep -- retractIfCan(x:%):Union(R, "failed") == -- one? x => 1 -- retNotUnitIfCan x -- if R has Group then inv(x:%):% == inv(x)$Rep else -- R is nothing import ListToMap(K, %) Rep := K x:% < y:% == x <$Rep y x:% = y:% == x =$Rep y coerce(k:K):% == k kernels x == [x pretend K] coerce(x:R):% == constantKernel x retract(x:%):R == retNotUnit x retractIfCan(x:%):Union(R, "failed") == retNotUnitIfCan x coerce(x:%):OutputForm == coerce(x)$Rep eval(x:%, lk:List K, lv:List %) == match(lk, lv, x pretend K, map(eval(#1, lk, lv), #1)) subst(x, lk, lv) == match(lk, lv, x pretend K, kernel(operator #1, [subst(a, lk, lv) for a in argument #1])) if R has ConvertibleTo InputForm then convert(x:%):InputForm == convert(x)$Rep -- if R has PatternMatchable Integer then -- convert(x:%):Pattern(Integer) == convert(x)$Rep -- -- patternMatch(x:%, p:Pattern Integer, -- l:PatternMatchResult(Integer, %)) == -- patternMatch(x pretend K,p,l)$PatternMatchKernel(Integer, %) -- -- if R has PatternMatchable Float then -- convert(x:%):Pattern(Float) == convert(x)$Rep -- -- patternMatch(x:%, p:Pattern Float, -- l:PatternMatchResult(Float, %)) == -- patternMatch(x pretend K, p, l)$PatternMatchKernel(Float, %) @ \section{package PAN2EXPR PolynomialAN2Expression} <>= )abbrev package PAN2EXPR PolynomialAN2Expression ++ Author: Barry Trager ++ Date Created: 8 Oct 1991 ++ Description: This package provides a coerce from polynomials over ++ algebraic numbers to \spadtype{Expression AlgebraicNumber}. PolynomialAN2Expression():Target == Implementation where EXPR ==> Expression(Integer) AN ==> AlgebraicNumber PAN ==> Polynomial AN SY ==> Symbol Target ==> with coerce: Polynomial AlgebraicNumber -> Expression(Integer) ++ coerce(p) converts the polynomial \spad{p} with algebraic number ++ coefficients to \spadtype{Expression Integer}. coerce: Fraction Polynomial AlgebraicNumber -> Expression(Integer) ++ coerce(rf) converts \spad{rf}, a fraction of polynomial \spad{p} with ++ algebraic number coefficients to \spadtype{Expression Integer}. Implementation ==> add coerce(p:PAN):EXPR == map(#1::EXPR, #1::EXPR, p)$PolynomialCategoryLifting( IndexedExponents SY, SY, AN, PAN, EXPR) coerce(rf:Fraction PAN):EXPR == numer(rf)::EXPR / denom(rf)::EXPR @ \section{package EXPR2 ExpressionFunctions2} <>= )abbrev package EXPR2 ExpressionFunctions2 ++ Lifting of maps to Expressions ++ Author: Manuel Bronstein ++ Description: Lifting of maps to Expressions. ++ Date Created: 16 Jan 1989 ++ Date Last Updated: 22 Jan 1990 ExpressionFunctions2(R:OrderedSet, S:OrderedSet): Exports == Implementation where K ==> Kernel R F2 ==> FunctionSpaceFunctions2(R, Expression R, S, Expression S) E2 ==> ExpressionSpaceFunctions2(Expression R, Expression S) Exports ==> with map: (R -> S, Expression R) -> Expression S ++ map(f, e) applies f to all the constants appearing in e. Implementation == add if S has Ring and R has Ring then map(f, r) == map(f, r)$F2 else map(f, r) == map(map(f, #1), retract r)$E2 @ \section{package PMPREDFS FunctionSpaceAttachPredicates} <>= )abbrev package PMPREDFS FunctionSpaceAttachPredicates ++ Predicates for pattern-matching. ++ Author: Manuel Bronstein ++ Description: Attaching predicates to symbols for pattern matching. ++ Date Created: 21 Mar 1989 ++ Date Last Updated: 23 May 1990 ++ Keywords: pattern, matching. FunctionSpaceAttachPredicates(R, F, D): Exports == Implementation where R: OrderedSet F: FunctionSpace R D: Type K ==> Kernel F Exports ==> with suchThat: (F, D -> Boolean) -> F ++ suchThat(x, foo) attaches the predicate foo to x; ++ error if x is not a symbol. suchThat: (F, List(D -> Boolean)) -> F ++ suchThat(x, [f1, f2, ..., fn]) attaches the predicate ++ f1 and f2 and ... and fn to x. ++ Error: if x is not a symbol. Implementation ==> add macro PMPRED == '%pmpredicate import AnyFunctions1(D -> Boolean) st : (K, List Any) -> F preds: K -> List Any mkk : BasicOperator -> F suchThat(p:F, f:D -> Boolean) == suchThat(p, [f]) mkk op == kernel(op, empty()$List(F)) preds k == (u := property(operator k, PMPRED)) case nothing => empty() (u@None) pretend List(Any) st(k, l) == mkk assert(setProperty(copy operator k, PMPRED, concat(preds k, l) pretend None), string(new()$Symbol)) suchThat(p:F, l:List(D -> Boolean)) == retractIfCan(p)@Union(Symbol, "failed") case Symbol => st(retract(p)@K, [f::Any for f in l]) error "suchThat must be applied to symbols only" @ \section{package PMASSFS FunctionSpaceAssertions} <>= )abbrev package PMASSFS FunctionSpaceAssertions ++ Assertions for pattern-matching ++ Author: Manuel Bronstein ++ Description: Attaching assertions to symbols for pattern matching; ++ Date Created: 21 Mar 1989 ++ Date Last Updated: 23 May 1990 ++ Keywords: pattern, matching. FunctionSpaceAssertions(R, F): Exports == Implementation where R: OrderedSet F: FunctionSpace R K ==> Kernel F Exports ==> with assert : (F, Identifier) -> F ++ assert(x, s) makes the assertion s about x. ++ Error: if x is not a symbol. constant: F -> F ++ constant(x) tells the pattern matcher that x should ++ match only the symbol 'x and no other quantity. ++ Error: if x is not a symbol. optional: F -> F ++ optional(x) tells the pattern matcher that x can match ++ an identity (0 in a sum, 1 in a product or exponentiation). ++ Error: if x is not a symbol. multiple: F -> F ++ multiple(x) tells the pattern matcher that x should ++ preferably match a multi-term quantity in a sum or product. ++ For matching on lists, multiple(x) tells the pattern matcher ++ that x should match a list instead of an element of a list. ++ Error: if x is not a symbol. Implementation ==> add macro PMOPT == '%pmoptional macro PMMULT == '%pmmultiple macro PMCONST == '%pmconstant mkk : BasicOperator -> F mkk op == kernel(op, empty()$List(F)) ass(k: K, s: Identifier): F == has?(op := operator k, s) => k::F mkk assert(copy op, s) asst(k: K, s: Identifier): F == has?(op := operator k, s) => k::F mkk assert(op, s) assert(x, s) == retractIfCan(x)@Union(Symbol, "failed") case Symbol => asst(retract(x)@K, s) error "assert must be applied to symbols only" constant x == retractIfCan(x)@Union(Symbol, "failed") case Symbol => ass(retract(x)@K, PMCONST) error "constant must be applied to symbols only" optional x == retractIfCan(x)@Union(Symbol, "failed") case Symbol => ass(retract(x)@K, PMOPT) error "optional must be applied to symbols only" multiple x == retractIfCan(x)@Union(Symbol, "failed") case Symbol => ass(retract(x)@K, PMMULT) error "multiple must be applied to symbols only" @ \section{package PMPRED AttachPredicates} <>= )abbrev package PMPRED AttachPredicates ++ Predicates for pattern-matching ++ Author: Manuel Bronstein ++ Description: Attaching predicates to symbols for pattern matching. ++ Date Created: 21 Mar 1989 ++ Date Last Updated: 23 May 1990 ++ Keywords: pattern, matching. AttachPredicates(D:Type): Exports == Implementation where FE ==> Expression Integer Exports ==> with suchThat: (Symbol, D -> Boolean) -> FE ++ suchThat(x, foo) attaches the predicate foo to x. suchThat: (Symbol, List(D -> Boolean)) -> FE ++ suchThat(x, [f1, f2, ..., fn]) attaches the predicate ++ f1 and f2 and ... and fn to x. Implementation ==> add import FunctionSpaceAttachPredicates(Integer, FE, D) suchThat(p:Symbol, f:D -> Boolean) == suchThat(p::FE, f) suchThat(p:Symbol, l:List(D -> Boolean)) == suchThat(p::FE, l) @ \section{package PMASS PatternMatchAssertions} <>= )abbrev package PMASS PatternMatchAssertions ++ Assertions for pattern-matching ++ Author: Manuel Bronstein ++ Description: Attaching assertions to symbols for pattern matching. ++ Date Created: 21 Mar 1989 ++ Date Last Updated: 23 May 1990 ++ Keywords: pattern, matching. PatternMatchAssertions(): Exports == Implementation where FE ==> Expression Integer Exports ==> with assert : (Symbol, Identifier) -> FE ++ assert(x, s) makes the assertion s about x. constant: Symbol -> FE ++ constant(x) tells the pattern matcher that x should ++ match only the symbol 'x and no other quantity. optional: Symbol -> FE ++ optional(x) tells the pattern matcher that x can match ++ an identity (0 in a sum, 1 in a product or exponentiation).; multiple: Symbol -> FE ++ multiple(x) tells the pattern matcher that x should ++ preferably match a multi-term quantity in a sum or product. ++ For matching on lists, multiple(x) tells the pattern matcher ++ that x should match a list instead of an element of a list. Implementation ==> add import FunctionSpaceAssertions(Integer, FE) constant x == constant(x::FE) multiple x == multiple(x::FE) optional x == optional(x::FE) assert(x, s) == assert(x::FE, s) @ \section{domain HACKPI Pi} <>= )abbrev domain HACKPI Pi ++ Expressions in %pi only ++ Author: Manuel Bronstein ++ Description: ++ Symbolic fractions in %pi with integer coefficients; ++ The point for using Pi as the default domain for those fractions ++ is that Pi is coercible to the float types, and not Expression. ++ Date Created: 21 Feb 1990 ++ Date Last Updated: 12 Mai 1992 Pi(): Exports == Implementation where PZ ==> Polynomial Integer UP ==> SparseUnivariatePolynomial Integer RF ==> Fraction UP Exports ==> Join(Field, CharacteristicZero, RetractableTo Integer, RetractableTo Fraction Integer, RealConstant, CoercibleTo DoubleFloat, CoercibleTo Float, ConvertibleTo RF, ConvertibleTo InputForm) with pi: () -> % ++ pi() returns the symbolic %pi. Implementation ==> RF add Rep := RF sympi := '%pi p2sf: UP -> DoubleFloat p2f : UP -> Float p2o : UP -> OutputForm p2i : UP -> InputForm p2p: UP -> PZ pi() == (monomial(1, 1)$UP :: RF) pretend % convert(x:%):RF == x pretend RF convert(x:%):Float == x::Float convert(x:%):DoubleFloat == x::DoubleFloat coerce(x:%):DoubleFloat == p2sf(numer x) / p2sf(denom x) coerce(x:%):Float == p2f(numer x) / p2f(denom x) p2o p == outputForm(p, sympi::OutputForm) p2i p == convert p2p p p2p p == ans:PZ := 0 while p ~= 0 repeat ans := ans + monomial(leadingCoefficient(p)::PZ, sympi, degree p) p := reductum p ans coerce(x:%):OutputForm == (r := retractIfCan(x)@Union(UP, "failed")) case UP => p2o(r::UP) p2o(numer x) / p2o(denom x) convert(x:%):InputForm == (r := retractIfCan(x)@Union(UP, "failed")) case UP => p2i(r::UP) p2i(numer x) / p2i(denom x) p2sf p == map(#1::DoubleFloat, p)$SparseUnivariatePolynomialFunctions2( Integer, DoubleFloat) (pi()$DoubleFloat) p2f p == map(#1::Float, p)$SparseUnivariatePolynomialFunctions2( Integer, Float) (pi()$Float) @ \section{package PICOERCE PiCoercions} <>= )abbrev package PICOERCE PiCoercions ++ Coercions from %pi to symbolic or numeric domains ++ Author: Manuel Bronstein ++ Description: ++ Provides a coercion from the symbolic fractions in %pi with ++ integer coefficients to any Expression type. ++ Date Created: 21 Feb 1990 ++ Date Last Updated: 21 Feb 1990 PiCoercions(R:Join(OrderedSet, IntegralDomain)): with coerce: Pi -> Expression R ++ coerce(f) returns f as an Expression(R). == add p2e: SparseUnivariatePolynomial Integer -> Expression R coerce(x:Pi):Expression(R) == f := convert(x)@Fraction(SparseUnivariatePolynomial Integer) p2e(numer f) / p2e(denom f) p2e p == map(#1::Expression(R), p)$SparseUnivariatePolynomialFunctions2( Integer, Expression R) (pi()$Expression(R)) @ \section{License} <>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --Copyright (C) 2007-2009, Gabriel Dos Reis. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. @ <<*>>= <> -- SPAD files for the functional world should be compiled in the -- following order: -- -- op kl fspace algfunc elemntry combfunc EXPR <> <> <> <> <> <> <> <> <> @ \eject \begin{thebibliography}{99} \bibitem{1} nothing \end{thebibliography} \end{document}