From ccd024277fb8eab4a8b22ed160f4da1609dd94e9 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Wed, 9 Mar 2011 21:09:56 +0000 Subject: * algebra/catdef.spad.pamphlet (EuclideanDomain) [expressIdealMember]: Now returns Maybe List %. * algebra/Makefile.in: Tidy. (axiom_algebra_bootstrap_last_layer): Remove. --- src/share/algebra/browse.daase | 390 ++++++++++++++++++++--------------------- 1 file changed, 195 insertions(+), 195 deletions(-) (limited to 'src/share/algebra/browse.daase') diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 02c34ec0..779c7d5b 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(2294618 . 3508548018) +(2294614 . 3508691457) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -88,10 +88,10 @@ NIL ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -1633 UP UPUP -1720) +(-40 -1633 UP UPUP -2336) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4502 |has| (-421 |#2|) (-376)) (-4507 |has| (-421 |#2|) (-376)) (-4501 |has| (-421 |#2|) (-376)) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2215 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2215 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2215 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2215 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2215 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-2215 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) +((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2217 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2217 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2217 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2217 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2217 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-2217 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (-41 R -1633) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL @@ -111,7 +111,7 @@ NIL (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) ((-4509 . T) (-4510 . T)) -((-2215 (-12 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2710) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2710) (|devaluate| |#2|))))))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-871))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2710) (|devaluate| |#2|))))))) +((-2217 (-12 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2715) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2715) (|devaluate| |#2|))))))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-871))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2715) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL @@ -163,7 +163,7 @@ NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL @@ -171,64 +171,64 @@ NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -3955) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -3956) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-62 -3955) +(-62 -3956) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -3955) +(-63 -3956) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-64 -3955) +(-64 -3956) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -3955) +(-65 -3956) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3955) +(-66 -3956) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -3955) +(-67 -3956) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3955) +(-68 -3956) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3955) +(-69 -3956) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -3955) +(-70 -3956) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -3955) +(-71 -3956) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -3955) +(-72 -3956) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -3955) +(-73 -3956) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -3955) +(-74 -3956) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -3955) +(-75 -3956) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -240,51 +240,51 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives wrt \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3955) +(-78 -3956) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -3955) +(-79 -3956) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3955) +(-80 -3956) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3955) +(-81 -3956) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -3955) +(-82 -3956) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3955) +(-83 -3956) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3955) +(-84 -3956) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3955) +(-85 -3956) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3955) +(-86 -3956) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3955) +(-87 -3956) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-88 -3955) +(-88 -3956) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-89 -3955) +(-89 -3956) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -295,7 +295,7 @@ NIL (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -343,7 +343,7 @@ NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL @@ -363,7 +363,7 @@ NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2215 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1183))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2217 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1183))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -407,7 +407,7 @@ NIL (-119 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| (-118 |#1|) (QUOTE (-939))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-118 |#1|) (QUOTE (-1051))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871))) (-2215 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-1183))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -528) (QUOTE (-1208)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) +((|HasCategory| (-118 |#1|) (QUOTE (-939))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-118 |#1|) (QUOTE (-1051))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871))) (-2217 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-1183))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -528) (QUOTE (-1208)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) (-120 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -423,7 +423,7 @@ NIL (-123 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-124 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL @@ -443,11 +443,11 @@ NIL (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL @@ -455,7 +455,7 @@ NIL (-131) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-2215 (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-130) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-130) (QUOTE (-871))) (-2215 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) +((-2217 (-12 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-2217 (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-130) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-130) (QUOTE (-871))) (-2217 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-132) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -476,11 +476,11 @@ NIL ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) (((-4511 "*") . T)) NIL -(-137 |minix| -4332 R) +(-137 |minix| -4330 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-138 |minix| -4332 S T$) +(-138 |minix| -4330 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -503,7 +503,7 @@ NIL (-143) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) ((-4509 . T) (-4499 . T) (-4510 . T)) -((-2215 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) +((-2217 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-144 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL @@ -602,7 +602,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-1234))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4505)) (|HasAttribute| |#2| (QUOTE -4508)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571)))) (-168 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4502 -2215 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4507 |has| |#1| (-376)) (-4501 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4508 |has| |#1| (-6 -4508)) (-3005 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) +((-4502 -2217 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4507 |has| |#1| (-376)) (-4501 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4508 |has| |#1| (-6 -4508)) (-3011 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) NIL (-169 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4502 -2215 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4507 |has| |#1| (-376)) (-4501 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4508 |has| |#1| (-6 -4508)) (-3005 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2215 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1234)))) (|HasCategory| |#1| (QUOTE (-1234))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-571)))) (-2215 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1091))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1234)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasAttribute| |#1| (QUOTE -4508)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-363))))) +((-4502 -2217 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4507 |has| |#1| (-376)) (-4501 |has| |#1| (-376)) (-4505 |has| |#1| (-6 -4505)) (-4508 |has| |#1| (-6 -4508)) (-3011 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2217 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1234)))) (|HasCategory| |#1| (QUOTE (-1234))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-571)))) (-2217 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1091))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1234)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasAttribute| |#1| (QUOTE -4505)) (|HasAttribute| |#1| (QUOTE -4508)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-363))))) (-172 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL @@ -815,7 +815,7 @@ NIL (-221) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2215 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1183))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2217 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1183))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-222) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL @@ -835,7 +835,7 @@ NIL (-226 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-227 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) ((-4506 . T)) @@ -846,7 +846,7 @@ NIL NIL (-229) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2993 . T) (-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) +((-3000 . T) (-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) NIL (-230) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -855,7 +855,7 @@ NIL (-231 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4511 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4511 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-232 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL @@ -904,19 +904,19 @@ NIL ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-244 S -4332 R) +(-244 S -4330 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL ((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasAttribute| |#3| (QUOTE -4506)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) -(-245 -4332 R) +(-245 -4330 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) ((-4503 |has| |#2| (-1080)) (-4504 |has| |#2| (-1080)) (-4506 |has| |#2| (-6 -4506)) (-4509 . T)) NIL -(-246 -4332 R) +(-246 -4330 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) ((-4503 |has| |#2| (-1080)) (-4504 |has| |#2| (-1080)) (-4506 |has| |#2| (-6 -4506)) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2215 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2215 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-2215 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4506)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) -(-247 -4332 A B) +((-2217 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2217 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2217 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-2217 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4506)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +(-247 -4330 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL @@ -939,7 +939,7 @@ NIL (-252 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-253 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL @@ -951,7 +951,7 @@ NIL (-255 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4511 "*") |has| |#2| (-175)) (-4502 |has| |#2| (-571)) (-4507 |has| |#2| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-256) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL @@ -966,12 +966,12 @@ NIL NIL (-259 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4506 -2215 (-1384 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4506)) (-1384 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1208))))) (-4503 |has| |#4| (-1080)) (-4504 |has| |#4| (-1080)) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (|HasCategory| |#4| (QUOTE (-376))) (-2215 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2215 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2215 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2215 (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080))))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2215 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2215 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2215 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#4| (QUOTE (-1132))) (-2215 (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132))))) (-2215 (-12 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2215 (-12 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2215 (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (-2215 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2215 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132)))) (-2215 (|HasAttribute| |#4| (QUOTE -4506)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1208))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))))) +((-4506 -2217 (-1384 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4506)) (-1384 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1208))))) (-4503 |has| |#4| (-1080)) (-4504 |has| |#4| (-1080)) (-4509 . T)) +((-2217 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (|HasCategory| |#4| (QUOTE (-376))) (-2217 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2217 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2217 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2217 (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080))))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2217 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2217 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2217 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#4| (QUOTE (-1132))) (-2217 (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132))))) (-2217 (-12 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2217 (-12 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2217 (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (-2217 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2217 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132)))) (-2217 (|HasAttribute| |#4| (QUOTE -4506)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1208))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))))) (-260 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4506 -2215 (-1384 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4506)) (-1384 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1208))))) (-4503 |has| |#3| (-1080)) (-4504 |has| |#3| (-1080)) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (|HasCategory| |#3| (QUOTE (-376))) (-2215 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2215 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2215 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2215 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2215 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2215 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2215 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2215 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2215 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2215 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2215 (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (-2215 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2215 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2215 (|HasAttribute| |#3| (QUOTE -4506)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1208))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) +((-4506 -2217 (-1384 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4506)) (-1384 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1208))))) (-4503 |has| |#3| (-1080)) (-4504 |has| |#3| (-1080)) (-4509 . T)) +((-2217 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (|HasCategory| |#3| (QUOTE (-376))) (-2217 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2217 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2217 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2217 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2217 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2217 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2217 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2217 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2217 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2217 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2217 (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (-2217 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2217 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2217 (|HasAttribute| |#3| (QUOTE -4506)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1208))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (-261 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL @@ -1031,7 +1031,7 @@ NIL (-275 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-276 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1132,7 +1132,7 @@ NIL ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-301 S R |Mod| -1744 -3549 |exactQuo|) +(-301 S R |Mod| -1354 -4237 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) NIL @@ -1150,8 +1150,8 @@ NIL NIL (-305 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4506 -2215 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-1080)) (-4504 |has| |#1| (-1080))) -((|HasCategory| |#1| (QUOTE (-376))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2215 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-310))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-2215 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-2215 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-748)))) +((-4506 -2217 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-1080)) (-4504 |has| |#1| (-1080))) +((|HasCategory| |#1| (QUOTE (-376))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2217 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-310))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-2217 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-2217 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-748)))) (-306 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL @@ -1159,7 +1159,7 @@ NIL (-307 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2710) (|devaluate| |#2|)))))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2715) (|devaluate| |#2|)))))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102)))) (-308) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL @@ -1231,11 +1231,11 @@ NIL (-325 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-1051))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-871))) (-2215 (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-871)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-1183))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -528) (QUOTE (-1208)) (|%list| (QUOTE -1285) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1285) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1285) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1285) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))) (-2215 (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))))) +((|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-1051))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-871))) (-2217 (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-871)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-1183))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -528) (QUOTE (-1208)) (|%list| (QUOTE -1285) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1285) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1285) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1285) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))) (-2217 (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1285 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))))) (-326 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4506 -2215 (-12 (|has| |#1| (-571)) (-2215 (|has| |#1| (-1080)) (|has| |#1| (-487)))) (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4504 |has| |#1| (-175)) (-4503 |has| |#1| (-175)) ((-4511 "*") |has| |#1| (-571)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-571)) (-4501 |has| |#1| (-571))) -((-2215 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (-2215 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-1080))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-147)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080))))) (-2215 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2215 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2215 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2215 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571)))) (-2215 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21)))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143)))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25)))) (-2215 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%list| (QUOTE -1069) (QUOTE (-560))))) +((-4506 -2217 (-12 (|has| |#1| (-571)) (-2217 (|has| |#1| (-1080)) (|has| |#1| (-487)))) (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4504 |has| |#1| (-175)) (-4503 |has| |#1| (-175)) ((-4511 "*") |has| |#1| (-571)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-571)) (-4501 |has| |#1| (-571))) +((-2217 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (-2217 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-1080))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-147)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080))))) (-2217 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2217 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2217 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2217 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571)))) (-2217 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21)))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143)))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25)))) (-2217 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%list| (QUOTE -1069) (QUOTE (-560))))) (-327 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1255,7 +1255,7 @@ NIL (-331 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-376)) (-4501 |has| |#1| (-376)) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -2582) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2284) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3595) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -2584) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2941) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3599) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|))))))) (-332 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1287,7 +1287,7 @@ NIL (-339 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-340 S -1633) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL @@ -1343,7 +1343,7 @@ NIL (-353 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((-2215 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) +((-2217 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) (-354 S -1633 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL @@ -1359,15 +1359,15 @@ NIL (-357 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((-2215 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) +((-2217 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) (-358 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((-2215 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2217 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-359 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((-2215 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2217 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-360 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1391,19 +1391,19 @@ NIL (-365 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((-2215 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) +((-2217 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) (-366 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((-2215 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2217 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-367 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((-2215 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2217 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-368 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((-2215 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2217 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-369 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL @@ -1419,7 +1419,7 @@ NIL (-372 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((-2215 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2217 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-373 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL @@ -1494,7 +1494,7 @@ NIL NIL (-391) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4492 . T) (-4500 . T) (-2993 . T) (-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) +((-4492 . T) (-4500 . T) (-3000 . T) (-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) NIL (-392 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1576,7 +1576,7 @@ NIL ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-412 -3955 |returnType| -4073 |symbols|) +(-412 -3956 |returnType| -3421 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL @@ -1602,12 +1602,12 @@ NIL ((|HasAttribute| |#1| (QUOTE -4492)) (|HasAttribute| |#1| (QUOTE -4500))) (-418) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2993 . T) (-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) +((-3000 . T) (-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) NIL (-419 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) ((-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1253))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1253)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466)))) +((|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1253))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1253)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466)))) (-420 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL @@ -1615,7 +1615,7 @@ NIL (-421 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) ((-4496 -12 (|has| |#1| (-6 -4507)) (|has| |#1| (-466)) (|has| |#1| (-6 -4496))) (-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4507)) (|HasAttribute| |#1| (QUOTE -4496)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4507)) (|HasAttribute| |#1| (QUOTE -4496)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-422 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL @@ -1670,7 +1670,7 @@ NIL ((|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (-435 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4506 -2215 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4504 |has| |#1| (-175)) (-4503 |has| |#1| (-175)) ((-4511 "*") |has| |#1| (-571)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-571)) (-4501 |has| |#1| (-571))) +((-4506 -2217 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4504 |has| |#1| (-175)) (-4503 |has| |#1| (-175)) ((-4511 "*") |has| |#1| (-571)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-571)) (-4501 |has| |#1| (-571))) NIL (-436 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) @@ -1803,7 +1803,7 @@ NIL (-468 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4511 "*") |has| |#2| (-175)) (-4502 |has| |#2| (-571)) (-4507 |has| |#2| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-469 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL @@ -1883,11 +1883,11 @@ NIL (-488 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-376)) (-4501 |has| |#1| (-376)) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -2582) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2284) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3595) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -2584) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2941) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3599) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|))))))) (-489 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4510 . T)) -((-12 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2710) (|devaluate| |#2|)))))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132)))) +((-12 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2715) (|devaluate| |#2|)))))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132)))) (-490 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) ((-4510 . T) (-4509 . T)) @@ -1903,7 +1903,7 @@ NIL (-493 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2710) (|devaluate| |#2|)))))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2715) (|devaluate| |#2|)))))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102)))) (-494) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL @@ -1911,11 +1911,11 @@ NIL (-495 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4511 "*") |has| |#2| (-175)) (-4502 |has| |#2| (-571)) (-4507 |has| |#2| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-496 -4332 S) +((|HasCategory| |#2| (QUOTE (-939))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-496 -4330 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4503 |has| |#2| (-1080)) (-4504 |has| |#2| (-1080)) (-4506 |has| |#2| (-6 -4506)) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2215 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2215 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-2215 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4506)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +((-2217 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2217 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2217 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-2217 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4506)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) (-497) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL @@ -1923,7 +1923,7 @@ NIL (-498 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-499 -1633 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL @@ -1935,7 +1935,7 @@ NIL (-501) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2215 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1183))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2217 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1183))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-502 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1971,11 +1971,11 @@ NIL (-510 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-511 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-512 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL @@ -2051,7 +2051,7 @@ NIL (-530 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-531) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL @@ -2059,15 +2059,15 @@ NIL (-532 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((-2215 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147)))) +((-2217 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147)))) (-533 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-534 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-535 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL @@ -2079,7 +2079,7 @@ NIL (-537 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4511 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4511 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-538) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2191,7 +2191,7 @@ NIL (-565 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2710) (|devaluate| |#2|)))))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2715) (|devaluate| |#2|)))))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102)))) (-566 R -1633) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL @@ -2206,7 +2206,7 @@ NIL NIL (-569 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2993 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) +((-3000 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) NIL (-570 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2270,7 +2270,7 @@ NIL NIL (-585 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2993 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) +((-3000 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) NIL (-586) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) @@ -2359,7 +2359,7 @@ NIL (-607 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-2215 (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2215 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) +((-2217 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-2217 (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2217 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-608 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL @@ -2367,7 +2367,7 @@ NIL (-609 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (|HasCategory| (-560) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2582) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560)))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (|HasCategory| (-560) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2584) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560)))))) (-610 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) (((-4511 "*") |has| |#1| (-571)) (-4502 |has| |#1| (-571)) (-4503 . T) (-4504 . T) (-4506 . T)) @@ -2395,7 +2395,7 @@ NIL (-616 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-617 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2410,8 +2410,8 @@ NIL NIL (-620 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4506 -2215 (-1384 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4504 . T) (-4503 . T)) -((-2215 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) +((-4506 -2217 (-1384 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4504 . T) (-4503 . T)) +((-2217 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-621) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL @@ -2439,7 +2439,7 @@ NIL (-627 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (QUOTE (-1190))) (|%list| (QUOTE |:|) (QUOTE -2710) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| (-1190) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (QUOTE (-1190))) (|%list| (QUOTE |:|) (QUOTE -2715) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| (-1190) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (QUOTE (-102)))) (-628 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL @@ -2535,11 +2535,11 @@ NIL (-651) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) ((-4510 . T)) -((-12 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (QUOTE (-1190))) (|%list| (QUOTE |:|) (QUOTE -2710) (QUOTE (-51))))))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1190) (QUOTE (-871))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 (-51))) (QUOTE (-1132)))) +((-12 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (QUOTE (-1190))) (|%list| (QUOTE |:|) (QUOTE -2715) (QUOTE (-51))))))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1190) (QUOTE (-871))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 (-51))) (QUOTE (-1132)))) (-652 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4506 -2215 (-1384 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4504 . T) (-4503 . T)) -((-2215 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) +((-4506 -2217 (-1384 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4504 . T) (-4503 . T)) +((-2217 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-653 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL @@ -2563,7 +2563,7 @@ NIL (-658 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-1372 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) +((-1373 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) (-659 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) ((-4504 . T) (-4503 . T)) @@ -2583,7 +2583,7 @@ NIL (-663 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-664 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL @@ -2607,7 +2607,7 @@ NIL (-669 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-670 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL @@ -2632,7 +2632,7 @@ NIL ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-676 A -3919) +(-676 A -3375) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4503 . T) (-4504 . T) (-4506 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) @@ -2699,7 +2699,7 @@ NIL (-692 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) ((-4506 . T) (-4509 . T) (-4503 . T) (-4504 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4511 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-571))) (-2215 (|HasAttribute| |#2| (QUOTE (-4511 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4511 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-571))) (-2217 (|HasAttribute| |#2| (QUOTE (-4511 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) (-693) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2719,7 +2719,7 @@ NIL (-697 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-698) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2775,7 +2775,7 @@ NIL (-711 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) ((-4509 . T) (-4510 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4511 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4511 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-712 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2794,8 +2794,8 @@ NIL NIL (-716) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4502 . T) (-4507 |has| (-721) (-376)) (-4501 |has| (-721) (-376)) (-3005 . T) (-4508 |has| (-721) (-6 -4508)) (-4505 |has| (-721) (-6 -4505)) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-2215 (|HasCategory| (-721) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-2215 (-12 (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1208))))) (-2215 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (|%list| (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-721) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (-2215 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-721) (QUOTE (-1051))) (|HasCategory| (-721) (QUOTE (-1234))) (-12 (|HasCategory| (-721) (QUOTE (-1033))) (|HasCategory| (-721) (QUOTE (-1234)))) (-2215 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (-2215 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-1234)))) (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939))) (-2215 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376)))) (-2215 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-2215 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-571)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-571))) (|HasAttribute| (-721) (QUOTE -4508)) (|HasAttribute| (-721) (QUOTE -4505)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1208)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-147)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-363))))) +((-4502 . T) (-4507 |has| (-721) (-376)) (-4501 |has| (-721) (-376)) (-3011 . T) (-4508 |has| (-721) (-6 -4508)) (-4505 |has| (-721) (-6 -4505)) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) +((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-2217 (|HasCategory| (-721) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-2217 (-12 (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1208))))) (-2217 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (|%list| (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-721) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (-2217 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-721) (QUOTE (-1051))) (|HasCategory| (-721) (QUOTE (-1234))) (-12 (|HasCategory| (-721) (QUOTE (-1033))) (|HasCategory| (-721) (QUOTE (-1234)))) (-2217 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (-2217 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-1234)))) (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939))) (-2217 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376)))) (-2217 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-2217 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-571)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-571))) (|HasAttribute| (-721) (QUOTE -4508)) (|HasAttribute| (-721) (QUOTE -4505)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1208)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-147)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-363))))) (-717 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) ((-4510 . T)) @@ -2814,7 +2814,7 @@ NIL NIL (-721) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2993 . T) (-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) +((-3000 . T) (-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) NIL (-722 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2860,14 +2860,14 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-733 R |Mod| -1744 -3549 |exactQuo|) +(-733 R |Mod| -1354 -4237 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) NIL (-734 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4505 |has| |#1| (-376)) (-4507 |has| |#1| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-735 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL @@ -2876,7 +2876,7 @@ NIL ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4504 |has| |#1| (-175)) (-4503 |has| |#1| (-175)) (-4506 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) -(-737 R |Mod| -1744 -3549 |exactQuo|) +(-737 R |Mod| -1354 -4237 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4506 . T)) NIL @@ -2943,7 +2943,7 @@ NIL (-753 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) (((-4511 "*") |has| |#2| (-175)) (-4502 |has| |#2| (-571)) (-4507 |has| |#2| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-754 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -3139,11 +3139,11 @@ NIL (-802 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208))))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))) (-1372 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))) (-1372 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-1372 (|HasCategory| |#1| (QUOTE (-559))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))) (-1372 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-1372 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))) (-1372 (|HasCategory| |#1| (|%list| (QUOTE -1022) (QUOTE (-560))))))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208))))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))) (-1373 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))) (-1373 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-1373 (|HasCategory| |#1| (QUOTE (-559))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))) (-1373 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-1373 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1208)))) (-1373 (|HasCategory| |#1| (|%list| (QUOTE -1022) (QUOTE (-560))))))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-803 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4505 |has| |#1| (-376)) (-4507 |has| |#1| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-804 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL @@ -3211,8 +3211,8 @@ NIL (-820 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) ((-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-2215 (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2215 (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) -(-821 -2215 R OS S) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-2217 (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2217 (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) +(-821 -2217 R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL @@ -3276,14 +3276,14 @@ NIL ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-837 -4332 S |f|) +(-837 -4330 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4503 |has| |#2| (-1080)) (-4504 |has| |#2| (-1080)) (-4506 |has| |#2| (-6 -4506)) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2215 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2215 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2215 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-2215 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4506)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +((-2217 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2217 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2217 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2217 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-2217 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4506)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) (-838 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-840 (-1208)) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-840 (-1208)) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-840 (-1208)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-840 (-1208)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-840 (-1208)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-840 (-1208)) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-840 (-1208)) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-840 (-1208)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-840 (-1208)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-840 (-1208)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-839 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) (((-4511 "*") |has| |#2| (-376)) (-4502 |has| |#2| (-376)) (-4507 |has| |#2| (-376)) (-4501 |has| |#2| (-376)) (-4506 . T) (-4504 . T) (-4503 . T)) @@ -3347,7 +3347,7 @@ NIL (-854 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) ((-4506 |has| |#1| (-870))) -((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2215 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2215 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2217 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2217 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) (-855 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL @@ -3387,7 +3387,7 @@ NIL (-864 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) ((-4506 |has| |#1| (-870))) -((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2215 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2215 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2217 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2217 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) (-865 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL @@ -3396,7 +3396,7 @@ NIL ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-867 -4332 S) +(-867 -4330 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3440,11 +3440,11 @@ NIL ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) -(-878 R |sigma| -3700) +(-878 R |sigma| -3057) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4503 . T) (-4504 . T) (-4506 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) -(-879 |x| R |sigma| -3700) +(-879 |x| R |sigma| -3057) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) ((-4503 . T) (-4504 . T) (-4506 . T)) ((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-376)))) @@ -3511,15 +3511,15 @@ NIL (-895 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| (-893 |#1|) (QUOTE (-939))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-149))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1051))) (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871))) (-2215 (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-1183))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-893 |#1|) (QUOTE (-240))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -528) (QUOTE (-1208)) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -893) (|devaluate| |#1|)) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-319))) (|HasCategory| (-893 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))))) +((|HasCategory| (-893 |#1|) (QUOTE (-939))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-149))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1051))) (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871))) (-2217 (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-1183))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-893 |#1|) (QUOTE (-240))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -528) (QUOTE (-1208)) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -893) (|devaluate| |#1|)) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-319))) (|HasCategory| (-893 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))))) (-896 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (-2215 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1183))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (-2217 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1183))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-897 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))))) (-898) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL @@ -3579,7 +3579,7 @@ NIL (-912 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-1372 (|HasCategory| |#2| (QUOTE (-1080)))) (-1372 (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1208)))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (-1372 (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1208)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1208))))) +((-12 (-1373 (|HasCategory| |#2| (QUOTE (-1080)))) (-1373 (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1208)))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (-1373 (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1208)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1208))))) (-913 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL @@ -3651,11 +3651,11 @@ NIL (-930 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-931 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) ((-4506 . T)) -((-2215 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) +((-2217 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (-932 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL @@ -3729,7 +3729,7 @@ NIL NIL NIL (-950) -((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) +((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) ((-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) NIL (-951 |xx| -1633) @@ -3819,7 +3819,7 @@ NIL (-972 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-973 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3831,7 +3831,7 @@ NIL (-975 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1208) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1208) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1208) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1208) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1208) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1208) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1208) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1208) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1208) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1208) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-976 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL @@ -3871,7 +3871,7 @@ NIL (-985 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-6 -4507)) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4507))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4507))) (-986 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL @@ -3879,7 +3879,7 @@ NIL (-987 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-988 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL @@ -3903,7 +3903,7 @@ NIL (-993 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) ((-4506 -12 (|has| |#2| (-487)) (|has| |#1| (-487)))) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-994) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL @@ -4039,7 +4039,7 @@ NIL (-1027 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) ((-4502 |has| |#1| (-302)) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376))) (-2215 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559)))) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376))) (-2217 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1208)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559)))) (-1028 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL @@ -4055,7 +4055,7 @@ NIL (-1031 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1032 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -4067,11 +4067,11 @@ NIL (-1034 -1633 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) ((-4502 |has| (-421 |#2|) (-376)) (-4507 |has| (-421 |#2|) (-376)) (-4501 |has| (-421 |#2|) (-376)) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2215 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2215 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2215 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2215 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2215 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-2215 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) +((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2217 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2217 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2217 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2217 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2217 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-2217 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (-1035 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) ((-4501 . T) (-4507 . T) (-4502 . T) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2215 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1183))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2217 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1183))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1208)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-1036) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -4151,7 +4151,7 @@ NIL (-1055 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) ((-4502 . T) (-4507 . T) (-4501 . T) (-4504 . T) (-4503 . T) ((-4511 "*") . T) (-4506 . T)) -((-2215 (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (QUOTE (-560))))) +((-2217 (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (QUOTE (-560))))) (-1056 -1633 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL @@ -4195,7 +4195,7 @@ NIL (-1066) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (QUOTE (-1208))) (|%list| (QUOTE |:|) (QUOTE -2710) (QUOTE (-51))))))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-1208) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (QUOTE (-1208))) (|%list| (QUOTE |:|) (QUOTE -2715) (QUOTE (-51))))))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-1208) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-102)))) (-1067) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -4271,7 +4271,7 @@ NIL (-1085 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) ((-4509 . T) (-4504 . T) (-4503 . T)) -((|HasCategory| |#3| (QUOTE (-175))) (-2215 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-571))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887))))) +((|HasCategory| |#3| (QUOTE (-175))) (-2217 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-571))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887))))) (-1086 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL @@ -4307,7 +4307,7 @@ NIL (-1094) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE's")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE's")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (QUOTE (-1208))) (|%list| (QUOTE |:|) (QUOTE -2710) (QUOTE (-51))))))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-1132))) (|HasCategory| (-1208) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 (-1208)) (|:| -2710 (-51))) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (QUOTE (-1208))) (|%list| (QUOTE |:|) (QUOTE -2715) (QUOTE (-51))))))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-1132))) (|HasCategory| (-1208) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 (-1208)) (|:| -2715 (-51))) (QUOTE (-102)))) (-1095 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL @@ -4371,7 +4371,7 @@ NIL (-1110 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) ((-4502 |has| |#1| (-376)) (-4507 |has| |#1| (-376)) (-4501 |has| |#1| (-376)) ((-4511 "*") . T) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))))) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-1111 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -4403,7 +4403,7 @@ NIL (-1118 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1119 (-1208)) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1119 (-1208)) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1119 (-1208)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1119 (-1208)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1119 (-1208)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1119 (-1208)) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1119 (-1208)) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1119 (-1208)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1119 (-1208)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1119 (-1208)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1119 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -4443,7 +4443,7 @@ NIL (-1128 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) ((-4509 . T) (-4499 . T) (-4510 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-1129 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL @@ -4507,7 +4507,7 @@ NIL (-1144 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4503 |has| |#3| (-1080)) (-4504 |has| |#3| (-1080)) (-4506 |has| |#3| (-6 -4506)) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-2215 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#3| (QUOTE (-376))) (-2215 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2215 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2215 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2215 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2215 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2215 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2215 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2215 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2215 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2215 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2215 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2215 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2215 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2215 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2215 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2215 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-2215 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (|HasAttribute| |#3| (QUOTE -4506)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) +((-2217 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (-2217 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#3| (QUOTE (-376))) (-2217 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2217 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2217 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2217 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-2217 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2217 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2217 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2217 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2217 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2217 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2217 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2217 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2217 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1208)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2217 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2217 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2217 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1208))))) (-2217 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (|HasAttribute| |#3| (QUOTE -4506)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1208))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (-1145 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL @@ -4555,11 +4555,11 @@ NIL (-1156 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1157 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376)))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376)))) (-1158 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) ((-4510 . T) (-4509 . T)) @@ -4619,11 +4619,11 @@ NIL (-1172 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))) (-2215 (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (-2215 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))))) (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102)))) +((-12 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))) (-2217 (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (-2217 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))))) (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102)))) (-1173 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) ((-4506 . T) (-4498 |has| |#2| (-6 (-4511 "*"))) (-4509 . T) (-4503 . T) (-4504 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4511 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (-2215 (|HasAttribute| |#2| (QUOTE (-4511 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4511 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (-2217 (|HasAttribute| |#2| (QUOTE (-4511 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) (-1174 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL @@ -4647,7 +4647,7 @@ NIL (-1179 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1180 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL @@ -4659,7 +4659,7 @@ NIL (-1182 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4510 . T)) -((-12 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2710) (|devaluate| |#2|)))))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2215 (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 |#1|) (|:| -2710 |#2|)) (QUOTE (-1132)))) +((-12 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2715) (|devaluate| |#2|)))))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2217 (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 |#1|) (|:| -2715 |#2|)) (QUOTE (-1132)))) (-1183) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}'s are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL @@ -4675,7 +4675,7 @@ NIL (-1186 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) ((-4510 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1187 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL @@ -4691,11 +4691,11 @@ NIL (-1190) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-2215 (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2215 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) +((-2217 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-2217 (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2217 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-1191 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) ((-4509 . T) (-4510 . T)) -((-12 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3829) (QUOTE (-1190))) (|%list| (QUOTE |:|) (QUOTE -2710) (|devaluate| |#1|)))))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (QUOTE (-1132))) (|HasCategory| (-1190) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2215 (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3829 (-1190)) (|:| -2710 |#1|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3830) (QUOTE (-1190))) (|%list| (QUOTE |:|) (QUOTE -2715) (|devaluate| |#1|)))))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (QUOTE (-1132))) (|HasCategory| (-1190) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2217 (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3830 (-1190)) (|:| -2715 |#1|)) (QUOTE (-102)))) (-1192 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b = sum(i+j=k,a)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL @@ -4726,8 +4726,8 @@ NIL NIL (-1199 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4511 "*") -2215 (-1384 (|has| |#1| (-376)) (|has| (-1206 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-1384 (|has| |#1| (-376)) (|has| (-1206 |#1| |#2| |#3|) (-939)))) (-4502 -2215 (-1384 (|has| |#1| (-376)) (|has| (-1206 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-1384 (|has| |#1| (-376)) (|has| (-1206 |#1| |#2| |#3|) (-939)))) (-4507 |has| |#1| (-376)) (-4501 |has| |#1| (-376)) (-4503 . T) (-4504 . T) (-4506 . T)) -((-2215 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1208)) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2215 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2215 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2215 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2215 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2215 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2215 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1208)) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2582) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2284) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3595) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2215 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2215 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2215 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) +(((-4511 "*") -2217 (-1384 (|has| |#1| (-376)) (|has| (-1206 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-1384 (|has| |#1| (-376)) (|has| (-1206 |#1| |#2| |#3|) (-939)))) (-4502 -2217 (-1384 (|has| |#1| (-376)) (|has| (-1206 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-1384 (|has| |#1| (-376)) (|has| (-1206 |#1| |#2| |#3|) (-939)))) (-4507 |has| |#1| (-376)) (-4501 |has| |#1| (-376)) (-4503 . T) (-4504 . T) (-4506 . T)) +((-2217 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1208)) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2217 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2217 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2217 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2217 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2217 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2217 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-1183))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1208)) (|%list| (QUOTE -1206) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2584) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2941) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3599) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2217 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2217 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2217 (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1206 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1200 R -1633) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL @@ -4739,7 +4739,7 @@ NIL (-1202 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4505 |has| |#1| (-376)) (-4507 |has| |#1| (-6 -4507)) (-4504 . T) (-4503 . T) (-4506 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2215 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2215 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2217 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1183))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1208)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4507)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2217 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1203 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL @@ -4751,11 +4751,11 @@ NIL (-1205 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4507 |has| |#1| (-376)) (-4501 |has| |#1| (-376)) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2215 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -2582) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2284) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3595) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2217 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -2584) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2941) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3599) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|))))))) (-1206 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -2582) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2284) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3595) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -2584) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2941) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3599) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|))))))) (-1207) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) (((-4511 "*") |has| (-1279 |#2| |#3| |#4|) (-175)) (-4502 |has| (-1279 |#2| |#3| |#4|) (-571)) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| (-1279 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-175))) (-2215 (|HasCategory| (-1279 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1279 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| (-1279 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1279 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-571)))) +((|HasCategory| (-1279 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-175))) (-2217 (|HasCategory| (-1279 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1279 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| (-1279 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1279 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1279 |#2| |#3| |#4|) (QUOTE (-571)))) (-1286 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL @@ -5083,7 +5083,7 @@ NIL (-1288 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4503 . T) (-4504 . T) (-4506 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2215 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -2582) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2215 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2284) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3595) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2217 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1208)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -2584) (|%list| (|devaluate| |#1|) (QUOTE (-1208)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2217 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1234)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -2941) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1208))))) (|HasSignature| |#1| (|%list| (QUOTE -3599) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#1|))))))) (-1289 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL @@ -5091,7 +5091,7 @@ NIL (-1290 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1234))) (|HasSignature| |#2| (|%list| (QUOTE -3595) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -2284) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1208))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) +((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1234))) (|HasSignature| |#2| (|%list| (QUOTE -3599) (|%list| (|%list| (QUOTE -663) (QUOTE (-1208))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -2941) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1208))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-1291 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4511 "*") |has| |#1| (-175)) (-4502 |has| |#1| (-571)) (-4503 . T) (-4504 . T) (-4506 . T)) @@ -5123,7 +5123,7 @@ NIL (-1298 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) ((-4510 . T) (-4509 . T)) -((-2215 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2215 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2215 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2215 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2217 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2217 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2217 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2217 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-1299 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL @@ -5260,4 +5260,4 @@ NIL NIL NIL NIL -((-3 NIL 2294598 2294603 2294608 2294613) (-2 NIL 2294578 2294583 2294588 2294593) (-1 NIL 2294558 2294563 2294568 2294573) (0 NIL 2294538 2294543 2294548 2294553) (-1328 "ZMOD.spad" 2294347 2294360 2294476 2294533) (-1327 "ZLINDEP.spad" 2293445 2293456 2294337 2294342) (-1326 "ZDSOLVE.spad" 2283405 2283427 2293435 2293440) (-1325 "YSTREAM.spad" 2282900 2282911 2283395 2283400) (-1324 "YDIAGRAM.spad" 2282534 2282543 2282890 2282895) (-1323 "XRPOLY.spad" 2281754 2281774 2282390 2282459) (-1322 "XPR.spad" 2279549 2279562 2281472 2281571) (-1321 "XPOLYC.spad" 2278868 2278884 2279475 2279544) (-1320 "XPOLY.spad" 2278423 2278434 2278724 2278793) (-1319 "XPBWPOLY.spad" 2276862 2276882 2278197 2278266) (-1318 "XFALG.spad" 2273910 2273926 2276788 2276857) (-1317 "XF.spad" 2272373 2272388 2273812 2273905) (-1316 "XF.spad" 2270816 2270833 2272257 2272262) (-1315 "XEXPPKG.spad" 2270075 2270101 2270806 2270811) (-1314 "XDPOLY.spad" 2269689 2269705 2269931 2270000) (-1313 "XALG.spad" 2269357 2269368 2269645 2269684) (-1312 "WUTSET.spad" 2265327 2265344 2268958 2268985) (-1311 "WP.spad" 2264534 2264578 2265185 2265252) (-1310 "WHILEAST.spad" 2264332 2264341 2264524 2264529) (-1309 "WHEREAST.spad" 2264003 2264012 2264322 2264327) (-1308 "WFFINTBS.spad" 2261666 2261688 2263993 2263998) (-1307 "WEIER.spad" 2259888 2259899 2261656 2261661) (-1306 "VSPACE.spad" 2259561 2259572 2259856 2259883) (-1305 "VSPACE.spad" 2259254 2259267 2259551 2259556) (-1304 "VOID.spad" 2258931 2258940 2259244 2259249) (-1303 "VIEWDEF.spad" 2254132 2254141 2258921 2258926) (-1302 "VIEW3D.spad" 2238093 2238102 2254122 2254127) (-1301 "VIEW2D.spad" 2225992 2226001 2238083 2238088) (-1300 "VIEW.spad" 2223712 2223721 2225982 2225987) (-1299 "VECTOR2.spad" 2222351 2222364 2223702 2223707) (-1298 "VECTOR.spad" 2220851 2220862 2221102 2221129) (-1297 "VECTCAT.spad" 2218763 2218774 2220819 2220846) (-1296 "VECTCAT.spad" 2216482 2216495 2218540 2218545) (-1295 "VARIABLE.spad" 2216262 2216277 2216472 2216477) (-1294 "UTYPE.spad" 2215906 2215915 2216252 2216257) (-1293 "UTSODETL.spad" 2215201 2215225 2215862 2215867) (-1292 "UTSODE.spad" 2213417 2213437 2215191 2215196) (-1291 "UTSCAT.spad" 2210896 2210912 2213315 2213412) (-1290 "UTSCAT.spad" 2207995 2208013 2210416 2210421) (-1289 "UTS2.spad" 2207590 2207625 2207985 2207990) (-1288 "UTS.spad" 2202468 2202496 2205988 2206085) (-1287 "URAGG.spad" 2197189 2197200 2202458 2202463) (-1286 "URAGG.spad" 2191874 2191887 2197145 2197150) (-1285 "UPXSSING.spad" 2189492 2189518 2190928 2191061) (-1284 "UPXSCONS.spad" 2187170 2187190 2187543 2187692) (-1283 "UPXSCCA.spad" 2185741 2185761 2187016 2187165) (-1282 "UPXSCCA.spad" 2184454 2184476 2185731 2185736) (-1281 "UPXSCAT.spad" 2183043 2183059 2184300 2184449) (-1280 "UPXS2.spad" 2182586 2182639 2183033 2183038) (-1279 "UPXS.spad" 2179801 2179829 2180637 2180786) (-1278 "UPSQFREE.spad" 2178215 2178229 2179791 2179796) (-1277 "UPSCAT.spad" 2176010 2176034 2178113 2178210) (-1276 "UPSCAT.spad" 2173490 2173516 2175595 2175600) (-1275 "UPOLYC2.spad" 2172961 2172980 2173480 2173485) (-1274 "UPOLYC.spad" 2168041 2168052 2172803 2172956) (-1273 "UPOLYC.spad" 2163007 2163020 2167771 2167776) (-1272 "UPMP.spad" 2161939 2161952 2162997 2163002) (-1271 "UPDIVP.spad" 2161504 2161518 2161929 2161934) (-1270 "UPDECOMP.spad" 2159765 2159779 2161494 2161499) (-1269 "UPCDEN.spad" 2158982 2158998 2159755 2159760) (-1268 "UP2.spad" 2158346 2158367 2158972 2158977) (-1267 "UP.spad" 2155374 2155389 2155761 2155914) (-1266 "UNISEG2.spad" 2154871 2154884 2155330 2155335) (-1265 "UNISEG.spad" 2154224 2154235 2154790 2154795) (-1264 "UNIFACT.spad" 2153327 2153339 2154214 2154219) (-1263 "ULSCONS.spad" 2144239 2144259 2144609 2144758) (-1262 "ULSCCAT.spad" 2141976 2141996 2144085 2144234) (-1261 "ULSCCAT.spad" 2139821 2139843 2141932 2141937) (-1260 "ULSCAT.spad" 2138061 2138077 2139667 2139816) (-1259 "ULS2.spad" 2137575 2137628 2138051 2138056) (-1258 "ULS.spad" 2127146 2127174 2128091 2128520) (-1257 "UINT8.spad" 2127023 2127032 2127136 2127141) (-1256 "UINT64.spad" 2126899 2126908 2127013 2127018) (-1255 "UINT32.spad" 2126775 2126784 2126889 2126894) (-1254 "UINT16.spad" 2126651 2126660 2126765 2126770) (-1253 "UFD.spad" 2125716 2125725 2126577 2126646) (-1252 "UFD.spad" 2124843 2124854 2125706 2125711) (-1251 "UDVO.spad" 2123724 2123733 2124833 2124838) (-1250 "UDPO.spad" 2121305 2121316 2123680 2123685) (-1249 "TYPEAST.spad" 2121224 2121233 2121295 2121300) (-1248 "TYPE.spad" 2121156 2121165 2121214 2121219) (-1247 "TWOFACT.spad" 2119808 2119823 2121146 2121151) (-1246 "TUPLE.spad" 2119299 2119310 2119704 2119709) (-1245 "TUBETOOL.spad" 2116166 2116175 2119289 2119294) (-1244 "TUBE.spad" 2114813 2114830 2116156 2116161) (-1243 "TSETCAT.spad" 2102884 2102901 2114781 2114808) (-1242 "TSETCAT.spad" 2090941 2090960 2102840 2102845) (-1241 "TS.spad" 2089534 2089550 2090500 2090597) (-1240 "TRMANIP.spad" 2083898 2083915 2089222 2089227) (-1239 "TRIMAT.spad" 2082861 2082886 2083888 2083893) (-1238 "TRIGMNIP.spad" 2081388 2081405 2082851 2082856) (-1237 "TRIGCAT.spad" 2080900 2080909 2081378 2081383) (-1236 "TRIGCAT.spad" 2080410 2080421 2080890 2080895) (-1235 "TREE.spad" 2078856 2078867 2079888 2079915) (-1234 "TRANFUN.spad" 2078695 2078704 2078846 2078851) (-1233 "TRANFUN.spad" 2078532 2078543 2078685 2078690) (-1232 "TOPSP.spad" 2078206 2078215 2078522 2078527) (-1231 "TOOLSIGN.spad" 2077869 2077880 2078196 2078201) (-1230 "TEXTFILE.spad" 2076430 2076439 2077859 2077864) (-1229 "TEX1.spad" 2075986 2075997 2076420 2076425) (-1228 "TEX.spad" 2073180 2073189 2075976 2075981) (-1227 "TEMUTL.spad" 2072735 2072744 2073170 2073175) (-1226 "TBCMPPK.spad" 2070836 2070859 2072725 2072730) (-1225 "TBAGG.spad" 2069894 2069917 2070816 2070831) (-1224 "TBAGG.spad" 2068960 2068985 2069884 2069889) (-1223 "TANEXP.spad" 2068368 2068379 2068950 2068955) (-1222 "TALGOP.spad" 2068092 2068103 2068358 2068363) (-1221 "TABLEAU.spad" 2067573 2067584 2068082 2068087) (-1220 "TABLE.spad" 2065506 2065529 2065776 2065803) (-1219 "TABLBUMP.spad" 2062285 2062296 2065496 2065501) (-1218 "SYSTEM.spad" 2061513 2061522 2062275 2062280) (-1217 "SYSSOLP.spad" 2058996 2059007 2061503 2061508) (-1216 "SYSPTR.spad" 2058895 2058904 2058986 2058991) (-1215 "SYSNNI.spad" 2058118 2058129 2058885 2058890) (-1214 "SYSINT.spad" 2057522 2057533 2058108 2058113) (-1213 "SYNTAX.spad" 2053856 2053865 2057512 2057517) (-1212 "SYMTAB.spad" 2051924 2051933 2053846 2053851) (-1211 "SYMS.spad" 2047947 2047956 2051914 2051919) (-1210 "SYMPOLY.spad" 2046926 2046937 2047008 2047135) (-1209 "SYMFUNC.spad" 2046427 2046438 2046916 2046921) (-1208 "SYMBOL.spad" 2043922 2043931 2046417 2046422) (-1207 "SWITCH.spad" 2040693 2040702 2043912 2043917) (-1206 "SUTS.spad" 2037672 2037700 2039091 2039188) (-1205 "SUPXS.spad" 2034874 2034902 2035723 2035872) (-1204 "SUPFRACF.spad" 2033979 2033997 2034864 2034869) (-1203 "SUP2.spad" 2033371 2033384 2033969 2033974) (-1202 "SUP.spad" 2030013 2030024 2030786 2030939) (-1201 "SUMRF.spad" 2028987 2028998 2030003 2030008) (-1200 "SUMFS.spad" 2028616 2028633 2028977 2028982) (-1199 "SULS.spad" 2018174 2018202 2019132 2019561) (-1198 "SUCHTAST.spad" 2017943 2017952 2018164 2018169) (-1197 "SUCH.spad" 2017633 2017648 2017933 2017938) (-1196 "SUBSPACE.spad" 2009764 2009779 2017623 2017628) (-1195 "SUBRESP.spad" 2008934 2008948 2009720 2009725) (-1194 "STTFNC.spad" 2005402 2005418 2008924 2008929) (-1193 "STTF.spad" 2001501 2001517 2005392 2005397) (-1192 "STTAYLOR.spad" 1994146 1994157 2001376 2001381) (-1191 "STRTBL.spad" 1992161 1992178 1992310 1992337) (-1190 "STRING.spad" 1990927 1990936 1991148 1991175) (-1189 "STREAM3.spad" 1990500 1990515 1990917 1990922) (-1188 "STREAM2.spad" 1989628 1989641 1990490 1990495) (-1187 "STREAM1.spad" 1989334 1989345 1989618 1989623) (-1186 "STREAM.spad" 1986120 1986131 1988727 1988742) (-1185 "STINPROD.spad" 1985056 1985072 1986110 1986115) (-1184 "STEPAST.spad" 1984290 1984299 1985046 1985051) (-1183 "STEP.spad" 1983499 1983508 1984280 1984285) (-1182 "STBL.spad" 1981547 1981575 1981714 1981729) (-1181 "STAGG.spad" 1980622 1980633 1981537 1981542) (-1180 "STAGG.spad" 1979695 1979708 1980612 1980617) (-1179 "STACK.spad" 1978923 1978934 1979173 1979200) (-1178 "SRING.spad" 1978683 1978692 1978913 1978918) (-1177 "SREGSET.spad" 1976382 1976399 1978284 1978311) (-1176 "SRDCMPK.spad" 1974959 1974979 1976372 1976377) (-1175 "SRAGG.spad" 1970142 1970151 1974927 1974954) (-1174 "SRAGG.spad" 1965345 1965356 1970132 1970137) (-1173 "SQMATRIX.spad" 1962840 1962858 1963756 1963843) (-1172 "SPLTREE.spad" 1957306 1957319 1962102 1962129) (-1171 "SPLNODE.spad" 1953926 1953939 1957296 1957301) (-1170 "SPFCAT.spad" 1952735 1952744 1953916 1953921) (-1169 "SPECOUT.spad" 1951287 1951296 1952725 1952730) (-1168 "SPADXPT.spad" 1943378 1943387 1951277 1951282) (-1167 "spad-parser.spad" 1942843 1942852 1943368 1943373) (-1166 "SPADAST.spad" 1942544 1942553 1942833 1942838) (-1165 "SPACEC.spad" 1926759 1926770 1942534 1942539) (-1164 "SPACE3.spad" 1926535 1926546 1926749 1926754) (-1163 "SORTPAK.spad" 1926084 1926097 1926491 1926496) (-1162 "SOLVETRA.spad" 1923847 1923858 1926074 1926079) (-1161 "SOLVESER.spad" 1922303 1922314 1923837 1923842) (-1160 "SOLVERAD.spad" 1918329 1918340 1922293 1922298) (-1159 "SOLVEFOR.spad" 1916791 1916809 1918319 1918324) (-1158 "SNTSCAT.spad" 1916391 1916408 1916759 1916786) (-1157 "SMTS.spad" 1914673 1914699 1915950 1916047) (-1156 "SMP.spad" 1912076 1912096 1912466 1912593) (-1155 "SMITH.spad" 1910921 1910946 1912066 1912071) (-1154 "SMATCAT.spad" 1909039 1909069 1910865 1910916) (-1153 "SMATCAT.spad" 1907089 1907121 1908917 1908922) (-1152 "SKAGG.spad" 1906058 1906069 1907057 1907084) (-1151 "SINT.spad" 1904998 1905007 1905924 1906053) (-1150 "SIMPAN.spad" 1904726 1904735 1904988 1904993) (-1149 "SIGNRF.spad" 1903844 1903855 1904716 1904721) (-1148 "SIGNEF.spad" 1903123 1903140 1903834 1903839) (-1147 "SIGAST.spad" 1902540 1902549 1903113 1903118) (-1146 "SIG.spad" 1901902 1901911 1902530 1902535) (-1145 "SHP.spad" 1899846 1899861 1901858 1901863) (-1144 "SHDP.spad" 1887201 1887228 1887718 1887817) (-1143 "SGROUP.spad" 1886809 1886818 1887191 1887196) (-1142 "SGROUP.spad" 1886415 1886426 1886799 1886804) (-1141 "SGCF.spad" 1879554 1879563 1886405 1886410) (-1140 "SFRTCAT.spad" 1878500 1878517 1879522 1879549) (-1139 "SFRGCD.spad" 1877563 1877583 1878490 1878495) (-1138 "SFQCMPK.spad" 1872376 1872396 1877553 1877558) (-1137 "SFORT.spad" 1871815 1871829 1872366 1872371) (-1136 "SEXOF.spad" 1871658 1871698 1871805 1871810) (-1135 "SEXCAT.spad" 1869486 1869526 1871648 1871653) (-1134 "SEX.spad" 1869378 1869387 1869476 1869481) (-1133 "SETMN.spad" 1867836 1867853 1869368 1869373) (-1132 "SETCAT.spad" 1867321 1867330 1867826 1867831) (-1131 "SETCAT.spad" 1866804 1866815 1867311 1867316) (-1130 "SETAGG.spad" 1863353 1863364 1866784 1866799) (-1129 "SETAGG.spad" 1859910 1859923 1863343 1863348) (-1128 "SET.spad" 1858183 1858194 1859280 1859319) (-1127 "SEQAST.spad" 1857886 1857895 1858173 1858178) (-1126 "SEGXCAT.spad" 1857042 1857055 1857876 1857881) (-1125 "SEGCAT.spad" 1855967 1855978 1857032 1857037) (-1124 "SEGBIND2.spad" 1855665 1855678 1855957 1855962) (-1123 "SEGBIND.spad" 1855423 1855434 1855612 1855617) (-1122 "SEGAST.spad" 1855153 1855162 1855413 1855418) (-1121 "SEG2.spad" 1854588 1854601 1855109 1855114) (-1120 "SEG.spad" 1854401 1854412 1854507 1854512) (-1119 "SDVAR.spad" 1853677 1853688 1854391 1854396) (-1118 "SDPOL.spad" 1850932 1850943 1851223 1851350) (-1117 "SCPKG.spad" 1849021 1849032 1850922 1850927) (-1116 "SCOPE.spad" 1848198 1848207 1849011 1849016) (-1115 "SCACHE.spad" 1846894 1846905 1848188 1848193) (-1114 "SASTCAT.spad" 1846803 1846812 1846884 1846889) (-1113 "SAOS.spad" 1846675 1846684 1846793 1846798) (-1112 "SAERFFC.spad" 1846388 1846408 1846665 1846670) (-1111 "SAEFACT.spad" 1846089 1846109 1846378 1846383) (-1110 "SAE.spad" 1843523 1843539 1844134 1844269) (-1109 "RURPK.spad" 1841182 1841198 1843513 1843518) (-1108 "RULESET.spad" 1840635 1840659 1841172 1841177) (-1107 "RULECOLD.spad" 1840487 1840500 1840625 1840630) (-1106 "RULE.spad" 1838735 1838759 1840477 1840482) (-1105 "RTVALUE.spad" 1838470 1838479 1838725 1838730) (-1104 "RSTRCAST.spad" 1838187 1838196 1838460 1838465) (-1103 "RSETGCD.spad" 1834629 1834649 1838177 1838182) (-1102 "RSETCAT.spad" 1824597 1824614 1834597 1834624) (-1101 "RSETCAT.spad" 1814585 1814604 1824587 1824592) (-1100 "RSDCMPK.spad" 1813085 1813105 1814575 1814580) (-1099 "RRCC.spad" 1811469 1811499 1813075 1813080) (-1098 "RRCC.spad" 1809851 1809883 1811459 1811464) (-1097 "RPTAST.spad" 1809553 1809562 1809841 1809846) (-1096 "RPOLCAT.spad" 1789057 1789072 1809421 1809548) (-1095 "RPOLCAT.spad" 1768256 1768273 1788622 1788627) (-1094 "ROUTINE.spad" 1763657 1763666 1766405 1766432) (-1093 "ROMAN.spad" 1762985 1762994 1763523 1763652) (-1092 "ROIRC.spad" 1762065 1762097 1762975 1762980) (-1091 "RNS.spad" 1760968 1760977 1761967 1762060) (-1090 "RNS.spad" 1759957 1759968 1760958 1760963) (-1089 "RNGBIND.spad" 1759117 1759131 1759912 1759917) (-1088 "RNG.spad" 1758852 1758861 1759107 1759112) (-1087 "RMODULE.spad" 1758633 1758644 1758842 1758847) (-1086 "RMCAT2.spad" 1758053 1758110 1758623 1758628) (-1085 "RMATRIX.spad" 1756823 1756842 1757166 1757205) (-1084 "RMATCAT.spad" 1752402 1752433 1756779 1756818) (-1083 "RMATCAT.spad" 1747871 1747904 1752250 1752255) (-1082 "RLINSET.spad" 1747575 1747586 1747861 1747866) (-1081 "RINTERP.spad" 1747463 1747483 1747565 1747570) (-1080 "RING.spad" 1746933 1746942 1747443 1747458) (-1079 "RING.spad" 1746411 1746422 1746923 1746928) (-1078 "RIDIST.spad" 1745803 1745812 1746401 1746406) (-1077 "RGCHAIN.spad" 1744324 1744340 1745218 1745245) (-1076 "RGBCSPC.spad" 1744113 1744125 1744314 1744319) (-1075 "RGBCMDL.spad" 1743675 1743687 1744103 1744108) (-1074 "RFFACTOR.spad" 1743137 1743148 1743665 1743670) (-1073 "RFFACT.spad" 1742872 1742884 1743127 1743132) (-1072 "RFDIST.spad" 1741868 1741877 1742862 1742867) (-1071 "RF.spad" 1739542 1739553 1741858 1741863) (-1070 "RETSOL.spad" 1738961 1738974 1739532 1739537) (-1069 "RETRACT.spad" 1738389 1738400 1738951 1738956) (-1068 "RETRACT.spad" 1737815 1737828 1738379 1738384) (-1067 "RETAST.spad" 1737627 1737636 1737805 1737810) (-1066 "RESULT.spad" 1735189 1735198 1735776 1735803) (-1065 "RESRING.spad" 1734536 1734583 1735127 1735184) (-1064 "RESLATC.spad" 1733860 1733871 1734526 1734531) (-1063 "REPSQ.spad" 1733591 1733602 1733850 1733855) (-1062 "REPDB.spad" 1733298 1733309 1733581 1733586) (-1061 "REP2.spad" 1723012 1723023 1733140 1733145) (-1060 "REP1.spad" 1717232 1717243 1722962 1722967) (-1059 "REP.spad" 1714786 1714795 1717222 1717227) (-1058 "REGSET.spad" 1712578 1712595 1714387 1714414) (-1057 "REF.spad" 1711913 1711924 1712533 1712538) (-1056 "REDORDER.spad" 1711119 1711136 1711903 1711908) (-1055 "RECLOS.spad" 1709878 1709898 1710582 1710675) (-1054 "REALSOLV.spad" 1709018 1709027 1709868 1709873) (-1053 "REAL0Q.spad" 1706316 1706331 1709008 1709013) (-1052 "REAL0.spad" 1703160 1703175 1706306 1706311) (-1051 "REAL.spad" 1703032 1703041 1703150 1703155) (-1050 "RDUCEAST.spad" 1702753 1702762 1703022 1703027) (-1049 "RDIV.spad" 1702408 1702433 1702743 1702748) (-1048 "RDIST.spad" 1701975 1701986 1702398 1702403) (-1047 "RDETRS.spad" 1700839 1700857 1701965 1701970) (-1046 "RDETR.spad" 1698978 1698996 1700829 1700834) (-1045 "RDEEFS.spad" 1698077 1698094 1698968 1698973) (-1044 "RDEEF.spad" 1697087 1697104 1698067 1698072) (-1043 "RCFIELD.spad" 1694305 1694314 1696989 1697082) (-1042 "RCFIELD.spad" 1691609 1691620 1694295 1694300) (-1041 "RCAGG.spad" 1689545 1689556 1691599 1691604) (-1040 "RCAGG.spad" 1687408 1687421 1689464 1689469) (-1039 "RATRET.spad" 1686768 1686779 1687398 1687403) (-1038 "RATFACT.spad" 1686460 1686472 1686758 1686763) (-1037 "RANDSRC.spad" 1685779 1685788 1686450 1686455) (-1036 "RADUTIL.spad" 1685535 1685544 1685769 1685774) (-1035 "RADIX.spad" 1682314 1682328 1683860 1683953) (-1034 "RADFF.spad" 1680017 1680054 1680136 1680292) (-1033 "RADCAT.spad" 1679612 1679621 1680007 1680012) (-1032 "RADCAT.spad" 1679205 1679216 1679602 1679607) (-1031 "QUEUE.spad" 1678424 1678435 1678683 1678710) (-1030 "QUATCT2.spad" 1678044 1678063 1678414 1678419) (-1029 "QUATCAT.spad" 1676214 1676225 1677974 1678039) (-1028 "QUATCAT.spad" 1674132 1674145 1675894 1675899) (-1027 "QUAT.spad" 1672584 1672595 1672927 1672992) (-1026 "QUAGG.spad" 1671417 1671428 1672552 1672579) (-1025 "QQUTAST.spad" 1671185 1671194 1671407 1671412) (-1024 "QFORM.spad" 1670803 1670818 1671175 1671180) (-1023 "QFCAT2.spad" 1670495 1670512 1670793 1670798) (-1022 "QFCAT.spad" 1669197 1669208 1670397 1670490) (-1021 "QFCAT.spad" 1667481 1667494 1668683 1668688) (-1020 "QEQUAT.spad" 1667039 1667048 1667471 1667476) (-1019 "QCMPACK.spad" 1661953 1661973 1667029 1667034) (-1018 "QALGSET2.spad" 1659948 1659967 1661943 1661948) (-1017 "QALGSET.spad" 1656050 1656083 1659862 1659867) (-1016 "PWFFINTB.spad" 1653465 1653487 1656040 1656045) (-1015 "PUSHVAR.spad" 1652803 1652823 1653455 1653460) (-1014 "PTRANFN.spad" 1648938 1648949 1652793 1652798) (-1013 "PTPACK.spad" 1646025 1646036 1648928 1648933) (-1012 "PTFUNC2.spad" 1645847 1645862 1646015 1646020) (-1011 "PTCAT.spad" 1645101 1645112 1645815 1645842) (-1010 "PSQFR.spad" 1644415 1644440 1645091 1645096) (-1009 "PSEUDLIN.spad" 1643300 1643311 1644405 1644410) (-1008 "PSETPK.spad" 1630004 1630021 1643178 1643183) (-1007 "PSETCAT.spad" 1624403 1624427 1629984 1629999) (-1006 "PSETCAT.spad" 1618776 1618802 1624359 1624364) (-1005 "PSCURVE.spad" 1617774 1617783 1618766 1618771) (-1004 "PSCAT.spad" 1616556 1616586 1617672 1617769) (-1003 "PSCAT.spad" 1615428 1615460 1616546 1616551) (-1002 "PRTITION.spad" 1614125 1614134 1615418 1615423) (-1001 "PRTDAST.spad" 1613843 1613852 1614115 1614120) (-1000 "PRS.spad" 1603460 1603478 1613799 1613804) (-999 "PRQAGG.spad" 1602895 1602905 1603428 1603455) (-998 "PROPLOG.spad" 1602499 1602507 1602885 1602890) (-997 "PROPFUN2.spad" 1602122 1602135 1602489 1602494) (-996 "PROPFUN1.spad" 1601528 1601539 1602112 1602117) (-995 "PROPFRML.spad" 1600096 1600107 1601518 1601523) (-994 "PROPERTY.spad" 1599592 1599600 1600086 1600091) (-993 "PRODUCT.spad" 1597274 1597286 1597558 1597613) (-992 "PRINT.spad" 1597026 1597034 1597264 1597269) (-991 "PRIMES.spad" 1595287 1595297 1597016 1597021) (-990 "PRIMELT.spad" 1593408 1593422 1595277 1595282) (-989 "PRIMCAT.spad" 1593051 1593059 1593398 1593403) (-988 "PRIMARR2.spad" 1591818 1591830 1593041 1593046) (-987 "PRIMARR.spad" 1590657 1590667 1590827 1590854) (-986 "PREASSOC.spad" 1590039 1590051 1590647 1590652) (-985 "PR.spad" 1588404 1588416 1589103 1589230) (-984 "PPCURVE.spad" 1587541 1587549 1588394 1588399) (-983 "PORTNUM.spad" 1587332 1587340 1587531 1587536) (-982 "POLYROOT.spad" 1586181 1586203 1587288 1587293) (-981 "POLYLIFT.spad" 1585446 1585469 1586171 1586176) (-980 "POLYCATQ.spad" 1583572 1583594 1585436 1585441) (-979 "POLYCAT.spad" 1577074 1577095 1583440 1583567) (-978 "POLYCAT.spad" 1569872 1569895 1576240 1576245) (-977 "POLY2UP.spad" 1569324 1569338 1569862 1569867) (-976 "POLY2.spad" 1568921 1568933 1569314 1569319) (-975 "POLY.spad" 1566184 1566194 1566699 1566826) (-974 "POLUTIL.spad" 1565149 1565178 1566140 1566145) (-973 "POLTOPOL.spad" 1563897 1563912 1565139 1565144) (-972 "POINT.spad" 1562561 1562571 1562648 1562675) (-971 "PNTHEORY.spad" 1559263 1559271 1562551 1562556) (-970 "PMTOOLS.spad" 1558038 1558052 1559253 1559258) (-969 "PMSYM.spad" 1557587 1557597 1558028 1558033) (-968 "PMQFCAT.spad" 1557178 1557192 1557577 1557582) (-967 "PMPREDFS.spad" 1556640 1556662 1557168 1557173) (-966 "PMPRED.spad" 1556127 1556141 1556630 1556635) (-965 "PMPLCAT.spad" 1555204 1555222 1556056 1556061) (-964 "PMLSAGG.spad" 1554789 1554803 1555194 1555199) (-963 "PMKERNEL.spad" 1554368 1554380 1554779 1554784) (-962 "PMINS.spad" 1553948 1553958 1554358 1554363) (-961 "PMFS.spad" 1553525 1553543 1553938 1553943) (-960 "PMDOWN.spad" 1552815 1552829 1553515 1553520) (-959 "PMASSFS.spad" 1551790 1551806 1552805 1552810) (-958 "PMASS.spad" 1550808 1550816 1551780 1551785) (-957 "PLOTTOOL.spad" 1550588 1550596 1550798 1550803) (-956 "PLOT3D.spad" 1547052 1547060 1550578 1550583) (-955 "PLOT1.spad" 1546225 1546235 1547042 1547047) (-954 "PLOT.spad" 1541148 1541156 1546215 1546220) (-953 "PLEQN.spad" 1528550 1528577 1541138 1541143) (-952 "PINTERPA.spad" 1528334 1528350 1528540 1528545) (-951 "PINTERP.spad" 1527956 1527975 1528324 1528329) (-950 "PID.spad" 1526926 1526934 1527882 1527951) (-949 "PICOERCE.spad" 1526583 1526593 1526916 1526921) (-948 "PI.spad" 1526200 1526208 1526557 1526578) (-947 "PGROEB.spad" 1524809 1524823 1526190 1526195) (-946 "PGE.spad" 1516482 1516490 1524799 1524804) (-945 "PGCD.spad" 1515436 1515453 1516472 1516477) (-944 "PFRPAC.spad" 1514585 1514595 1515426 1515431) (-943 "PFR.spad" 1511288 1511298 1514487 1514580) (-942 "PFOTOOLS.spad" 1510546 1510562 1511278 1511283) (-941 "PFOQ.spad" 1509916 1509934 1510536 1510541) (-940 "PFO.spad" 1509335 1509362 1509906 1509911) (-939 "PFECAT.spad" 1507041 1507049 1509261 1509330) (-938 "PFECAT.spad" 1504775 1504785 1506997 1507002) (-937 "PFBRU.spad" 1502663 1502675 1504765 1504770) (-936 "PFBR.spad" 1500223 1500246 1502653 1502658) (-935 "PF.spad" 1499797 1499809 1500028 1500121) (-934 "PERMGRP.spad" 1494567 1494577 1499787 1499792) (-933 "PERMCAT.spad" 1493228 1493238 1494547 1494562) (-932 "PERMAN.spad" 1491784 1491798 1493218 1493223) (-931 "PERM.spad" 1487591 1487601 1491614 1491629) (-930 "PENDTREE.spad" 1486811 1486821 1487091 1487096) (-929 "PDSPC.spad" 1485624 1485634 1486801 1486806) (-928 "PDSPC.spad" 1484435 1484447 1485614 1485619) (-927 "PDRING.spad" 1484277 1484287 1484415 1484430) (-926 "PDMOD.spad" 1484093 1484105 1484245 1484272) (-925 "PDEPROB.spad" 1483108 1483116 1484083 1484088) (-924 "PDEPACK.spad" 1477244 1477252 1483098 1483103) (-923 "PDECOMP.spad" 1476714 1476731 1477234 1477239) (-922 "PDECAT.spad" 1475070 1475078 1476704 1476709) (-921 "PDDOM.spad" 1474508 1474521 1475060 1475065) (-920 "PDDOM.spad" 1473944 1473959 1474498 1474503) (-919 "PCOMP.spad" 1473797 1473810 1473934 1473939) (-918 "PBWLB.spad" 1472393 1472410 1473787 1473792) (-917 "PATTERN2.spad" 1472131 1472143 1472383 1472388) (-916 "PATTERN1.spad" 1470475 1470491 1472121 1472126) (-915 "PATTERN.spad" 1465046 1465056 1470465 1470470) (-914 "PATRES2.spad" 1464718 1464732 1465036 1465041) (-913 "PATRES.spad" 1462301 1462313 1464708 1464713) (-912 "PATMATCH.spad" 1460489 1460520 1462000 1462005) (-911 "PATMAB.spad" 1459918 1459928 1460479 1460484) (-910 "PATLRES.spad" 1459004 1459018 1459908 1459913) (-909 "PATAB.spad" 1458768 1458778 1458994 1458999) (-908 "PARTPERM.spad" 1456824 1456832 1458758 1458763) (-907 "PARSURF.spad" 1456258 1456286 1456814 1456819) (-906 "PARSU2.spad" 1456055 1456071 1456248 1456253) (-905 "script-parser.spad" 1455575 1455583 1456045 1456050) (-904 "PARSCURV.spad" 1455009 1455037 1455565 1455570) (-903 "PARSC2.spad" 1454800 1454816 1454999 1455004) (-902 "PARPCURV.spad" 1454262 1454290 1454790 1454795) (-901 "PARPC2.spad" 1454053 1454069 1454252 1454257) (-900 "PARAMAST.spad" 1453181 1453189 1454043 1454048) (-899 "PAN2EXPR.spad" 1452593 1452601 1453171 1453176) (-898 "PALETTE.spad" 1451579 1451587 1452583 1452588) (-897 "PAIR.spad" 1450586 1450599 1451155 1451160) (-896 "PADICRC.spad" 1447790 1447808 1448953 1449046) (-895 "PADICRAT.spad" 1445649 1445661 1445862 1445955) (-894 "PADICCT.spad" 1444198 1444210 1445575 1445644) (-893 "PADIC.spad" 1443901 1443913 1444124 1444193) (-892 "PADEPAC.spad" 1442590 1442609 1443891 1443896) (-891 "PADE.spad" 1441342 1441358 1442580 1442585) (-890 "OWP.spad" 1440590 1440620 1441200 1441267) (-889 "OVERSET.spad" 1440163 1440171 1440580 1440585) (-888 "OVAR.spad" 1439944 1439967 1440153 1440158) (-887 "OUTFORM.spad" 1429352 1429360 1439934 1439939) (-886 "OUTBFILE.spad" 1428786 1428794 1429342 1429347) (-885 "OUTBCON.spad" 1427856 1427864 1428776 1428781) (-884 "OUTBCON.spad" 1426924 1426934 1427846 1427851) (-883 "OUT.spad" 1426042 1426050 1426914 1426919) (-882 "OSI.spad" 1425517 1425525 1426032 1426037) (-881 "OSGROUP.spad" 1425435 1425443 1425507 1425512) (-880 "ORTHPOL.spad" 1423914 1423924 1425346 1425351) (-879 "OREUP.spad" 1423358 1423386 1423585 1423624) (-878 "ORESUP.spad" 1422650 1422674 1423029 1423068) (-877 "OREPCTO.spad" 1420539 1420551 1422570 1422575) (-876 "OREPCAT.spad" 1414726 1414736 1420495 1420534) (-875 "OREPCAT.spad" 1408803 1408815 1414574 1414579) (-874 "ORDTYPE.spad" 1408040 1408048 1408793 1408798) (-873 "ORDTYPE.spad" 1407275 1407285 1408030 1408035) (-872 "ORDSTRCT.spad" 1407045 1407060 1407208 1407213) (-871 "ORDSET.spad" 1406745 1406753 1407035 1407040) (-870 "ORDRING.spad" 1406135 1406143 1406725 1406740) (-869 "ORDRING.spad" 1405533 1405543 1406125 1406130) (-868 "ORDMON.spad" 1405388 1405396 1405523 1405528) (-867 "ORDFUNS.spad" 1404520 1404536 1405378 1405383) (-866 "ORDFIN.spad" 1404340 1404348 1404510 1404515) (-865 "ORDCOMP2.spad" 1403633 1403645 1404330 1404335) (-864 "ORDCOMP.spad" 1402086 1402096 1403168 1403197) (-863 "OPTPROB.spad" 1400724 1400732 1402076 1402081) (-862 "OPTPACK.spad" 1393133 1393141 1400714 1400719) (-861 "OPTCAT.spad" 1390812 1390820 1393123 1393128) (-860 "OPSIG.spad" 1390474 1390482 1390802 1390807) (-859 "OPQUERY.spad" 1390055 1390063 1390464 1390469) (-858 "OPERCAT.spad" 1389521 1389531 1390045 1390050) (-857 "OPERCAT.spad" 1388985 1388997 1389511 1389516) (-856 "OP.spad" 1388727 1388737 1388807 1388874) (-855 "ONECOMP2.spad" 1388151 1388163 1388717 1388722) (-854 "ONECOMP.spad" 1386884 1386894 1387686 1387715) (-853 "OMSERVER.spad" 1385890 1385898 1386874 1386879) (-852 "OMSAGG.spad" 1385678 1385688 1385846 1385885) (-851 "OMPKG.spad" 1384310 1384318 1385668 1385673) (-850 "OMLO.spad" 1383743 1383755 1384196 1384235) (-849 "OMEXPR.spad" 1383577 1383587 1383733 1383738) (-848 "OMERRK.spad" 1382627 1382635 1383567 1383572) (-847 "OMERR.spad" 1382172 1382180 1382617 1382622) (-846 "OMENC.spad" 1381524 1381532 1382162 1382167) (-845 "OMDEV.spad" 1375857 1375865 1381514 1381519) (-844 "OMCONN.spad" 1375266 1375274 1375847 1375852) (-843 "OM.spad" 1374263 1374271 1375256 1375261) (-842 "OINTDOM.spad" 1374026 1374034 1374189 1374258) (-841 "OFMONOID.spad" 1372165 1372175 1373982 1373987) (-840 "ODVAR.spad" 1371426 1371436 1372155 1372160) (-839 "ODR.spad" 1371070 1371096 1371238 1371387) (-838 "ODPOL.spad" 1368281 1368291 1368621 1368748) (-837 "ODP.spad" 1355780 1355800 1356153 1356252) (-836 "ODETOOLS.spad" 1354429 1354448 1355770 1355775) (-835 "ODESYS.spad" 1352123 1352140 1354419 1354424) (-834 "ODERTRIC.spad" 1348156 1348173 1352080 1352085) (-833 "ODERED.spad" 1347555 1347579 1348146 1348151) (-832 "ODERAT.spad" 1345186 1345203 1347545 1347550) (-831 "ODEPRRIC.spad" 1342279 1342301 1345176 1345181) (-830 "ODEPROB.spad" 1341536 1341544 1342269 1342274) (-829 "ODEPRIM.spad" 1338934 1338956 1341526 1341531) (-828 "ODEPAL.spad" 1338320 1338344 1338924 1338929) (-827 "ODEPACK.spad" 1325050 1325058 1338310 1338315) (-826 "ODEINT.spad" 1324485 1324501 1325040 1325045) (-825 "ODEIFTBL.spad" 1321888 1321896 1324475 1324480) (-824 "ODEEF.spad" 1317379 1317395 1321878 1321883) (-823 "ODECONST.spad" 1316924 1316942 1317369 1317374) (-822 "ODECAT.spad" 1315522 1315530 1316914 1316919) (-821 "OCTCT2.spad" 1315160 1315181 1315512 1315517) (-820 "OCT.spad" 1313248 1313258 1313962 1314001) (-819 "OCAMON.spad" 1313096 1313104 1313238 1313243) (-818 "OC.spad" 1310892 1310902 1313052 1313091) (-817 "OC.spad" 1308410 1308422 1310572 1310577) (-816 "OASGP.spad" 1308225 1308233 1308400 1308405) (-815 "OAMONS.spad" 1307747 1307755 1308215 1308220) (-814 "OAMON.spad" 1307608 1307616 1307737 1307742) (-813 "OAGROUP.spad" 1307470 1307478 1307598 1307603) (-812 "NUMTUBE.spad" 1307061 1307077 1307460 1307465) (-811 "NUMQUAD.spad" 1295037 1295045 1307051 1307056) (-810 "NUMODE.spad" 1286389 1286397 1295027 1295032) (-809 "NUMINT.spad" 1283955 1283963 1286379 1286384) (-808 "NUMFMT.spad" 1282795 1282803 1283945 1283950) (-807 "NUMERIC.spad" 1274909 1274919 1282600 1282605) (-806 "NTSCAT.spad" 1273417 1273433 1274877 1274904) (-805 "NTPOLFN.spad" 1272962 1272972 1273328 1273333) (-804 "NSUP2.spad" 1272354 1272366 1272952 1272957) (-803 "NSUP.spad" 1265349 1265359 1269769 1269922) (-802 "NSMP.spad" 1261448 1261467 1261740 1261867) (-801 "NREP.spad" 1259850 1259864 1261438 1261443) (-800 "NPCOEF.spad" 1259096 1259116 1259840 1259845) (-799 "NORMRETR.spad" 1258694 1258733 1259086 1259091) (-798 "NORMPK.spad" 1256636 1256655 1258684 1258689) (-797 "NORMMA.spad" 1256324 1256350 1256626 1256631) (-796 "NONE1.spad" 1256000 1256010 1256314 1256319) (-795 "NONE.spad" 1255741 1255749 1255990 1255995) (-794 "NODE1.spad" 1255228 1255244 1255731 1255736) (-793 "NNI.spad" 1254123 1254131 1255202 1255223) (-792 "NLINSOL.spad" 1252749 1252759 1254113 1254118) (-791 "NIPROB.spad" 1251290 1251298 1252739 1252744) (-790 "NFINTBAS.spad" 1248850 1248867 1251280 1251285) (-789 "NETCLT.spad" 1248824 1248835 1248840 1248845) (-788 "NCODIV.spad" 1247048 1247064 1248814 1248819) (-787 "NCNTFRAC.spad" 1246690 1246704 1247038 1247043) (-786 "NCEP.spad" 1244856 1244870 1246680 1246685) (-785 "NASRING.spad" 1244460 1244468 1244846 1244851) (-784 "NASRING.spad" 1244062 1244072 1244450 1244455) (-783 "NARNG.spad" 1243462 1243470 1244052 1244057) (-782 "NARNG.spad" 1242860 1242870 1243452 1243457) (-781 "NAGSP.spad" 1241937 1241945 1242850 1242855) (-780 "NAGS.spad" 1231654 1231662 1241927 1241932) (-779 "NAGF07.spad" 1230085 1230093 1231644 1231649) (-778 "NAGF04.spad" 1224487 1224495 1230075 1230080) (-777 "NAGF02.spad" 1218580 1218588 1224477 1224482) (-776 "NAGF01.spad" 1214349 1214357 1218570 1218575) (-775 "NAGE04.spad" 1208057 1208065 1214339 1214344) (-774 "NAGE02.spad" 1198709 1198717 1208047 1208052) (-773 "NAGE01.spad" 1194703 1194711 1198699 1198704) (-772 "NAGD03.spad" 1192699 1192707 1194693 1194698) (-771 "NAGD02.spad" 1185430 1185438 1192689 1192694) (-770 "NAGD01.spad" 1179715 1179723 1185420 1185425) (-769 "NAGC06.spad" 1175582 1175590 1179705 1179710) (-768 "NAGC05.spad" 1174075 1174083 1175572 1175577) (-767 "NAGC02.spad" 1173350 1173358 1174065 1174070) (-766 "NAALG.spad" 1172915 1172925 1173318 1173345) (-765 "NAALG.spad" 1172500 1172512 1172905 1172910) (-764 "MULTSQFR.spad" 1169458 1169475 1172490 1172495) (-763 "MULTFACT.spad" 1168841 1168858 1169448 1169453) (-762 "MTSCAT.spad" 1166935 1166956 1168739 1168836) (-761 "MTHING.spad" 1166594 1166604 1166925 1166930) (-760 "MSYSCMD.spad" 1166028 1166036 1166584 1166589) (-759 "MSETAGG.spad" 1165873 1165883 1165996 1166023) (-758 "MSET.spad" 1163786 1163796 1165534 1165573) (-757 "MRING.spad" 1160763 1160775 1163494 1163561) (-756 "MRF2.spad" 1160325 1160339 1160753 1160758) (-755 "MRATFAC.spad" 1159871 1159888 1160315 1160320) (-754 "MPRFF.spad" 1157911 1157930 1159861 1159866) (-753 "MPOLY.spad" 1155310 1155325 1155669 1155796) (-752 "MPCPF.spad" 1154574 1154593 1155300 1155305) (-751 "MPC3.spad" 1154391 1154431 1154564 1154569) (-750 "MPC2.spad" 1154044 1154077 1154381 1154386) (-749 "MONOTOOL.spad" 1152395 1152412 1154034 1154039) (-748 "MONOID.spad" 1151714 1151722 1152385 1152390) (-747 "MONOID.spad" 1151031 1151041 1151704 1151709) (-746 "MONOGEN.spad" 1149779 1149792 1150891 1151026) (-745 "MONOGEN.spad" 1148549 1148564 1149663 1149668) (-744 "MONADWU.spad" 1146627 1146635 1148539 1148544) (-743 "MONADWU.spad" 1144703 1144713 1146617 1146622) (-742 "MONAD.spad" 1143863 1143871 1144693 1144698) (-741 "MONAD.spad" 1143021 1143031 1143853 1143858) (-740 "MOEBIUS.spad" 1141757 1141771 1143001 1143016) (-739 "MODULE.spad" 1141627 1141637 1141725 1141752) (-738 "MODULE.spad" 1141517 1141529 1141617 1141622) (-737 "MODRING.spad" 1140852 1140891 1141497 1141512) (-736 "MODOP.spad" 1139509 1139521 1140674 1140741) (-735 "MODMONOM.spad" 1139240 1139258 1139499 1139504) (-734 "MODMON.spad" 1135864 1135880 1136583 1136736) (-733 "MODFIELD.spad" 1135226 1135265 1135766 1135859) (-732 "MMLFORM.spad" 1134086 1134094 1135216 1135221) (-731 "MMAP.spad" 1133828 1133862 1134076 1134081) (-730 "MLO.spad" 1132287 1132297 1133784 1133823) (-729 "MLIFT.spad" 1130899 1130916 1132277 1132282) (-728 "MKUCFUNC.spad" 1130434 1130452 1130889 1130894) (-727 "MKRECORD.spad" 1130022 1130035 1130424 1130429) (-726 "MKFUNC.spad" 1129429 1129439 1130012 1130017) (-725 "MKFLCFN.spad" 1128397 1128407 1129419 1129424) (-724 "MKBCFUNC.spad" 1127892 1127910 1128387 1128392) (-723 "MINT.spad" 1127331 1127339 1127794 1127887) (-722 "MHROWRED.spad" 1125842 1125852 1127321 1127326) (-721 "MFLOAT.spad" 1124362 1124370 1125732 1125837) (-720 "MFINFACT.spad" 1123762 1123784 1124352 1124357) (-719 "MESH.spad" 1121552 1121560 1123752 1123757) (-718 "MDDFACT.spad" 1119771 1119781 1121542 1121547) (-717 "MDAGG.spad" 1119062 1119072 1119751 1119766) (-716 "MCMPLX.spad" 1114427 1114435 1115041 1115242) (-715 "MCDEN.spad" 1113637 1113649 1114417 1114422) (-714 "MCALCFN.spad" 1110735 1110761 1113627 1113632) (-713 "MAYBE.spad" 1110035 1110046 1110725 1110730) (-712 "MATSTOR.spad" 1107351 1107361 1110025 1110030) (-711 "MATRIX.spad" 1105917 1105927 1106401 1106428) (-710 "MATLIN.spad" 1103285 1103309 1105801 1105806) (-709 "MATCAT2.spad" 1102567 1102615 1103275 1103280) (-708 "MATCAT.spad" 1094129 1094151 1102535 1102562) (-707 "MATCAT.spad" 1085563 1085587 1093971 1093976) (-706 "MAPPKG3.spad" 1084478 1084492 1085553 1085558) (-705 "MAPPKG2.spad" 1083816 1083828 1084468 1084473) (-704 "MAPPKG1.spad" 1082644 1082654 1083806 1083811) (-703 "MAPPAST.spad" 1081983 1081991 1082634 1082639) (-702 "MAPHACK3.spad" 1081795 1081809 1081973 1081978) (-701 "MAPHACK2.spad" 1081564 1081576 1081785 1081790) (-700 "MAPHACK1.spad" 1081208 1081218 1081554 1081559) (-699 "MAGMA.spad" 1079014 1079031 1081198 1081203) (-698 "MACROAST.spad" 1078609 1078617 1079004 1079009) (-697 "M3D.spad" 1076194 1076204 1077852 1077857) (-696 "LZSTAGG.spad" 1073448 1073458 1076184 1076189) (-695 "LZSTAGG.spad" 1070700 1070712 1073438 1073443) (-694 "LWORD.spad" 1067445 1067462 1070690 1070695) (-693 "LSTAST.spad" 1067229 1067237 1067435 1067440) (-692 "LSQM.spad" 1065341 1065355 1065735 1065786) (-691 "LSPP.spad" 1064876 1064893 1065331 1065336) (-690 "LSMP1.spad" 1062702 1062716 1064866 1064871) (-689 "LSMP.spad" 1061552 1061580 1062692 1062697) (-688 "LSAGG.spad" 1061221 1061231 1061520 1061547) (-687 "LSAGG.spad" 1060910 1060922 1061211 1061216) (-686 "LPOLY.spad" 1059872 1059891 1060766 1060835) (-685 "LPEFRAC.spad" 1059143 1059153 1059862 1059867) (-684 "LOGIC.spad" 1058745 1058753 1059133 1059138) (-683 "LOGIC.spad" 1058345 1058355 1058735 1058740) (-682 "LODOOPS.spad" 1057275 1057287 1058335 1058340) (-681 "LODOF.spad" 1056321 1056338 1057232 1057237) (-680 "LODOCAT.spad" 1054987 1054997 1056277 1056316) (-679 "LODOCAT.spad" 1053651 1053663 1054943 1054948) (-678 "LODO2.spad" 1052915 1052927 1053322 1053361) (-677 "LODO1.spad" 1052306 1052316 1052586 1052625) (-676 "LODO.spad" 1051681 1051697 1051977 1052016) (-675 "LODEEF.spad" 1050483 1050501 1051671 1051676) (-674 "LO.spad" 1049884 1049898 1050417 1050444) (-673 "LNAGG.spad" 1046071 1046081 1049874 1049879) (-672 "LNAGG.spad" 1042222 1042234 1046027 1046032) (-671 "LMOPS.spad" 1038990 1039007 1042212 1042217) (-670 "LMODULE.spad" 1038774 1038784 1038980 1038985) (-669 "LMDICT.spad" 1037945 1037955 1038193 1038220) (-668 "LLINSET.spad" 1037652 1037662 1037935 1037940) (-667 "LITERAL.spad" 1037558 1037569 1037642 1037647) (-666 "LIST3.spad" 1036869 1036883 1037548 1037553) (-665 "LIST2MAP.spad" 1033796 1033808 1036859 1036864) (-664 "LIST2.spad" 1032498 1032510 1033786 1033791) (-663 "LIST.spad" 1030059 1030069 1031471 1031498) (-662 "LINSET.spad" 1029838 1029848 1030049 1030054) (-661 "LINFORM.spad" 1029301 1029313 1029806 1029833) (-660 "LINEXP.spad" 1028044 1028054 1029291 1029296) (-659 "LINELT.spad" 1027415 1027427 1027927 1027954) (-658 "LINDEP.spad" 1026264 1026276 1027327 1027332) (-657 "LINBASIS.spad" 1025900 1025915 1026254 1026259) (-656 "LIMITRF.spad" 1023828 1023838 1025890 1025895) (-655 "LIMITPS.spad" 1022731 1022744 1023818 1023823) (-654 "LIECAT.spad" 1022215 1022225 1022657 1022726) (-653 "LIECAT.spad" 1021727 1021739 1022171 1022176) (-652 "LIE.spad" 1019722 1019734 1020996 1021141) (-651 "LIB.spad" 1017437 1017445 1017883 1017898) (-650 "LGROBP.spad" 1014790 1014809 1017427 1017432) (-649 "LFCAT.spad" 1013849 1013857 1014780 1014785) (-648 "LF.spad" 1012804 1012820 1013839 1013844) (-647 "LEXTRIPK.spad" 1008427 1008442 1012794 1012799) (-646 "LEXP.spad" 1006446 1006473 1008407 1008422) (-645 "LETAST.spad" 1006145 1006153 1006436 1006441) (-644 "LEADCDET.spad" 1004551 1004568 1006135 1006140) (-643 "LAZM3PK.spad" 1003295 1003317 1004541 1004546) (-642 "LAUPOL.spad" 1001880 1001893 1002780 1002849) (-641 "LAPLACE.spad" 1001463 1001479 1001870 1001875) (-640 "LALG.spad" 1001239 1001249 1001443 1001458) (-639 "LALG.spad" 1001023 1001035 1001229 1001234) (-638 "LA.spad" 1000463 1000477 1000945 1000984) (-637 "KVTFROM.spad" 1000206 1000216 1000453 1000458) (-636 "KTVLOGIC.spad" 999750 999758 1000196 1000201) (-635 "KRCFROM.spad" 999496 999506 999740 999745) (-634 "KOVACIC.spad" 998227 998244 999486 999491) (-633 "KONVERT.spad" 997949 997959 998217 998222) (-632 "KOERCE.spad" 997686 997696 997939 997944) (-631 "KERNEL2.spad" 997389 997401 997676 997681) (-630 "KERNEL.spad" 996029 996039 997158 997163) (-629 "KDAGG.spad" 995138 995160 996009 996024) (-628 "KDAGG.spad" 994255 994279 995128 995133) (-627 "KAFILE.spad" 993085 993101 993320 993347) (-626 "JVMOP.spad" 992998 993006 993075 993080) (-625 "JVMMDACC.spad" 992052 992060 992988 992993) (-624 "JVMFDACC.spad" 991368 991376 992042 992047) (-623 "JVMCSTTG.spad" 990097 990105 991358 991363) (-622 "JVMCFACC.spad" 989543 989551 990087 990092) (-621 "JVMBCODE.spad" 989454 989462 989533 989538) (-620 "JORDAN.spad" 987262 987274 988723 988868) (-619 "JOINAST.spad" 986964 986972 987252 987257) (-618 "IXAGG.spad" 985097 985121 986954 986959) (-617 "IXAGG.spad" 983085 983111 984944 984949) (-616 "IVECTOR.spad" 981681 981696 981836 981863) (-615 "ITUPLE.spad" 980857 980867 981671 981676) (-614 "ITRIGMNP.spad" 979704 979723 980847 980852) (-613 "ITFUN3.spad" 979210 979224 979694 979699) (-612 "ITFUN2.spad" 978954 978966 979200 979205) (-611 "ITFORM.spad" 978309 978317 978944 978949) (-610 "ITAYLOR.spad" 976303 976318 978173 978270) (-609 "ISUPS.spad" 968701 968716 975238 975335) (-608 "ISUMP.spad" 968202 968218 968691 968696) (-607 "ISTRING.spad" 967108 967121 967189 967216) (-606 "ISAST.spad" 966827 966835 967098 967103) (-605 "IRURPK.spad" 965544 965563 966817 966822) (-604 "IRSN.spad" 963548 963556 965534 965539) (-603 "IRRF2F.spad" 962041 962051 963504 963509) (-602 "IRREDFFX.spad" 961642 961653 962031 962036) (-601 "IROOT.spad" 959981 959991 961632 961637) (-600 "IRFORM.spad" 959305 959313 959971 959976) (-599 "IR2F.spad" 958519 958535 959295 959300) (-598 "IR2.spad" 957547 957563 958509 958514) (-597 "IR.spad" 955350 955364 957396 957423) (-596 "IPRNTPK.spad" 955110 955118 955340 955345) (-595 "IPF.spad" 954675 954687 954915 955008) (-594 "IPADIC.spad" 954444 954470 954601 954670) (-593 "IP4ADDR.spad" 954001 954009 954434 954439) (-592 "IOMODE.spad" 953523 953531 953991 953996) (-591 "IOBFILE.spad" 952908 952916 953513 953518) (-590 "IOBCON.spad" 952773 952781 952898 952903) (-589 "INVLAPLA.spad" 952422 952438 952763 952768) (-588 "INTTR.spad" 945804 945821 952412 952417) (-587 "INTTOOLS.spad" 943547 943563 945366 945371) (-586 "INTSLPE.spad" 942875 942883 943537 943542) (-585 "INTRVL.spad" 942441 942451 942789 942870) (-584 "INTRF.spad" 940873 940887 942431 942436) (-583 "INTRET.spad" 940305 940315 940863 940868) (-582 "INTRAT.spad" 939040 939057 940295 940300) (-581 "INTPM.spad" 937407 937423 938665 938670) (-580 "INTPAF.spad" 935276 935294 937336 937341) (-579 "INTPACK.spad" 925842 925850 935266 935271) (-578 "INTHERTR.spad" 925116 925133 925832 925837) (-577 "INTHERAL.spad" 924786 924810 925106 925111) (-576 "INTHEORY.spad" 921225 921233 924776 924781) (-575 "INTG0.spad" 914971 914989 921154 921159) (-574 "INTFTBL.spad" 909000 909008 914961 914966) (-573 "INTFACT.spad" 908067 908077 908990 908995) (-572 "INTEF.spad" 906476 906492 908057 908062) (-571 "INTDOM.spad" 905099 905107 906402 906471) (-570 "INTDOM.spad" 903784 903794 905089 905094) (-569 "INTCAT.spad" 902051 902061 903698 903779) (-568 "INTBIT.spad" 901558 901566 902041 902046) (-567 "INTALG.spad" 900746 900773 901548 901553) (-566 "INTAF.spad" 900246 900262 900736 900741) (-565 "INTABL.spad" 898286 898317 898449 898476) (-564 "INT8.spad" 898166 898174 898276 898281) (-563 "INT64.spad" 898045 898053 898156 898161) (-562 "INT32.spad" 897924 897932 898035 898040) (-561 "INT16.spad" 897803 897811 897914 897919) (-560 "INT.spad" 897251 897259 897657 897798) (-559 "INS.spad" 894754 894762 897153 897246) (-558 "INS.spad" 892343 892353 894744 894749) (-557 "INPSIGN.spad" 891791 891804 892333 892338) (-556 "INPRODPF.spad" 890887 890906 891781 891786) (-555 "INPRODFF.spad" 889975 889999 890877 890882) (-554 "INNMFACT.spad" 888950 888967 889965 889970) (-553 "INMODGCD.spad" 888454 888484 888940 888945) (-552 "INFSP.spad" 886751 886773 888444 888449) (-551 "INFPROD0.spad" 885831 885850 886741 886746) (-550 "INFORM1.spad" 885456 885466 885821 885826) (-549 "INFORM.spad" 882663 882671 885446 885451) (-548 "INFINITY.spad" 882215 882223 882653 882658) (-547 "INETCLTS.spad" 882192 882200 882205 882210) (-546 "INEP.spad" 880738 880760 882182 882187) (-545 "INDE.spad" 880387 880404 880648 880653) (-544 "INCRMAPS.spad" 879824 879834 880377 880382) (-543 "INBFILE.spad" 878920 878928 879814 879819) (-542 "INBFF.spad" 874770 874781 878910 878915) (-541 "INBCON.spad" 873036 873044 874760 874765) (-540 "INBCON.spad" 871300 871310 873026 873031) (-539 "INAST.spad" 870961 870969 871290 871295) (-538 "IMPTAST.spad" 870669 870677 870951 870956) (-537 "IMATRIX.spad" 869485 869511 869997 870024) (-536 "IMATQF.spad" 868579 868623 869441 869446) (-535 "IMATLIN.spad" 867200 867224 868535 868540) (-534 "ILIST.spad" 865684 865699 866209 866236) (-533 "IIARRAY2.spad" 864959 864997 865162 865189) (-532 "IFF.spad" 864369 864385 864640 864733) (-531 "IFAST.spad" 863983 863991 864359 864364) (-530 "IFARRAY.spad" 861294 861309 862992 863019) (-529 "IFAMON.spad" 861156 861173 861250 861255) (-528 "IEVALAB.spad" 860569 860581 861146 861151) (-527 "IEVALAB.spad" 859980 859994 860559 860564) (-526 "IDPOAMS.spad" 859658 859670 859892 859897) (-525 "IDPOAM.spad" 859300 859312 859570 859575) (-524 "IDPO.spad" 859035 859047 859212 859217) (-523 "IDPC.spad" 857764 857776 859025 859030) (-522 "IDPAM.spad" 857431 857443 857676 857681) (-521 "IDPAG.spad" 857100 857112 857343 857348) (-520 "IDENT.spad" 856750 856758 857090 857095) (-519 "IDECOMP.spad" 853989 854007 856740 856745) (-518 "IDEAL.spad" 848935 848974 853921 853926) (-517 "ICDEN.spad" 848148 848164 848925 848930) (-516 "ICARD.spad" 847339 847347 848138 848143) (-515 "IBPTOOLS.spad" 845946 845963 847329 847334) (-514 "IBITS.spad" 845102 845115 845535 845562) (-513 "IBATOOL.spad" 842087 842106 845092 845097) (-512 "IBACHIN.spad" 840594 840609 842077 842082) (-511 "IARRAY2.spad" 839461 839487 840072 840099) (-510 "IARRAY1.spad" 838324 838339 838470 838497) (-509 "IAN.spad" 836544 836552 838137 838230) (-508 "IALGFACT.spad" 836155 836188 836534 836539) (-507 "HYPCAT.spad" 835579 835587 836145 836150) (-506 "HYPCAT.spad" 835001 835011 835569 835574) (-505 "HOSTNAME.spad" 834817 834825 834991 834996) (-504 "HOMOTOP.spad" 834560 834570 834807 834812) (-503 "HOAGG.spad" 831842 831852 834550 834555) (-502 "HOAGG.spad" 828857 828869 831567 831572) (-501 "HEXADEC.spad" 826817 826825 827182 827275) (-500 "HEUGCD.spad" 825908 825919 826807 826812) (-499 "HELLFDIV.spad" 825514 825538 825898 825903) (-498 "HEAP.spad" 824777 824787 824992 825019) (-497 "HEADAST.spad" 824318 824326 824767 824772) (-496 "HDP.spad" 811813 811829 812190 812289) (-495 "HDMP.spad" 808955 808970 809571 809698) (-494 "HB.spad" 807230 807238 808945 808950) (-493 "HASHTBL.spad" 805222 805253 805433 805460) (-492 "HASAST.spad" 804938 804946 805212 805217) (-491 "HACKPI.spad" 804429 804437 804840 804933) (-490 "GTSET.spad" 803323 803339 804030 804057) (-489 "GSTBL.spad" 801364 801399 801538 801553) (-488 "GSERIES.spad" 798596 798623 799415 799564) (-487 "GROUP.spad" 797869 797877 798576 798591) (-486 "GROUP.spad" 797150 797160 797859 797864) (-485 "GROEBSOL.spad" 795644 795665 797140 797145) (-484 "GRMOD.spad" 794223 794235 795634 795639) (-483 "GRMOD.spad" 792800 792814 794213 794218) (-482 "GRIMAGE.spad" 785713 785721 792790 792795) (-481 "GRDEF.spad" 784092 784100 785703 785708) (-480 "GRAY.spad" 782563 782571 784082 784087) (-479 "GRALG.spad" 781656 781668 782553 782558) (-478 "GRALG.spad" 780747 780761 781646 781651) (-477 "GPOLSET.spad" 780172 780195 780384 780411) (-476 "GOSPER.spad" 779449 779467 780162 780167) (-475 "GMODPOL.spad" 778597 778624 779417 779444) (-474 "GHENSEL.spad" 777680 777694 778587 778592) (-473 "GENUPS.spad" 773973 773986 777670 777675) (-472 "GENUFACT.spad" 773550 773560 773963 773968) (-471 "GENPGCD.spad" 773152 773169 773540 773545) (-470 "GENMFACT.spad" 772604 772623 773142 773147) (-469 "GENEEZ.spad" 770563 770576 772594 772599) (-468 "GDMP.spad" 767547 767564 768321 768448) (-467 "GCNAALG.spad" 761470 761497 767341 767408) (-466 "GCDDOM.spad" 760662 760670 761396 761465) (-465 "GCDDOM.spad" 759916 759926 760652 760657) (-464 "GBINTERN.spad" 755936 755974 759906 759911) (-463 "GBF.spad" 751719 751757 755926 755931) (-462 "GBEUCLID.spad" 749601 749639 751709 751714) (-461 "GB.spad" 747127 747165 749557 749562) (-460 "GAUSSFAC.spad" 746440 746448 747117 747122) (-459 "GALUTIL.spad" 744766 744776 746396 746401) (-458 "GALPOLYU.spad" 743220 743233 744756 744761) (-457 "GALFACTU.spad" 741433 741452 743210 743215) (-456 "GALFACT.spad" 731646 731657 741423 741428) (-455 "FVFUN.spad" 728669 728677 731636 731641) (-454 "FVC.spad" 727721 727729 728659 728664) (-453 "FUNDESC.spad" 727399 727407 727711 727716) (-452 "FUNCTION.spad" 727248 727260 727389 727394) (-451 "FTEM.spad" 726413 726421 727238 727243) (-450 "FT.spad" 724710 724718 726403 726408) (-449 "FSUPFACT.spad" 723607 723626 724643 724648) (-448 "FST.spad" 721693 721701 723597 723602) (-447 "FSRED.spad" 721173 721189 721683 721688) (-446 "FSPRMELT.spad" 720039 720055 721130 721135) (-445 "FSPECF.spad" 718130 718146 720029 720034) (-444 "FSINT.spad" 717790 717806 718120 718125) (-443 "FSERIES.spad" 716981 716993 717610 717709) (-442 "FSCINT.spad" 716298 716314 716971 716976) (-441 "FSAGG2.spad" 715033 715049 716288 716293) (-440 "FSAGG.spad" 714150 714160 714989 715028) (-439 "FSAGG.spad" 713229 713241 714070 714075) (-438 "FS2UPS.spad" 707744 707778 713219 713224) (-437 "FS2EXPXP.spad" 706885 706908 707734 707739) (-436 "FS2.spad" 706540 706556 706875 706880) (-435 "FS.spad" 700808 700818 706315 706535) (-434 "FS.spad" 694848 694860 700357 700362) (-433 "FRUTIL.spad" 693802 693812 694838 694843) (-432 "FRNAALG.spad" 689079 689089 693744 693797) (-431 "FRNAALG.spad" 684368 684380 689035 689040) (-430 "FRNAAF2.spad" 683816 683834 684358 684363) (-429 "FRMOD.spad" 683223 683253 683744 683749) (-428 "FRIDEAL2.spad" 682827 682859 683213 683218) (-427 "FRIDEAL.spad" 682052 682073 682807 682822) (-426 "FRETRCT.spad" 681571 681581 682042 682047) (-425 "FRETRCT.spad" 680947 680959 681420 681425) (-424 "FRAMALG.spad" 679327 679340 680903 680942) (-423 "FRAMALG.spad" 677739 677754 679317 679322) (-422 "FRAC2.spad" 677344 677356 677729 677734) (-421 "FRAC.spad" 674303 674313 674690 674863) (-420 "FR2.spad" 673639 673651 674293 674298) (-419 "FR.spad" 667234 667244 672534 672603) (-418 "FPS.spad" 664073 664081 667124 667229) (-417 "FPS.spad" 660940 660950 663993 663998) (-416 "FPC.spad" 659986 659994 660842 660935) (-415 "FPC.spad" 659118 659128 659976 659981) (-414 "FPATMAB.spad" 658880 658890 659108 659113) (-413 "FPARFRAC.spad" 657722 657739 658870 658875) (-412 "FORTRAN.spad" 656228 656271 657712 657717) (-411 "FORTFN.spad" 653398 653406 656218 656223) (-410 "FORTCAT.spad" 653082 653090 653388 653393) (-409 "FORT.spad" 652031 652039 653072 653077) (-408 "FORMULA1.spad" 651510 651520 652021 652026) (-407 "FORMULA.spad" 648984 648992 651500 651505) (-406 "FORDER.spad" 648675 648699 648974 648979) (-405 "FOP.spad" 647876 647884 648665 648670) (-404 "FNLA.spad" 647300 647322 647844 647871) (-403 "FNCAT.spad" 645895 645903 647290 647295) (-402 "FNAME.spad" 645787 645795 645885 645890) (-401 "FMTC.spad" 645585 645593 645713 645782) (-400 "FMONOID.spad" 645266 645276 645541 645546) (-399 "FMONCAT.spad" 642435 642445 645256 645261) (-398 "FMFUN.spad" 639465 639473 642425 642430) (-397 "FMCAT.spad" 637141 637159 639433 639460) (-396 "FMC.spad" 636193 636201 637131 637136) (-395 "FM1.spad" 635558 635570 636127 636154) (-394 "FM.spad" 635173 635185 635412 635439) (-393 "FLOATRP.spad" 632916 632930 635163 635168) (-392 "FLOATCP.spad" 630355 630369 632906 632911) (-391 "FLOAT.spad" 623669 623677 630221 630350) (-390 "FLINEXP.spad" 623391 623401 623659 623664) (-389 "FLINEXP.spad" 623054 623066 623324 623329) (-388 "FLASORT.spad" 622380 622392 623044 623049) (-387 "FLALG.spad" 620050 620069 622306 622375) (-386 "FLAGG2.spad" 618767 618783 620040 620045) (-385 "FLAGG.spad" 615833 615843 618747 618762) (-384 "FLAGG.spad" 612800 612812 615716 615721) (-383 "FINRALG.spad" 610885 610898 612756 612795) (-382 "FINRALG.spad" 608896 608911 610769 610774) (-381 "FINITE.spad" 608048 608056 608886 608891) (-380 "FINAALG.spad" 597233 597243 607990 608043) (-379 "FINAALG.spad" 586430 586442 597189 597194) (-378 "FILECAT.spad" 584964 584981 586420 586425) (-377 "FILE.spad" 584547 584557 584954 584959) (-376 "FIELD.spad" 583953 583961 584449 584542) (-375 "FIELD.spad" 583445 583455 583943 583948) (-374 "FGROUP.spad" 582108 582118 583425 583440) (-373 "FGLMICPK.spad" 580903 580918 582098 582103) (-372 "FFX.spad" 580286 580301 580619 580712) (-371 "FFSLPE.spad" 579797 579818 580276 580281) (-370 "FFPOLY2.spad" 578857 578874 579787 579792) (-369 "FFPOLY.spad" 570199 570210 578847 578852) (-368 "FFP.spad" 569604 569624 569915 570008) (-367 "FFNBX.spad" 568124 568144 569320 569413) (-366 "FFNBP.spad" 566645 566662 567840 567933) (-365 "FFNB.spad" 565110 565131 566326 566419) (-364 "FFINTBAS.spad" 562624 562643 565100 565105) (-363 "FFIELDC.spad" 560209 560217 562526 562619) (-362 "FFIELDC.spad" 557880 557890 560199 560204) (-361 "FFHOM.spad" 556652 556669 557870 557875) (-360 "FFF.spad" 554095 554106 556642 556647) (-359 "FFCGX.spad" 552950 552970 553811 553904) (-358 "FFCGP.spad" 551847 551867 552666 552759) (-357 "FFCG.spad" 550639 550660 551528 551621) (-356 "FFCAT2.spad" 550386 550426 550629 550634) (-355 "FFCAT.spad" 543551 543573 550225 550381) (-354 "FFCAT.spad" 536795 536819 543471 543476) (-353 "FF.spad" 536243 536259 536476 536569) (-352 "FEXPR.spad" 527943 527989 535990 536029) (-351 "FEVALAB.spad" 527651 527661 527933 527938) (-350 "FEVALAB.spad" 527135 527147 527419 527424) (-349 "FDIVCAT.spad" 525231 525255 527125 527130) (-348 "FDIVCAT.spad" 523325 523351 525221 525226) (-347 "FDIV2.spad" 522981 523021 523315 523320) (-346 "FDIV.spad" 522439 522463 522971 522976) (-345 "FCTRDATA.spad" 521447 521455 522429 522434) (-344 "FCPAK1.spad" 519982 519990 521437 521442) (-343 "FCOMP.spad" 519361 519371 519972 519977) (-342 "FC.spad" 509368 509376 519351 519356) (-341 "FAXF.spad" 502403 502417 509270 509363) (-340 "FAXF.spad" 495490 495506 502359 502364) (-339 "FARRAY.spad" 493466 493476 494499 494526) (-338 "FAMR.spad" 491610 491622 493364 493461) (-337 "FAMR.spad" 489738 489752 491494 491499) (-336 "FAMONOID.spad" 489422 489432 489692 489697) (-335 "FAMONC.spad" 487742 487754 489412 489417) (-334 "FAGROUP.spad" 487382 487392 487638 487665) (-333 "FACUTIL.spad" 485594 485611 487372 487377) (-332 "FACTFUNC.spad" 484796 484806 485584 485589) (-331 "EXPUPXS.spad" 481548 481571 482847 482996) (-330 "EXPRTUBE.spad" 478836 478844 481538 481543) (-329 "EXPRODE.spad" 476004 476020 478826 478831) (-328 "EXPR2UPS.spad" 472126 472139 475994 475999) (-327 "EXPR2.spad" 471831 471843 472116 472121) (-326 "EXPR.spad" 466916 466926 467630 467925) (-325 "EXPEXPAN.spad" 463660 463685 464292 464385) (-324 "EXITAST.spad" 463396 463404 463650 463655) (-323 "EXIT.spad" 463067 463075 463386 463391) (-322 "EVALCYC.spad" 462527 462541 463057 463062) (-321 "EVALAB.spad" 462107 462117 462517 462522) (-320 "EVALAB.spad" 461685 461697 462097 462102) (-319 "EUCDOM.spad" 459275 459283 461611 461680) (-318 "EUCDOM.spad" 456927 456937 459265 459270) (-317 "ESTOOLS2.spad" 456522 456536 456917 456922) (-316 "ESTOOLS1.spad" 456199 456210 456512 456517) (-315 "ESTOOLS.spad" 448077 448085 456189 456194) (-314 "ESCONT1.spad" 447818 447830 448067 448072) (-313 "ESCONT.spad" 444611 444619 447808 447813) (-312 "ES2.spad" 444124 444140 444601 444606) (-311 "ES1.spad" 443694 443710 444114 444119) (-310 "ES.spad" 436565 436573 443684 443689) (-309 "ES.spad" 429339 429349 436460 436465) (-308 "ERROR.spad" 426666 426674 429329 429334) (-307 "EQTBL.spad" 424660 424682 424869 424896) (-306 "EQ2.spad" 424378 424390 424650 424655) (-305 "EQ.spad" 419154 419164 421949 422061) (-304 "EP.spad" 415480 415490 419144 419149) (-303 "ENV.spad" 414158 414166 415470 415475) (-302 "ENTIRER.spad" 413826 413834 414102 414153) (-301 "EMR.spad" 413114 413155 413752 413821) (-300 "ELTAGG.spad" 411368 411387 413104 413109) (-299 "ELTAGG.spad" 409586 409607 411324 411329) (-298 "ELTAB.spad" 409061 409074 409576 409581) (-297 "ELFUTS.spad" 408496 408515 409051 409056) (-296 "ELEMFUN.spad" 408185 408193 408486 408491) (-295 "ELEMFUN.spad" 407872 407882 408175 408180) (-294 "ELAGG.spad" 405843 405853 407852 407867) (-293 "ELAGG.spad" 403751 403763 405762 405767) (-292 "ELABOR.spad" 403097 403105 403741 403746) (-291 "ELABEXPR.spad" 402029 402037 403087 403092) (-290 "EFUPXS.spad" 398805 398835 401985 401990) (-289 "EFULS.spad" 395641 395664 398761 398766) (-288 "EFSTRUC.spad" 393656 393672 395631 395636) (-287 "EF.spad" 388432 388448 393646 393651) (-286 "EAB.spad" 386732 386740 388422 388427) (-285 "E04UCFA.spad" 386268 386276 386722 386727) (-284 "E04NAFA.spad" 385845 385853 386258 386263) (-283 "E04MBFA.spad" 385425 385433 385835 385840) (-282 "E04JAFA.spad" 384961 384969 385415 385420) (-281 "E04GCFA.spad" 384497 384505 384951 384956) (-280 "E04FDFA.spad" 384033 384041 384487 384492) (-279 "E04DGFA.spad" 383569 383577 384023 384028) (-278 "E04AGNT.spad" 379443 379451 383559 383564) (-277 "DVARCAT.spad" 376333 376343 379433 379438) (-276 "DVARCAT.spad" 373221 373233 376323 376328) (-275 "DSMP.spad" 370517 370531 370822 370949) (-274 "DSEXT.spad" 369819 369829 370507 370512) (-273 "DSEXT.spad" 369025 369037 369715 369720) (-272 "DROPT1.spad" 368690 368700 369015 369020) (-271 "DROPT0.spad" 363555 363563 368680 368685) (-270 "DROPT.spad" 357514 357522 363545 363550) (-269 "DRAWPT.spad" 355687 355695 357504 357509) (-268 "DRAWHACK.spad" 354995 355005 355677 355682) (-267 "DRAWCX.spad" 352473 352481 354985 354990) (-266 "DRAWCURV.spad" 352020 352035 352463 352468) (-265 "DRAWCFUN.spad" 341552 341560 352010 352015) (-264 "DRAW.spad" 334428 334441 341542 341547) (-263 "DQAGG.spad" 332606 332616 334396 334423) (-262 "DPOLCAT.spad" 327963 327979 332474 332601) (-261 "DPOLCAT.spad" 323406 323424 327919 327924) (-260 "DPMO.spad" 314929 314945 315067 315280) (-259 "DPMM.spad" 306465 306483 306590 306803) (-258 "DOMTMPLT.spad" 306236 306244 306455 306460) (-257 "DOMCTOR.spad" 305991 305999 306226 306231) (-256 "DOMAIN.spad" 305102 305110 305981 305986) (-255 "DMP.spad" 302290 302305 302860 302987) (-254 "DMEXT.spad" 302157 302167 302258 302285) (-253 "DLP.spad" 301517 301527 302147 302152) (-252 "DLIST.spad" 299922 299932 300526 300553) (-251 "DLAGG.spad" 298339 298349 299912 299917) (-250 "DIVRING.spad" 297881 297889 298283 298334) (-249 "DIVRING.spad" 297467 297477 297871 297876) (-248 "DISPLAY.spad" 295657 295665 297457 297462) (-247 "DIRPROD2.spad" 294475 294493 295647 295652) (-246 "DIRPROD.spad" 281707 281723 282347 282446) (-245 "DIRPCAT.spad" 280900 280916 281603 281702) (-244 "DIRPCAT.spad" 279720 279738 280425 280430) (-243 "DIOSP.spad" 278545 278553 279710 279715) (-242 "DIOPS.spad" 277541 277551 278525 278540) (-241 "DIOPS.spad" 276511 276523 277497 277502) (-240 "DIFRING.spad" 276349 276357 276491 276506) (-239 "DIFFSPC.spad" 275928 275936 276339 276344) (-238 "DIFFSPC.spad" 275505 275515 275918 275923) (-237 "DIFFMOD.spad" 274994 275004 275473 275500) (-236 "DIFFDOM.spad" 274159 274170 274984 274989) (-235 "DIFFDOM.spad" 273322 273335 274149 274154) (-234 "DIFEXT.spad" 273141 273151 273302 273317) (-233 "DIAGG.spad" 272771 272781 273121 273136) (-232 "DIAGG.spad" 272409 272421 272761 272766) (-231 "DHMATRIX.spad" 270592 270602 271737 271764) (-230 "DFSFUN.spad" 264232 264240 270582 270587) (-229 "DFLOAT.spad" 260963 260971 264122 264227) (-228 "DFINTTLS.spad" 259194 259210 260953 260958) (-227 "DERHAM.spad" 257108 257140 259174 259189) (-226 "DEQUEUE.spad" 256303 256313 256586 256613) (-225 "DEGRED.spad" 255920 255934 256293 256298) (-224 "DEFINTRF.spad" 253457 253467 255910 255915) (-223 "DEFINTEF.spad" 251967 251983 253447 253452) (-222 "DEFAST.spad" 251351 251359 251957 251962) (-221 "DECIMAL.spad" 249315 249323 249676 249769) (-220 "DDFACT.spad" 247136 247153 249305 249310) (-219 "DBLRESP.spad" 246736 246760 247126 247131) (-218 "DBASIS.spad" 246362 246377 246726 246731) (-217 "DBASE.spad" 245026 245036 246352 246357) (-216 "DATAARY.spad" 244512 244525 245016 245021) (-215 "D03FAFA.spad" 244340 244348 244502 244507) (-214 "D03EEFA.spad" 244160 244168 244330 244335) (-213 "D03AGNT.spad" 243246 243254 244150 244155) (-212 "D02EJFA.spad" 242708 242716 243236 243241) (-211 "D02CJFA.spad" 242186 242194 242698 242703) (-210 "D02BHFA.spad" 241676 241684 242176 242181) (-209 "D02BBFA.spad" 241166 241174 241666 241671) (-208 "D02AGNT.spad" 236036 236044 241156 241161) (-207 "D01WGTS.spad" 234355 234363 236026 236031) (-206 "D01TRNS.spad" 234332 234340 234345 234350) (-205 "D01GBFA.spad" 233854 233862 234322 234327) (-204 "D01FCFA.spad" 233376 233384 233844 233849) (-203 "D01ASFA.spad" 232844 232852 233366 233371) (-202 "D01AQFA.spad" 232298 232306 232834 232839) (-201 "D01APFA.spad" 231738 231746 232288 232293) (-200 "D01ANFA.spad" 231232 231240 231728 231733) (-199 "D01AMFA.spad" 230742 230750 231222 231227) (-198 "D01ALFA.spad" 230282 230290 230732 230737) (-197 "D01AKFA.spad" 229808 229816 230272 230277) (-196 "D01AJFA.spad" 229331 229339 229798 229803) (-195 "D01AGNT.spad" 225398 225406 229321 229326) (-194 "CYCLOTOM.spad" 224904 224912 225388 225393) (-193 "CYCLES.spad" 221696 221704 224894 224899) (-192 "CVMP.spad" 221113 221123 221686 221691) (-191 "CTRIGMNP.spad" 219613 219629 221103 221108) (-190 "CTORKIND.spad" 219216 219224 219603 219608) (-189 "CTORCAT.spad" 218457 218465 219206 219211) (-188 "CTORCAT.spad" 217696 217706 218447 218452) (-187 "CTORCALL.spad" 217285 217295 217686 217691) (-186 "CTOR.spad" 216976 216984 217275 217280) (-185 "CSTTOOLS.spad" 216221 216234 216966 216971) (-184 "CRFP.spad" 209993 210006 216211 216216) (-183 "CRCEAST.spad" 209713 209721 209983 209988) (-182 "CRAPACK.spad" 208780 208790 209703 209708) (-181 "CPMATCH.spad" 208281 208296 208702 208707) (-180 "CPIMA.spad" 207986 208005 208271 208276) (-179 "COORDSYS.spad" 202995 203005 207976 207981) (-178 "CONTOUR.spad" 202422 202430 202985 202990) (-177 "CONTFRAC.spad" 198172 198182 202324 202417) (-176 "CONDUIT.spad" 197930 197938 198162 198167) (-175 "COMRING.spad" 197604 197612 197868 197925) (-174 "COMPPROP.spad" 197122 197130 197594 197599) (-173 "COMPLPAT.spad" 196889 196904 197112 197117) (-172 "COMPLEX2.spad" 196604 196616 196879 196884) (-171 "COMPLEX.spad" 191915 191925 192159 192420) (-170 "COMPILER.spad" 191464 191472 191905 191910) (-169 "COMPFACT.spad" 191066 191080 191454 191459) (-168 "COMPCAT.spad" 189138 189148 190800 191061) (-167 "COMPCAT.spad" 186935 186947 188599 188604) (-166 "COMMUPC.spad" 186683 186701 186925 186930) (-165 "COMMONOP.spad" 186216 186224 186673 186678) (-164 "COMMAAST.spad" 185979 185987 186206 186211) (-163 "COMM.spad" 185790 185798 185969 185974) (-162 "COMBOPC.spad" 184713 184721 185780 185785) (-161 "COMBINAT.spad" 183480 183490 184703 184708) (-160 "COMBF.spad" 180902 180918 183470 183475) (-159 "COLOR.spad" 179739 179747 180892 180897) (-158 "COLONAST.spad" 179405 179413 179729 179734) (-157 "CMPLXRT.spad" 179116 179133 179395 179400) (-156 "CLLCTAST.spad" 178778 178786 179106 179111) (-155 "CLIP.spad" 174886 174894 178768 178773) (-154 "CLIF.spad" 173541 173557 174842 174881) (-153 "CLAGG.spad" 170078 170088 173531 173536) (-152 "CLAGG.spad" 166483 166495 169938 169943) (-151 "CINTSLPE.spad" 165838 165851 166473 166478) (-150 "CHVAR.spad" 163976 163998 165828 165833) (-149 "CHARZ.spad" 163891 163899 163956 163971) (-148 "CHARPOL.spad" 163417 163427 163881 163886) (-147 "CHARNZ.spad" 163170 163178 163397 163412) (-146 "CHAR.spad" 160538 160546 163160 163165) (-145 "CFCAT.spad" 159866 159874 160528 160533) (-144 "CDEN.spad" 159086 159100 159856 159861) (-143 "CCLASS.spad" 157182 157190 158444 158483) (-142 "CATEGORY.spad" 156256 156264 157172 157177) (-141 "CATCTOR.spad" 156147 156155 156246 156251) (-140 "CATAST.spad" 155773 155781 156137 156142) (-139 "CASEAST.spad" 155487 155495 155763 155768) (-138 "CARTEN2.spad" 154877 154904 155477 155482) (-137 "CARTEN.spad" 150244 150268 154867 154872) (-136 "CARD.spad" 147539 147547 150218 150239) (-135 "CAPSLAST.spad" 147321 147329 147529 147534) (-134 "CACHSET.spad" 146945 146953 147311 147316) (-133 "CABMON.spad" 146500 146508 146935 146940) (-132 "BYTEORD.spad" 146175 146183 146490 146495) (-131 "BYTEBUF.spad" 143876 143884 145162 145189) (-130 "BYTE.spad" 143351 143359 143866 143871) (-129 "BTREE.spad" 142295 142305 142829 142856) (-128 "BTOURN.spad" 141171 141181 141773 141800) (-127 "BTCAT.spad" 140563 140573 141139 141166) (-126 "BTCAT.spad" 139975 139987 140553 140558) (-125 "BTAGG.spad" 139441 139449 139943 139970) (-124 "BTAGG.spad" 138927 138937 139431 139436) (-123 "BSTREE.spad" 137539 137549 138405 138432) (-122 "BRILL.spad" 135744 135755 137529 137534) (-121 "BRAGG.spad" 134700 134710 135734 135739) (-120 "BRAGG.spad" 133620 133632 134656 134661) (-119 "BPADICRT.spad" 131445 131457 131692 131785) (-118 "BPADIC.spad" 131117 131129 131371 131440) (-117 "BOUNDZRO.spad" 130773 130790 131107 131112) (-116 "BOP1.spad" 128231 128241 130763 130768) (-115 "BOP.spad" 123365 123373 128221 128226) (-114 "BOOLEAN.spad" 122803 122811 123355 123360) (-113 "BOOLE.spad" 122453 122461 122793 122798) (-112 "BOOLE.spad" 122101 122111 122443 122448) (-111 "BMODULE.spad" 121813 121825 122069 122096) (-110 "BITS.spad" 121187 121195 121402 121429) (-109 "BINDING.spad" 120608 120616 121177 121182) (-108 "BINARY.spad" 118577 118585 118933 119026) (-107 "BGAGG.spad" 117782 117792 118557 118572) (-106 "BGAGG.spad" 116995 117007 117772 117777) (-105 "BFUNCT.spad" 116559 116567 116975 116990) (-104 "BEZOUT.spad" 115699 115726 116509 116514) (-103 "BBTREE.spad" 112447 112457 115177 115204) (-102 "BASTYPE.spad" 111946 111954 112437 112442) (-101 "BASTYPE.spad" 111443 111453 111936 111941) (-100 "BALFACT.spad" 110902 110915 111433 111438) (-99 "AUTOMOR.spad" 110353 110362 110882 110897) (-98 "ATTREG.spad" 107076 107083 110105 110348) (-97 "ATTRBUT.spad" 103099 103106 107056 107071) (-96 "ATTRAST.spad" 102816 102823 103089 103094) (-95 "ATRIG.spad" 102286 102293 102806 102811) (-94 "ATRIG.spad" 101754 101763 102276 102281) (-93 "ASTCAT.spad" 101658 101665 101744 101749) (-92 "ASTCAT.spad" 101560 101569 101648 101653) (-91 "ASTACK.spad" 100770 100779 101038 101065) (-90 "ASSOCEQ.spad" 99604 99615 100726 100731) (-89 "ASP9.spad" 98685 98698 99594 99599) (-88 "ASP80.spad" 98007 98020 98675 98680) (-87 "ASP8.spad" 97050 97063 97997 98002) (-86 "ASP78.spad" 96501 96514 97040 97045) (-85 "ASP77.spad" 95870 95883 96491 96496) (-84 "ASP74.spad" 94962 94975 95860 95865) (-83 "ASP73.spad" 94233 94246 94952 94957) (-82 "ASP7.spad" 93393 93406 94223 94228) (-81 "ASP6.spad" 92260 92273 93383 93388) (-80 "ASP55.spad" 90769 90782 92250 92255) (-79 "ASP50.spad" 88586 88599 90759 90764) (-78 "ASP49.spad" 87585 87598 88576 88581) (-77 "ASP42.spad" 86000 86039 87575 87580) (-76 "ASP41.spad" 84587 84626 85990 85995) (-75 "ASP4.spad" 83882 83895 84577 84582) (-74 "ASP35.spad" 82870 82883 83872 83877) (-73 "ASP34.spad" 82171 82184 82860 82865) (-72 "ASP33.spad" 81731 81744 82161 82166) (-71 "ASP31.spad" 80871 80884 81721 81726) (-70 "ASP30.spad" 79763 79776 80861 80866) (-69 "ASP29.spad" 79229 79242 79753 79758) (-68 "ASP28.spad" 70502 70515 79219 79224) (-67 "ASP27.spad" 69399 69412 70492 70497) (-66 "ASP24.spad" 68486 68499 69389 69394) (-65 "ASP20.spad" 67950 67963 68476 68481) (-64 "ASP19.spad" 62636 62649 67940 67945) (-63 "ASP12.spad" 62050 62063 62626 62631) (-62 "ASP10.spad" 61321 61334 62040 62045) (-61 "ASP1.spad" 60702 60715 61311 61316) (-60 "ARRAY2.spad" 59941 59950 60180 60207) (-59 "ARRAY12.spad" 58654 58665 59931 59936) (-58 "ARRAY1.spad" 57317 57326 57663 57690) (-57 "ARR2CAT.spad" 53099 53120 57285 57312) (-56 "ARR2CAT.spad" 48901 48924 53089 53094) (-55 "ARITY.spad" 48273 48280 48891 48896) (-54 "APPRULE.spad" 47557 47579 48263 48268) (-53 "APPLYORE.spad" 47176 47189 47547 47552) (-52 "ANY1.spad" 46247 46256 47166 47171) (-51 "ANY.spad" 45098 45105 46237 46242) (-50 "ANTISYM.spad" 43543 43559 45078 45093) (-49 "ANON.spad" 43252 43259 43533 43538) (-48 "AN.spad" 41558 41565 43065 43158) (-47 "AMR.spad" 39743 39754 41456 41553) (-46 "AMR.spad" 37759 37772 39474 39479) (-45 "ALIST.spad" 34599 34620 34949 34976) (-44 "ALGSC.spad" 33734 33760 34471 34524) (-43 "ALGPKG.spad" 29517 29528 33690 33695) (-42 "ALGMFACT.spad" 28710 28724 29507 29512) (-41 "ALGMANIP.spad" 26194 26209 28537 28542) (-40 "ALGFF.spad" 23799 23826 24016 24172) (-39 "ALGFACT.spad" 22918 22928 23789 23794) (-38 "ALGEBRA.spad" 22751 22760 22874 22913) (-37 "ALGEBRA.spad" 22616 22627 22741 22746) (-36 "ALAGG.spad" 22128 22149 22584 22611) (-35 "AHYP.spad" 21509 21516 22118 22123) (-34 "AGG.spad" 19842 19849 21499 21504) (-33 "AGG.spad" 18139 18148 19798 19803) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file +((-3 NIL 2294594 2294599 2294604 2294609) (-2 NIL 2294574 2294579 2294584 2294589) (-1 NIL 2294554 2294559 2294564 2294569) (0 NIL 2294534 2294539 2294544 2294549) (-1328 "ZMOD.spad" 2294343 2294356 2294472 2294529) (-1327 "ZLINDEP.spad" 2293441 2293452 2294333 2294338) (-1326 "ZDSOLVE.spad" 2283401 2283423 2293431 2293436) (-1325 "YSTREAM.spad" 2282896 2282907 2283391 2283396) (-1324 "YDIAGRAM.spad" 2282530 2282539 2282886 2282891) (-1323 "XRPOLY.spad" 2281750 2281770 2282386 2282455) (-1322 "XPR.spad" 2279545 2279558 2281468 2281567) (-1321 "XPOLYC.spad" 2278864 2278880 2279471 2279540) (-1320 "XPOLY.spad" 2278419 2278430 2278720 2278789) (-1319 "XPBWPOLY.spad" 2276858 2276878 2278193 2278262) (-1318 "XFALG.spad" 2273906 2273922 2276784 2276853) (-1317 "XF.spad" 2272369 2272384 2273808 2273901) (-1316 "XF.spad" 2270812 2270829 2272253 2272258) (-1315 "XEXPPKG.spad" 2270071 2270097 2270802 2270807) (-1314 "XDPOLY.spad" 2269685 2269701 2269927 2269996) (-1313 "XALG.spad" 2269353 2269364 2269641 2269680) (-1312 "WUTSET.spad" 2265323 2265340 2268954 2268981) (-1311 "WP.spad" 2264530 2264574 2265181 2265248) (-1310 "WHILEAST.spad" 2264328 2264337 2264520 2264525) (-1309 "WHEREAST.spad" 2263999 2264008 2264318 2264323) (-1308 "WFFINTBS.spad" 2261662 2261684 2263989 2263994) (-1307 "WEIER.spad" 2259884 2259895 2261652 2261657) (-1306 "VSPACE.spad" 2259557 2259568 2259852 2259879) (-1305 "VSPACE.spad" 2259250 2259263 2259547 2259552) (-1304 "VOID.spad" 2258927 2258936 2259240 2259245) (-1303 "VIEWDEF.spad" 2254128 2254137 2258917 2258922) (-1302 "VIEW3D.spad" 2238089 2238098 2254118 2254123) (-1301 "VIEW2D.spad" 2225988 2225997 2238079 2238084) (-1300 "VIEW.spad" 2223708 2223717 2225978 2225983) (-1299 "VECTOR2.spad" 2222347 2222360 2223698 2223703) (-1298 "VECTOR.spad" 2220847 2220858 2221098 2221125) (-1297 "VECTCAT.spad" 2218759 2218770 2220815 2220842) (-1296 "VECTCAT.spad" 2216478 2216491 2218536 2218541) (-1295 "VARIABLE.spad" 2216258 2216273 2216468 2216473) (-1294 "UTYPE.spad" 2215902 2215911 2216248 2216253) (-1293 "UTSODETL.spad" 2215197 2215221 2215858 2215863) (-1292 "UTSODE.spad" 2213413 2213433 2215187 2215192) (-1291 "UTSCAT.spad" 2210892 2210908 2213311 2213408) (-1290 "UTSCAT.spad" 2207991 2208009 2210412 2210417) (-1289 "UTS2.spad" 2207586 2207621 2207981 2207986) (-1288 "UTS.spad" 2202464 2202492 2205984 2206081) (-1287 "URAGG.spad" 2197185 2197196 2202454 2202459) (-1286 "URAGG.spad" 2191870 2191883 2197141 2197146) (-1285 "UPXSSING.spad" 2189488 2189514 2190924 2191057) (-1284 "UPXSCONS.spad" 2187166 2187186 2187539 2187688) (-1283 "UPXSCCA.spad" 2185737 2185757 2187012 2187161) (-1282 "UPXSCCA.spad" 2184450 2184472 2185727 2185732) (-1281 "UPXSCAT.spad" 2183039 2183055 2184296 2184445) (-1280 "UPXS2.spad" 2182582 2182635 2183029 2183034) (-1279 "UPXS.spad" 2179797 2179825 2180633 2180782) (-1278 "UPSQFREE.spad" 2178211 2178225 2179787 2179792) (-1277 "UPSCAT.spad" 2176006 2176030 2178109 2178206) (-1276 "UPSCAT.spad" 2173486 2173512 2175591 2175596) (-1275 "UPOLYC2.spad" 2172957 2172976 2173476 2173481) (-1274 "UPOLYC.spad" 2168037 2168048 2172799 2172952) (-1273 "UPOLYC.spad" 2163003 2163016 2167767 2167772) (-1272 "UPMP.spad" 2161935 2161948 2162993 2162998) (-1271 "UPDIVP.spad" 2161500 2161514 2161925 2161930) (-1270 "UPDECOMP.spad" 2159761 2159775 2161490 2161495) (-1269 "UPCDEN.spad" 2158978 2158994 2159751 2159756) (-1268 "UP2.spad" 2158342 2158363 2158968 2158973) (-1267 "UP.spad" 2155370 2155385 2155757 2155910) (-1266 "UNISEG2.spad" 2154867 2154880 2155326 2155331) (-1265 "UNISEG.spad" 2154220 2154231 2154786 2154791) (-1264 "UNIFACT.spad" 2153323 2153335 2154210 2154215) (-1263 "ULSCONS.spad" 2144235 2144255 2144605 2144754) (-1262 "ULSCCAT.spad" 2141972 2141992 2144081 2144230) (-1261 "ULSCCAT.spad" 2139817 2139839 2141928 2141933) (-1260 "ULSCAT.spad" 2138057 2138073 2139663 2139812) (-1259 "ULS2.spad" 2137571 2137624 2138047 2138052) (-1258 "ULS.spad" 2127142 2127170 2128087 2128516) (-1257 "UINT8.spad" 2127019 2127028 2127132 2127137) (-1256 "UINT64.spad" 2126895 2126904 2127009 2127014) (-1255 "UINT32.spad" 2126771 2126780 2126885 2126890) (-1254 "UINT16.spad" 2126647 2126656 2126761 2126766) (-1253 "UFD.spad" 2125712 2125721 2126573 2126642) (-1252 "UFD.spad" 2124839 2124850 2125702 2125707) (-1251 "UDVO.spad" 2123720 2123729 2124829 2124834) (-1250 "UDPO.spad" 2121301 2121312 2123676 2123681) (-1249 "TYPEAST.spad" 2121220 2121229 2121291 2121296) (-1248 "TYPE.spad" 2121152 2121161 2121210 2121215) (-1247 "TWOFACT.spad" 2119804 2119819 2121142 2121147) (-1246 "TUPLE.spad" 2119295 2119306 2119700 2119705) (-1245 "TUBETOOL.spad" 2116162 2116171 2119285 2119290) (-1244 "TUBE.spad" 2114809 2114826 2116152 2116157) (-1243 "TSETCAT.spad" 2102880 2102897 2114777 2114804) (-1242 "TSETCAT.spad" 2090937 2090956 2102836 2102841) (-1241 "TS.spad" 2089530 2089546 2090496 2090593) (-1240 "TRMANIP.spad" 2083894 2083911 2089218 2089223) (-1239 "TRIMAT.spad" 2082857 2082882 2083884 2083889) (-1238 "TRIGMNIP.spad" 2081384 2081401 2082847 2082852) (-1237 "TRIGCAT.spad" 2080896 2080905 2081374 2081379) (-1236 "TRIGCAT.spad" 2080406 2080417 2080886 2080891) (-1235 "TREE.spad" 2078852 2078863 2079884 2079911) (-1234 "TRANFUN.spad" 2078691 2078700 2078842 2078847) (-1233 "TRANFUN.spad" 2078528 2078539 2078681 2078686) (-1232 "TOPSP.spad" 2078202 2078211 2078518 2078523) (-1231 "TOOLSIGN.spad" 2077865 2077876 2078192 2078197) (-1230 "TEXTFILE.spad" 2076426 2076435 2077855 2077860) (-1229 "TEX1.spad" 2075982 2075993 2076416 2076421) (-1228 "TEX.spad" 2073176 2073185 2075972 2075977) (-1227 "TEMUTL.spad" 2072731 2072740 2073166 2073171) (-1226 "TBCMPPK.spad" 2070832 2070855 2072721 2072726) (-1225 "TBAGG.spad" 2069890 2069913 2070812 2070827) (-1224 "TBAGG.spad" 2068956 2068981 2069880 2069885) (-1223 "TANEXP.spad" 2068364 2068375 2068946 2068951) (-1222 "TALGOP.spad" 2068088 2068099 2068354 2068359) (-1221 "TABLEAU.spad" 2067569 2067580 2068078 2068083) (-1220 "TABLE.spad" 2065502 2065525 2065772 2065799) (-1219 "TABLBUMP.spad" 2062281 2062292 2065492 2065497) (-1218 "SYSTEM.spad" 2061509 2061518 2062271 2062276) (-1217 "SYSSOLP.spad" 2058992 2059003 2061499 2061504) (-1216 "SYSPTR.spad" 2058891 2058900 2058982 2058987) (-1215 "SYSNNI.spad" 2058114 2058125 2058881 2058886) (-1214 "SYSINT.spad" 2057518 2057529 2058104 2058109) (-1213 "SYNTAX.spad" 2053852 2053861 2057508 2057513) (-1212 "SYMTAB.spad" 2051920 2051929 2053842 2053847) (-1211 "SYMS.spad" 2047943 2047952 2051910 2051915) (-1210 "SYMPOLY.spad" 2046922 2046933 2047004 2047131) (-1209 "SYMFUNC.spad" 2046423 2046434 2046912 2046917) (-1208 "SYMBOL.spad" 2043918 2043927 2046413 2046418) (-1207 "SWITCH.spad" 2040689 2040698 2043908 2043913) (-1206 "SUTS.spad" 2037668 2037696 2039087 2039184) (-1205 "SUPXS.spad" 2034870 2034898 2035719 2035868) (-1204 "SUPFRACF.spad" 2033975 2033993 2034860 2034865) (-1203 "SUP2.spad" 2033367 2033380 2033965 2033970) (-1202 "SUP.spad" 2030009 2030020 2030782 2030935) (-1201 "SUMRF.spad" 2028983 2028994 2029999 2030004) (-1200 "SUMFS.spad" 2028612 2028629 2028973 2028978) (-1199 "SULS.spad" 2018170 2018198 2019128 2019557) (-1198 "SUCHTAST.spad" 2017939 2017948 2018160 2018165) (-1197 "SUCH.spad" 2017629 2017644 2017929 2017934) (-1196 "SUBSPACE.spad" 2009760 2009775 2017619 2017624) (-1195 "SUBRESP.spad" 2008930 2008944 2009716 2009721) (-1194 "STTFNC.spad" 2005398 2005414 2008920 2008925) (-1193 "STTF.spad" 2001497 2001513 2005388 2005393) (-1192 "STTAYLOR.spad" 1994142 1994153 2001372 2001377) (-1191 "STRTBL.spad" 1992157 1992174 1992306 1992333) (-1190 "STRING.spad" 1990923 1990932 1991144 1991171) (-1189 "STREAM3.spad" 1990496 1990511 1990913 1990918) (-1188 "STREAM2.spad" 1989624 1989637 1990486 1990491) (-1187 "STREAM1.spad" 1989330 1989341 1989614 1989619) (-1186 "STREAM.spad" 1986116 1986127 1988723 1988738) (-1185 "STINPROD.spad" 1985052 1985068 1986106 1986111) (-1184 "STEPAST.spad" 1984286 1984295 1985042 1985047) (-1183 "STEP.spad" 1983495 1983504 1984276 1984281) (-1182 "STBL.spad" 1981543 1981571 1981710 1981725) (-1181 "STAGG.spad" 1980618 1980629 1981533 1981538) (-1180 "STAGG.spad" 1979691 1979704 1980608 1980613) (-1179 "STACK.spad" 1978919 1978930 1979169 1979196) (-1178 "SRING.spad" 1978679 1978688 1978909 1978914) (-1177 "SREGSET.spad" 1976378 1976395 1978280 1978307) (-1176 "SRDCMPK.spad" 1974955 1974975 1976368 1976373) (-1175 "SRAGG.spad" 1970138 1970147 1974923 1974950) (-1174 "SRAGG.spad" 1965341 1965352 1970128 1970133) (-1173 "SQMATRIX.spad" 1962836 1962854 1963752 1963839) (-1172 "SPLTREE.spad" 1957302 1957315 1962098 1962125) (-1171 "SPLNODE.spad" 1953922 1953935 1957292 1957297) (-1170 "SPFCAT.spad" 1952731 1952740 1953912 1953917) (-1169 "SPECOUT.spad" 1951283 1951292 1952721 1952726) (-1168 "SPADXPT.spad" 1943374 1943383 1951273 1951278) (-1167 "spad-parser.spad" 1942839 1942848 1943364 1943369) (-1166 "SPADAST.spad" 1942540 1942549 1942829 1942834) (-1165 "SPACEC.spad" 1926755 1926766 1942530 1942535) (-1164 "SPACE3.spad" 1926531 1926542 1926745 1926750) (-1163 "SORTPAK.spad" 1926080 1926093 1926487 1926492) (-1162 "SOLVETRA.spad" 1923843 1923854 1926070 1926075) (-1161 "SOLVESER.spad" 1922299 1922310 1923833 1923838) (-1160 "SOLVERAD.spad" 1918325 1918336 1922289 1922294) (-1159 "SOLVEFOR.spad" 1916787 1916805 1918315 1918320) (-1158 "SNTSCAT.spad" 1916387 1916404 1916755 1916782) (-1157 "SMTS.spad" 1914669 1914695 1915946 1916043) (-1156 "SMP.spad" 1912072 1912092 1912462 1912589) (-1155 "SMITH.spad" 1910917 1910942 1912062 1912067) (-1154 "SMATCAT.spad" 1909035 1909065 1910861 1910912) (-1153 "SMATCAT.spad" 1907085 1907117 1908913 1908918) (-1152 "SKAGG.spad" 1906054 1906065 1907053 1907080) (-1151 "SINT.spad" 1904994 1905003 1905920 1906049) (-1150 "SIMPAN.spad" 1904722 1904731 1904984 1904989) (-1149 "SIGNRF.spad" 1903840 1903851 1904712 1904717) (-1148 "SIGNEF.spad" 1903119 1903136 1903830 1903835) (-1147 "SIGAST.spad" 1902536 1902545 1903109 1903114) (-1146 "SIG.spad" 1901898 1901907 1902526 1902531) (-1145 "SHP.spad" 1899842 1899857 1901854 1901859) (-1144 "SHDP.spad" 1887197 1887224 1887714 1887813) (-1143 "SGROUP.spad" 1886805 1886814 1887187 1887192) (-1142 "SGROUP.spad" 1886411 1886422 1886795 1886800) (-1141 "SGCF.spad" 1879550 1879559 1886401 1886406) (-1140 "SFRTCAT.spad" 1878496 1878513 1879518 1879545) (-1139 "SFRGCD.spad" 1877559 1877579 1878486 1878491) (-1138 "SFQCMPK.spad" 1872372 1872392 1877549 1877554) (-1137 "SFORT.spad" 1871811 1871825 1872362 1872367) (-1136 "SEXOF.spad" 1871654 1871694 1871801 1871806) (-1135 "SEXCAT.spad" 1869482 1869522 1871644 1871649) (-1134 "SEX.spad" 1869374 1869383 1869472 1869477) (-1133 "SETMN.spad" 1867832 1867849 1869364 1869369) (-1132 "SETCAT.spad" 1867317 1867326 1867822 1867827) (-1131 "SETCAT.spad" 1866800 1866811 1867307 1867312) (-1130 "SETAGG.spad" 1863349 1863360 1866780 1866795) (-1129 "SETAGG.spad" 1859906 1859919 1863339 1863344) (-1128 "SET.spad" 1858179 1858190 1859276 1859315) (-1127 "SEQAST.spad" 1857882 1857891 1858169 1858174) (-1126 "SEGXCAT.spad" 1857038 1857051 1857872 1857877) (-1125 "SEGCAT.spad" 1855963 1855974 1857028 1857033) (-1124 "SEGBIND2.spad" 1855661 1855674 1855953 1855958) (-1123 "SEGBIND.spad" 1855419 1855430 1855608 1855613) (-1122 "SEGAST.spad" 1855149 1855158 1855409 1855414) (-1121 "SEG2.spad" 1854584 1854597 1855105 1855110) (-1120 "SEG.spad" 1854397 1854408 1854503 1854508) (-1119 "SDVAR.spad" 1853673 1853684 1854387 1854392) (-1118 "SDPOL.spad" 1850928 1850939 1851219 1851346) (-1117 "SCPKG.spad" 1849017 1849028 1850918 1850923) (-1116 "SCOPE.spad" 1848194 1848203 1849007 1849012) (-1115 "SCACHE.spad" 1846890 1846901 1848184 1848189) (-1114 "SASTCAT.spad" 1846799 1846808 1846880 1846885) (-1113 "SAOS.spad" 1846671 1846680 1846789 1846794) (-1112 "SAERFFC.spad" 1846384 1846404 1846661 1846666) (-1111 "SAEFACT.spad" 1846085 1846105 1846374 1846379) (-1110 "SAE.spad" 1843519 1843535 1844130 1844265) (-1109 "RURPK.spad" 1841178 1841194 1843509 1843514) (-1108 "RULESET.spad" 1840631 1840655 1841168 1841173) (-1107 "RULECOLD.spad" 1840483 1840496 1840621 1840626) (-1106 "RULE.spad" 1838731 1838755 1840473 1840478) (-1105 "RTVALUE.spad" 1838466 1838475 1838721 1838726) (-1104 "RSTRCAST.spad" 1838183 1838192 1838456 1838461) (-1103 "RSETGCD.spad" 1834625 1834645 1838173 1838178) (-1102 "RSETCAT.spad" 1824593 1824610 1834593 1834620) (-1101 "RSETCAT.spad" 1814581 1814600 1824583 1824588) (-1100 "RSDCMPK.spad" 1813081 1813101 1814571 1814576) (-1099 "RRCC.spad" 1811465 1811495 1813071 1813076) (-1098 "RRCC.spad" 1809847 1809879 1811455 1811460) (-1097 "RPTAST.spad" 1809549 1809558 1809837 1809842) (-1096 "RPOLCAT.spad" 1789053 1789068 1809417 1809544) (-1095 "RPOLCAT.spad" 1768252 1768269 1788618 1788623) (-1094 "ROUTINE.spad" 1763653 1763662 1766401 1766428) (-1093 "ROMAN.spad" 1762981 1762990 1763519 1763648) (-1092 "ROIRC.spad" 1762061 1762093 1762971 1762976) (-1091 "RNS.spad" 1760964 1760973 1761963 1762056) (-1090 "RNS.spad" 1759953 1759964 1760954 1760959) (-1089 "RNGBIND.spad" 1759113 1759127 1759908 1759913) (-1088 "RNG.spad" 1758848 1758857 1759103 1759108) (-1087 "RMODULE.spad" 1758629 1758640 1758838 1758843) (-1086 "RMCAT2.spad" 1758049 1758106 1758619 1758624) (-1085 "RMATRIX.spad" 1756819 1756838 1757162 1757201) (-1084 "RMATCAT.spad" 1752398 1752429 1756775 1756814) (-1083 "RMATCAT.spad" 1747867 1747900 1752246 1752251) (-1082 "RLINSET.spad" 1747571 1747582 1747857 1747862) (-1081 "RINTERP.spad" 1747459 1747479 1747561 1747566) (-1080 "RING.spad" 1746929 1746938 1747439 1747454) (-1079 "RING.spad" 1746407 1746418 1746919 1746924) (-1078 "RIDIST.spad" 1745799 1745808 1746397 1746402) (-1077 "RGCHAIN.spad" 1744320 1744336 1745214 1745241) (-1076 "RGBCSPC.spad" 1744109 1744121 1744310 1744315) (-1075 "RGBCMDL.spad" 1743671 1743683 1744099 1744104) (-1074 "RFFACTOR.spad" 1743133 1743144 1743661 1743666) (-1073 "RFFACT.spad" 1742868 1742880 1743123 1743128) (-1072 "RFDIST.spad" 1741864 1741873 1742858 1742863) (-1071 "RF.spad" 1739538 1739549 1741854 1741859) (-1070 "RETSOL.spad" 1738957 1738970 1739528 1739533) (-1069 "RETRACT.spad" 1738385 1738396 1738947 1738952) (-1068 "RETRACT.spad" 1737811 1737824 1738375 1738380) (-1067 "RETAST.spad" 1737623 1737632 1737801 1737806) (-1066 "RESULT.spad" 1735185 1735194 1735772 1735799) (-1065 "RESRING.spad" 1734532 1734579 1735123 1735180) (-1064 "RESLATC.spad" 1733856 1733867 1734522 1734527) (-1063 "REPSQ.spad" 1733587 1733598 1733846 1733851) (-1062 "REPDB.spad" 1733294 1733305 1733577 1733582) (-1061 "REP2.spad" 1723008 1723019 1733136 1733141) (-1060 "REP1.spad" 1717228 1717239 1722958 1722963) (-1059 "REP.spad" 1714782 1714791 1717218 1717223) (-1058 "REGSET.spad" 1712574 1712591 1714383 1714410) (-1057 "REF.spad" 1711909 1711920 1712529 1712534) (-1056 "REDORDER.spad" 1711115 1711132 1711899 1711904) (-1055 "RECLOS.spad" 1709874 1709894 1710578 1710671) (-1054 "REALSOLV.spad" 1709014 1709023 1709864 1709869) (-1053 "REAL0Q.spad" 1706312 1706327 1709004 1709009) (-1052 "REAL0.spad" 1703156 1703171 1706302 1706307) (-1051 "REAL.spad" 1703028 1703037 1703146 1703151) (-1050 "RDUCEAST.spad" 1702749 1702758 1703018 1703023) (-1049 "RDIV.spad" 1702404 1702429 1702739 1702744) (-1048 "RDIST.spad" 1701971 1701982 1702394 1702399) (-1047 "RDETRS.spad" 1700835 1700853 1701961 1701966) (-1046 "RDETR.spad" 1698974 1698992 1700825 1700830) (-1045 "RDEEFS.spad" 1698073 1698090 1698964 1698969) (-1044 "RDEEF.spad" 1697083 1697100 1698063 1698068) (-1043 "RCFIELD.spad" 1694301 1694310 1696985 1697078) (-1042 "RCFIELD.spad" 1691605 1691616 1694291 1694296) (-1041 "RCAGG.spad" 1689541 1689552 1691595 1691600) (-1040 "RCAGG.spad" 1687404 1687417 1689460 1689465) (-1039 "RATRET.spad" 1686764 1686775 1687394 1687399) (-1038 "RATFACT.spad" 1686456 1686468 1686754 1686759) (-1037 "RANDSRC.spad" 1685775 1685784 1686446 1686451) (-1036 "RADUTIL.spad" 1685531 1685540 1685765 1685770) (-1035 "RADIX.spad" 1682310 1682324 1683856 1683949) (-1034 "RADFF.spad" 1680013 1680050 1680132 1680288) (-1033 "RADCAT.spad" 1679608 1679617 1680003 1680008) (-1032 "RADCAT.spad" 1679201 1679212 1679598 1679603) (-1031 "QUEUE.spad" 1678420 1678431 1678679 1678706) (-1030 "QUATCT2.spad" 1678040 1678059 1678410 1678415) (-1029 "QUATCAT.spad" 1676210 1676221 1677970 1678035) (-1028 "QUATCAT.spad" 1674128 1674141 1675890 1675895) (-1027 "QUAT.spad" 1672580 1672591 1672923 1672988) (-1026 "QUAGG.spad" 1671413 1671424 1672548 1672575) (-1025 "QQUTAST.spad" 1671181 1671190 1671403 1671408) (-1024 "QFORM.spad" 1670799 1670814 1671171 1671176) (-1023 "QFCAT2.spad" 1670491 1670508 1670789 1670794) (-1022 "QFCAT.spad" 1669193 1669204 1670393 1670486) (-1021 "QFCAT.spad" 1667477 1667490 1668679 1668684) (-1020 "QEQUAT.spad" 1667035 1667044 1667467 1667472) (-1019 "QCMPACK.spad" 1661949 1661969 1667025 1667030) (-1018 "QALGSET2.spad" 1659944 1659963 1661939 1661944) (-1017 "QALGSET.spad" 1656046 1656079 1659858 1659863) (-1016 "PWFFINTB.spad" 1653461 1653483 1656036 1656041) (-1015 "PUSHVAR.spad" 1652799 1652819 1653451 1653456) (-1014 "PTRANFN.spad" 1648934 1648945 1652789 1652794) (-1013 "PTPACK.spad" 1646021 1646032 1648924 1648929) (-1012 "PTFUNC2.spad" 1645843 1645858 1646011 1646016) (-1011 "PTCAT.spad" 1645097 1645108 1645811 1645838) (-1010 "PSQFR.spad" 1644411 1644436 1645087 1645092) (-1009 "PSEUDLIN.spad" 1643296 1643307 1644401 1644406) (-1008 "PSETPK.spad" 1630000 1630017 1643174 1643179) (-1007 "PSETCAT.spad" 1624399 1624423 1629980 1629995) (-1006 "PSETCAT.spad" 1618772 1618798 1624355 1624360) (-1005 "PSCURVE.spad" 1617770 1617779 1618762 1618767) (-1004 "PSCAT.spad" 1616552 1616582 1617668 1617765) (-1003 "PSCAT.spad" 1615424 1615456 1616542 1616547) (-1002 "PRTITION.spad" 1614121 1614130 1615414 1615419) (-1001 "PRTDAST.spad" 1613839 1613848 1614111 1614116) (-1000 "PRS.spad" 1603456 1603474 1613795 1613800) (-999 "PRQAGG.spad" 1602891 1602901 1603424 1603451) (-998 "PROPLOG.spad" 1602495 1602503 1602881 1602886) (-997 "PROPFUN2.spad" 1602118 1602131 1602485 1602490) (-996 "PROPFUN1.spad" 1601524 1601535 1602108 1602113) (-995 "PROPFRML.spad" 1600092 1600103 1601514 1601519) (-994 "PROPERTY.spad" 1599588 1599596 1600082 1600087) (-993 "PRODUCT.spad" 1597270 1597282 1597554 1597609) (-992 "PRINT.spad" 1597022 1597030 1597260 1597265) (-991 "PRIMES.spad" 1595283 1595293 1597012 1597017) (-990 "PRIMELT.spad" 1593404 1593418 1595273 1595278) (-989 "PRIMCAT.spad" 1593047 1593055 1593394 1593399) (-988 "PRIMARR2.spad" 1591814 1591826 1593037 1593042) (-987 "PRIMARR.spad" 1590653 1590663 1590823 1590850) (-986 "PREASSOC.spad" 1590035 1590047 1590643 1590648) (-985 "PR.spad" 1588400 1588412 1589099 1589226) (-984 "PPCURVE.spad" 1587537 1587545 1588390 1588395) (-983 "PORTNUM.spad" 1587328 1587336 1587527 1587532) (-982 "POLYROOT.spad" 1586177 1586199 1587284 1587289) (-981 "POLYLIFT.spad" 1585442 1585465 1586167 1586172) (-980 "POLYCATQ.spad" 1583568 1583590 1585432 1585437) (-979 "POLYCAT.spad" 1577070 1577091 1583436 1583563) (-978 "POLYCAT.spad" 1569868 1569891 1576236 1576241) (-977 "POLY2UP.spad" 1569320 1569334 1569858 1569863) (-976 "POLY2.spad" 1568917 1568929 1569310 1569315) (-975 "POLY.spad" 1566180 1566190 1566695 1566822) (-974 "POLUTIL.spad" 1565145 1565174 1566136 1566141) (-973 "POLTOPOL.spad" 1563893 1563908 1565135 1565140) (-972 "POINT.spad" 1562557 1562567 1562644 1562671) (-971 "PNTHEORY.spad" 1559259 1559267 1562547 1562552) (-970 "PMTOOLS.spad" 1558034 1558048 1559249 1559254) (-969 "PMSYM.spad" 1557583 1557593 1558024 1558029) (-968 "PMQFCAT.spad" 1557174 1557188 1557573 1557578) (-967 "PMPREDFS.spad" 1556636 1556658 1557164 1557169) (-966 "PMPRED.spad" 1556123 1556137 1556626 1556631) (-965 "PMPLCAT.spad" 1555200 1555218 1556052 1556057) (-964 "PMLSAGG.spad" 1554785 1554799 1555190 1555195) (-963 "PMKERNEL.spad" 1554364 1554376 1554775 1554780) (-962 "PMINS.spad" 1553944 1553954 1554354 1554359) (-961 "PMFS.spad" 1553521 1553539 1553934 1553939) (-960 "PMDOWN.spad" 1552811 1552825 1553511 1553516) (-959 "PMASSFS.spad" 1551786 1551802 1552801 1552806) (-958 "PMASS.spad" 1550804 1550812 1551776 1551781) (-957 "PLOTTOOL.spad" 1550584 1550592 1550794 1550799) (-956 "PLOT3D.spad" 1547048 1547056 1550574 1550579) (-955 "PLOT1.spad" 1546221 1546231 1547038 1547043) (-954 "PLOT.spad" 1541144 1541152 1546211 1546216) (-953 "PLEQN.spad" 1528546 1528573 1541134 1541139) (-952 "PINTERPA.spad" 1528330 1528346 1528536 1528541) (-951 "PINTERP.spad" 1527952 1527971 1528320 1528325) (-950 "PID.spad" 1526926 1526934 1527878 1527947) (-949 "PICOERCE.spad" 1526583 1526593 1526916 1526921) (-948 "PI.spad" 1526200 1526208 1526557 1526578) (-947 "PGROEB.spad" 1524809 1524823 1526190 1526195) (-946 "PGE.spad" 1516482 1516490 1524799 1524804) (-945 "PGCD.spad" 1515436 1515453 1516472 1516477) (-944 "PFRPAC.spad" 1514585 1514595 1515426 1515431) (-943 "PFR.spad" 1511288 1511298 1514487 1514580) (-942 "PFOTOOLS.spad" 1510546 1510562 1511278 1511283) (-941 "PFOQ.spad" 1509916 1509934 1510536 1510541) (-940 "PFO.spad" 1509335 1509362 1509906 1509911) (-939 "PFECAT.spad" 1507041 1507049 1509261 1509330) (-938 "PFECAT.spad" 1504775 1504785 1506997 1507002) (-937 "PFBRU.spad" 1502663 1502675 1504765 1504770) (-936 "PFBR.spad" 1500223 1500246 1502653 1502658) (-935 "PF.spad" 1499797 1499809 1500028 1500121) (-934 "PERMGRP.spad" 1494567 1494577 1499787 1499792) (-933 "PERMCAT.spad" 1493228 1493238 1494547 1494562) (-932 "PERMAN.spad" 1491784 1491798 1493218 1493223) (-931 "PERM.spad" 1487591 1487601 1491614 1491629) (-930 "PENDTREE.spad" 1486811 1486821 1487091 1487096) (-929 "PDSPC.spad" 1485624 1485634 1486801 1486806) (-928 "PDSPC.spad" 1484435 1484447 1485614 1485619) (-927 "PDRING.spad" 1484277 1484287 1484415 1484430) (-926 "PDMOD.spad" 1484093 1484105 1484245 1484272) (-925 "PDEPROB.spad" 1483108 1483116 1484083 1484088) (-924 "PDEPACK.spad" 1477244 1477252 1483098 1483103) (-923 "PDECOMP.spad" 1476714 1476731 1477234 1477239) (-922 "PDECAT.spad" 1475070 1475078 1476704 1476709) (-921 "PDDOM.spad" 1474508 1474521 1475060 1475065) (-920 "PDDOM.spad" 1473944 1473959 1474498 1474503) (-919 "PCOMP.spad" 1473797 1473810 1473934 1473939) (-918 "PBWLB.spad" 1472393 1472410 1473787 1473792) (-917 "PATTERN2.spad" 1472131 1472143 1472383 1472388) (-916 "PATTERN1.spad" 1470475 1470491 1472121 1472126) (-915 "PATTERN.spad" 1465046 1465056 1470465 1470470) (-914 "PATRES2.spad" 1464718 1464732 1465036 1465041) (-913 "PATRES.spad" 1462301 1462313 1464708 1464713) (-912 "PATMATCH.spad" 1460489 1460520 1462000 1462005) (-911 "PATMAB.spad" 1459918 1459928 1460479 1460484) (-910 "PATLRES.spad" 1459004 1459018 1459908 1459913) (-909 "PATAB.spad" 1458768 1458778 1458994 1458999) (-908 "PARTPERM.spad" 1456824 1456832 1458758 1458763) (-907 "PARSURF.spad" 1456258 1456286 1456814 1456819) (-906 "PARSU2.spad" 1456055 1456071 1456248 1456253) (-905 "script-parser.spad" 1455575 1455583 1456045 1456050) (-904 "PARSCURV.spad" 1455009 1455037 1455565 1455570) (-903 "PARSC2.spad" 1454800 1454816 1454999 1455004) (-902 "PARPCURV.spad" 1454262 1454290 1454790 1454795) (-901 "PARPC2.spad" 1454053 1454069 1454252 1454257) (-900 "PARAMAST.spad" 1453181 1453189 1454043 1454048) (-899 "PAN2EXPR.spad" 1452593 1452601 1453171 1453176) (-898 "PALETTE.spad" 1451579 1451587 1452583 1452588) (-897 "PAIR.spad" 1450586 1450599 1451155 1451160) (-896 "PADICRC.spad" 1447790 1447808 1448953 1449046) (-895 "PADICRAT.spad" 1445649 1445661 1445862 1445955) (-894 "PADICCT.spad" 1444198 1444210 1445575 1445644) (-893 "PADIC.spad" 1443901 1443913 1444124 1444193) (-892 "PADEPAC.spad" 1442590 1442609 1443891 1443896) (-891 "PADE.spad" 1441342 1441358 1442580 1442585) (-890 "OWP.spad" 1440590 1440620 1441200 1441267) (-889 "OVERSET.spad" 1440163 1440171 1440580 1440585) (-888 "OVAR.spad" 1439944 1439967 1440153 1440158) (-887 "OUTFORM.spad" 1429352 1429360 1439934 1439939) (-886 "OUTBFILE.spad" 1428786 1428794 1429342 1429347) (-885 "OUTBCON.spad" 1427856 1427864 1428776 1428781) (-884 "OUTBCON.spad" 1426924 1426934 1427846 1427851) (-883 "OUT.spad" 1426042 1426050 1426914 1426919) (-882 "OSI.spad" 1425517 1425525 1426032 1426037) (-881 "OSGROUP.spad" 1425435 1425443 1425507 1425512) (-880 "ORTHPOL.spad" 1423914 1423924 1425346 1425351) (-879 "OREUP.spad" 1423358 1423386 1423585 1423624) (-878 "ORESUP.spad" 1422650 1422674 1423029 1423068) (-877 "OREPCTO.spad" 1420539 1420551 1422570 1422575) (-876 "OREPCAT.spad" 1414726 1414736 1420495 1420534) (-875 "OREPCAT.spad" 1408803 1408815 1414574 1414579) (-874 "ORDTYPE.spad" 1408040 1408048 1408793 1408798) (-873 "ORDTYPE.spad" 1407275 1407285 1408030 1408035) (-872 "ORDSTRCT.spad" 1407045 1407060 1407208 1407213) (-871 "ORDSET.spad" 1406745 1406753 1407035 1407040) (-870 "ORDRING.spad" 1406135 1406143 1406725 1406740) (-869 "ORDRING.spad" 1405533 1405543 1406125 1406130) (-868 "ORDMON.spad" 1405388 1405396 1405523 1405528) (-867 "ORDFUNS.spad" 1404520 1404536 1405378 1405383) (-866 "ORDFIN.spad" 1404340 1404348 1404510 1404515) (-865 "ORDCOMP2.spad" 1403633 1403645 1404330 1404335) (-864 "ORDCOMP.spad" 1402086 1402096 1403168 1403197) (-863 "OPTPROB.spad" 1400724 1400732 1402076 1402081) (-862 "OPTPACK.spad" 1393133 1393141 1400714 1400719) (-861 "OPTCAT.spad" 1390812 1390820 1393123 1393128) (-860 "OPSIG.spad" 1390474 1390482 1390802 1390807) (-859 "OPQUERY.spad" 1390055 1390063 1390464 1390469) (-858 "OPERCAT.spad" 1389521 1389531 1390045 1390050) (-857 "OPERCAT.spad" 1388985 1388997 1389511 1389516) (-856 "OP.spad" 1388727 1388737 1388807 1388874) (-855 "ONECOMP2.spad" 1388151 1388163 1388717 1388722) (-854 "ONECOMP.spad" 1386884 1386894 1387686 1387715) (-853 "OMSERVER.spad" 1385890 1385898 1386874 1386879) (-852 "OMSAGG.spad" 1385678 1385688 1385846 1385885) (-851 "OMPKG.spad" 1384310 1384318 1385668 1385673) (-850 "OMLO.spad" 1383743 1383755 1384196 1384235) (-849 "OMEXPR.spad" 1383577 1383587 1383733 1383738) (-848 "OMERRK.spad" 1382627 1382635 1383567 1383572) (-847 "OMERR.spad" 1382172 1382180 1382617 1382622) (-846 "OMENC.spad" 1381524 1381532 1382162 1382167) (-845 "OMDEV.spad" 1375857 1375865 1381514 1381519) (-844 "OMCONN.spad" 1375266 1375274 1375847 1375852) (-843 "OM.spad" 1374263 1374271 1375256 1375261) (-842 "OINTDOM.spad" 1374026 1374034 1374189 1374258) (-841 "OFMONOID.spad" 1372165 1372175 1373982 1373987) (-840 "ODVAR.spad" 1371426 1371436 1372155 1372160) (-839 "ODR.spad" 1371070 1371096 1371238 1371387) (-838 "ODPOL.spad" 1368281 1368291 1368621 1368748) (-837 "ODP.spad" 1355780 1355800 1356153 1356252) (-836 "ODETOOLS.spad" 1354429 1354448 1355770 1355775) (-835 "ODESYS.spad" 1352123 1352140 1354419 1354424) (-834 "ODERTRIC.spad" 1348156 1348173 1352080 1352085) (-833 "ODERED.spad" 1347555 1347579 1348146 1348151) (-832 "ODERAT.spad" 1345186 1345203 1347545 1347550) (-831 "ODEPRRIC.spad" 1342279 1342301 1345176 1345181) (-830 "ODEPROB.spad" 1341536 1341544 1342269 1342274) (-829 "ODEPRIM.spad" 1338934 1338956 1341526 1341531) (-828 "ODEPAL.spad" 1338320 1338344 1338924 1338929) (-827 "ODEPACK.spad" 1325050 1325058 1338310 1338315) (-826 "ODEINT.spad" 1324485 1324501 1325040 1325045) (-825 "ODEIFTBL.spad" 1321888 1321896 1324475 1324480) (-824 "ODEEF.spad" 1317379 1317395 1321878 1321883) (-823 "ODECONST.spad" 1316924 1316942 1317369 1317374) (-822 "ODECAT.spad" 1315522 1315530 1316914 1316919) (-821 "OCTCT2.spad" 1315160 1315181 1315512 1315517) (-820 "OCT.spad" 1313248 1313258 1313962 1314001) (-819 "OCAMON.spad" 1313096 1313104 1313238 1313243) (-818 "OC.spad" 1310892 1310902 1313052 1313091) (-817 "OC.spad" 1308410 1308422 1310572 1310577) (-816 "OASGP.spad" 1308225 1308233 1308400 1308405) (-815 "OAMONS.spad" 1307747 1307755 1308215 1308220) (-814 "OAMON.spad" 1307608 1307616 1307737 1307742) (-813 "OAGROUP.spad" 1307470 1307478 1307598 1307603) (-812 "NUMTUBE.spad" 1307061 1307077 1307460 1307465) (-811 "NUMQUAD.spad" 1295037 1295045 1307051 1307056) (-810 "NUMODE.spad" 1286389 1286397 1295027 1295032) (-809 "NUMINT.spad" 1283955 1283963 1286379 1286384) (-808 "NUMFMT.spad" 1282795 1282803 1283945 1283950) (-807 "NUMERIC.spad" 1274909 1274919 1282600 1282605) (-806 "NTSCAT.spad" 1273417 1273433 1274877 1274904) (-805 "NTPOLFN.spad" 1272962 1272972 1273328 1273333) (-804 "NSUP2.spad" 1272354 1272366 1272952 1272957) (-803 "NSUP.spad" 1265349 1265359 1269769 1269922) (-802 "NSMP.spad" 1261448 1261467 1261740 1261867) (-801 "NREP.spad" 1259850 1259864 1261438 1261443) (-800 "NPCOEF.spad" 1259096 1259116 1259840 1259845) (-799 "NORMRETR.spad" 1258694 1258733 1259086 1259091) (-798 "NORMPK.spad" 1256636 1256655 1258684 1258689) (-797 "NORMMA.spad" 1256324 1256350 1256626 1256631) (-796 "NONE1.spad" 1256000 1256010 1256314 1256319) (-795 "NONE.spad" 1255741 1255749 1255990 1255995) (-794 "NODE1.spad" 1255228 1255244 1255731 1255736) (-793 "NNI.spad" 1254123 1254131 1255202 1255223) (-792 "NLINSOL.spad" 1252749 1252759 1254113 1254118) (-791 "NIPROB.spad" 1251290 1251298 1252739 1252744) (-790 "NFINTBAS.spad" 1248850 1248867 1251280 1251285) (-789 "NETCLT.spad" 1248824 1248835 1248840 1248845) (-788 "NCODIV.spad" 1247048 1247064 1248814 1248819) (-787 "NCNTFRAC.spad" 1246690 1246704 1247038 1247043) (-786 "NCEP.spad" 1244856 1244870 1246680 1246685) (-785 "NASRING.spad" 1244460 1244468 1244846 1244851) (-784 "NASRING.spad" 1244062 1244072 1244450 1244455) (-783 "NARNG.spad" 1243462 1243470 1244052 1244057) (-782 "NARNG.spad" 1242860 1242870 1243452 1243457) (-781 "NAGSP.spad" 1241937 1241945 1242850 1242855) (-780 "NAGS.spad" 1231654 1231662 1241927 1241932) (-779 "NAGF07.spad" 1230085 1230093 1231644 1231649) (-778 "NAGF04.spad" 1224487 1224495 1230075 1230080) (-777 "NAGF02.spad" 1218580 1218588 1224477 1224482) (-776 "NAGF01.spad" 1214349 1214357 1218570 1218575) (-775 "NAGE04.spad" 1208057 1208065 1214339 1214344) (-774 "NAGE02.spad" 1198709 1198717 1208047 1208052) (-773 "NAGE01.spad" 1194703 1194711 1198699 1198704) (-772 "NAGD03.spad" 1192699 1192707 1194693 1194698) (-771 "NAGD02.spad" 1185430 1185438 1192689 1192694) (-770 "NAGD01.spad" 1179715 1179723 1185420 1185425) (-769 "NAGC06.spad" 1175582 1175590 1179705 1179710) (-768 "NAGC05.spad" 1174075 1174083 1175572 1175577) (-767 "NAGC02.spad" 1173350 1173358 1174065 1174070) (-766 "NAALG.spad" 1172915 1172925 1173318 1173345) (-765 "NAALG.spad" 1172500 1172512 1172905 1172910) (-764 "MULTSQFR.spad" 1169458 1169475 1172490 1172495) (-763 "MULTFACT.spad" 1168841 1168858 1169448 1169453) (-762 "MTSCAT.spad" 1166935 1166956 1168739 1168836) (-761 "MTHING.spad" 1166594 1166604 1166925 1166930) (-760 "MSYSCMD.spad" 1166028 1166036 1166584 1166589) (-759 "MSETAGG.spad" 1165873 1165883 1165996 1166023) (-758 "MSET.spad" 1163786 1163796 1165534 1165573) (-757 "MRING.spad" 1160763 1160775 1163494 1163561) (-756 "MRF2.spad" 1160325 1160339 1160753 1160758) (-755 "MRATFAC.spad" 1159871 1159888 1160315 1160320) (-754 "MPRFF.spad" 1157911 1157930 1159861 1159866) (-753 "MPOLY.spad" 1155310 1155325 1155669 1155796) (-752 "MPCPF.spad" 1154574 1154593 1155300 1155305) (-751 "MPC3.spad" 1154391 1154431 1154564 1154569) (-750 "MPC2.spad" 1154044 1154077 1154381 1154386) (-749 "MONOTOOL.spad" 1152395 1152412 1154034 1154039) (-748 "MONOID.spad" 1151714 1151722 1152385 1152390) (-747 "MONOID.spad" 1151031 1151041 1151704 1151709) (-746 "MONOGEN.spad" 1149779 1149792 1150891 1151026) (-745 "MONOGEN.spad" 1148549 1148564 1149663 1149668) (-744 "MONADWU.spad" 1146627 1146635 1148539 1148544) (-743 "MONADWU.spad" 1144703 1144713 1146617 1146622) (-742 "MONAD.spad" 1143863 1143871 1144693 1144698) (-741 "MONAD.spad" 1143021 1143031 1143853 1143858) (-740 "MOEBIUS.spad" 1141757 1141771 1143001 1143016) (-739 "MODULE.spad" 1141627 1141637 1141725 1141752) (-738 "MODULE.spad" 1141517 1141529 1141617 1141622) (-737 "MODRING.spad" 1140852 1140891 1141497 1141512) (-736 "MODOP.spad" 1139509 1139521 1140674 1140741) (-735 "MODMONOM.spad" 1139240 1139258 1139499 1139504) (-734 "MODMON.spad" 1135864 1135880 1136583 1136736) (-733 "MODFIELD.spad" 1135226 1135265 1135766 1135859) (-732 "MMLFORM.spad" 1134086 1134094 1135216 1135221) (-731 "MMAP.spad" 1133828 1133862 1134076 1134081) (-730 "MLO.spad" 1132287 1132297 1133784 1133823) (-729 "MLIFT.spad" 1130899 1130916 1132277 1132282) (-728 "MKUCFUNC.spad" 1130434 1130452 1130889 1130894) (-727 "MKRECORD.spad" 1130022 1130035 1130424 1130429) (-726 "MKFUNC.spad" 1129429 1129439 1130012 1130017) (-725 "MKFLCFN.spad" 1128397 1128407 1129419 1129424) (-724 "MKBCFUNC.spad" 1127892 1127910 1128387 1128392) (-723 "MINT.spad" 1127331 1127339 1127794 1127887) (-722 "MHROWRED.spad" 1125842 1125852 1127321 1127326) (-721 "MFLOAT.spad" 1124362 1124370 1125732 1125837) (-720 "MFINFACT.spad" 1123762 1123784 1124352 1124357) (-719 "MESH.spad" 1121552 1121560 1123752 1123757) (-718 "MDDFACT.spad" 1119771 1119781 1121542 1121547) (-717 "MDAGG.spad" 1119062 1119072 1119751 1119766) (-716 "MCMPLX.spad" 1114427 1114435 1115041 1115242) (-715 "MCDEN.spad" 1113637 1113649 1114417 1114422) (-714 "MCALCFN.spad" 1110735 1110761 1113627 1113632) (-713 "MAYBE.spad" 1110035 1110046 1110725 1110730) (-712 "MATSTOR.spad" 1107351 1107361 1110025 1110030) (-711 "MATRIX.spad" 1105917 1105927 1106401 1106428) (-710 "MATLIN.spad" 1103285 1103309 1105801 1105806) (-709 "MATCAT2.spad" 1102567 1102615 1103275 1103280) (-708 "MATCAT.spad" 1094129 1094151 1102535 1102562) (-707 "MATCAT.spad" 1085563 1085587 1093971 1093976) (-706 "MAPPKG3.spad" 1084478 1084492 1085553 1085558) (-705 "MAPPKG2.spad" 1083816 1083828 1084468 1084473) (-704 "MAPPKG1.spad" 1082644 1082654 1083806 1083811) (-703 "MAPPAST.spad" 1081983 1081991 1082634 1082639) (-702 "MAPHACK3.spad" 1081795 1081809 1081973 1081978) (-701 "MAPHACK2.spad" 1081564 1081576 1081785 1081790) (-700 "MAPHACK1.spad" 1081208 1081218 1081554 1081559) (-699 "MAGMA.spad" 1079014 1079031 1081198 1081203) (-698 "MACROAST.spad" 1078609 1078617 1079004 1079009) (-697 "M3D.spad" 1076194 1076204 1077852 1077857) (-696 "LZSTAGG.spad" 1073448 1073458 1076184 1076189) (-695 "LZSTAGG.spad" 1070700 1070712 1073438 1073443) (-694 "LWORD.spad" 1067445 1067462 1070690 1070695) (-693 "LSTAST.spad" 1067229 1067237 1067435 1067440) (-692 "LSQM.spad" 1065341 1065355 1065735 1065786) (-691 "LSPP.spad" 1064876 1064893 1065331 1065336) (-690 "LSMP1.spad" 1062702 1062716 1064866 1064871) (-689 "LSMP.spad" 1061552 1061580 1062692 1062697) (-688 "LSAGG.spad" 1061221 1061231 1061520 1061547) (-687 "LSAGG.spad" 1060910 1060922 1061211 1061216) (-686 "LPOLY.spad" 1059872 1059891 1060766 1060835) (-685 "LPEFRAC.spad" 1059143 1059153 1059862 1059867) (-684 "LOGIC.spad" 1058745 1058753 1059133 1059138) (-683 "LOGIC.spad" 1058345 1058355 1058735 1058740) (-682 "LODOOPS.spad" 1057275 1057287 1058335 1058340) (-681 "LODOF.spad" 1056321 1056338 1057232 1057237) (-680 "LODOCAT.spad" 1054987 1054997 1056277 1056316) (-679 "LODOCAT.spad" 1053651 1053663 1054943 1054948) (-678 "LODO2.spad" 1052915 1052927 1053322 1053361) (-677 "LODO1.spad" 1052306 1052316 1052586 1052625) (-676 "LODO.spad" 1051681 1051697 1051977 1052016) (-675 "LODEEF.spad" 1050483 1050501 1051671 1051676) (-674 "LO.spad" 1049884 1049898 1050417 1050444) (-673 "LNAGG.spad" 1046071 1046081 1049874 1049879) (-672 "LNAGG.spad" 1042222 1042234 1046027 1046032) (-671 "LMOPS.spad" 1038990 1039007 1042212 1042217) (-670 "LMODULE.spad" 1038774 1038784 1038980 1038985) (-669 "LMDICT.spad" 1037945 1037955 1038193 1038220) (-668 "LLINSET.spad" 1037652 1037662 1037935 1037940) (-667 "LITERAL.spad" 1037558 1037569 1037642 1037647) (-666 "LIST3.spad" 1036869 1036883 1037548 1037553) (-665 "LIST2MAP.spad" 1033796 1033808 1036859 1036864) (-664 "LIST2.spad" 1032498 1032510 1033786 1033791) (-663 "LIST.spad" 1030059 1030069 1031471 1031498) (-662 "LINSET.spad" 1029838 1029848 1030049 1030054) (-661 "LINFORM.spad" 1029301 1029313 1029806 1029833) (-660 "LINEXP.spad" 1028044 1028054 1029291 1029296) (-659 "LINELT.spad" 1027415 1027427 1027927 1027954) (-658 "LINDEP.spad" 1026264 1026276 1027327 1027332) (-657 "LINBASIS.spad" 1025900 1025915 1026254 1026259) (-656 "LIMITRF.spad" 1023828 1023838 1025890 1025895) (-655 "LIMITPS.spad" 1022731 1022744 1023818 1023823) (-654 "LIECAT.spad" 1022215 1022225 1022657 1022726) (-653 "LIECAT.spad" 1021727 1021739 1022171 1022176) (-652 "LIE.spad" 1019722 1019734 1020996 1021141) (-651 "LIB.spad" 1017437 1017445 1017883 1017898) (-650 "LGROBP.spad" 1014790 1014809 1017427 1017432) (-649 "LFCAT.spad" 1013849 1013857 1014780 1014785) (-648 "LF.spad" 1012804 1012820 1013839 1013844) (-647 "LEXTRIPK.spad" 1008427 1008442 1012794 1012799) (-646 "LEXP.spad" 1006446 1006473 1008407 1008422) (-645 "LETAST.spad" 1006145 1006153 1006436 1006441) (-644 "LEADCDET.spad" 1004551 1004568 1006135 1006140) (-643 "LAZM3PK.spad" 1003295 1003317 1004541 1004546) (-642 "LAUPOL.spad" 1001880 1001893 1002780 1002849) (-641 "LAPLACE.spad" 1001463 1001479 1001870 1001875) (-640 "LALG.spad" 1001239 1001249 1001443 1001458) (-639 "LALG.spad" 1001023 1001035 1001229 1001234) (-638 "LA.spad" 1000463 1000477 1000945 1000984) (-637 "KVTFROM.spad" 1000206 1000216 1000453 1000458) (-636 "KTVLOGIC.spad" 999750 999758 1000196 1000201) (-635 "KRCFROM.spad" 999496 999506 999740 999745) (-634 "KOVACIC.spad" 998227 998244 999486 999491) (-633 "KONVERT.spad" 997949 997959 998217 998222) (-632 "KOERCE.spad" 997686 997696 997939 997944) (-631 "KERNEL2.spad" 997389 997401 997676 997681) (-630 "KERNEL.spad" 996029 996039 997158 997163) (-629 "KDAGG.spad" 995138 995160 996009 996024) (-628 "KDAGG.spad" 994255 994279 995128 995133) (-627 "KAFILE.spad" 993085 993101 993320 993347) (-626 "JVMOP.spad" 992998 993006 993075 993080) (-625 "JVMMDACC.spad" 992052 992060 992988 992993) (-624 "JVMFDACC.spad" 991368 991376 992042 992047) (-623 "JVMCSTTG.spad" 990097 990105 991358 991363) (-622 "JVMCFACC.spad" 989543 989551 990087 990092) (-621 "JVMBCODE.spad" 989454 989462 989533 989538) (-620 "JORDAN.spad" 987262 987274 988723 988868) (-619 "JOINAST.spad" 986964 986972 987252 987257) (-618 "IXAGG.spad" 985097 985121 986954 986959) (-617 "IXAGG.spad" 983085 983111 984944 984949) (-616 "IVECTOR.spad" 981681 981696 981836 981863) (-615 "ITUPLE.spad" 980857 980867 981671 981676) (-614 "ITRIGMNP.spad" 979704 979723 980847 980852) (-613 "ITFUN3.spad" 979210 979224 979694 979699) (-612 "ITFUN2.spad" 978954 978966 979200 979205) (-611 "ITFORM.spad" 978309 978317 978944 978949) (-610 "ITAYLOR.spad" 976303 976318 978173 978270) (-609 "ISUPS.spad" 968701 968716 975238 975335) (-608 "ISUMP.spad" 968202 968218 968691 968696) (-607 "ISTRING.spad" 967108 967121 967189 967216) (-606 "ISAST.spad" 966827 966835 967098 967103) (-605 "IRURPK.spad" 965544 965563 966817 966822) (-604 "IRSN.spad" 963548 963556 965534 965539) (-603 "IRRF2F.spad" 962041 962051 963504 963509) (-602 "IRREDFFX.spad" 961642 961653 962031 962036) (-601 "IROOT.spad" 959981 959991 961632 961637) (-600 "IRFORM.spad" 959305 959313 959971 959976) (-599 "IR2F.spad" 958519 958535 959295 959300) (-598 "IR2.spad" 957547 957563 958509 958514) (-597 "IR.spad" 955350 955364 957396 957423) (-596 "IPRNTPK.spad" 955110 955118 955340 955345) (-595 "IPF.spad" 954675 954687 954915 955008) (-594 "IPADIC.spad" 954444 954470 954601 954670) (-593 "IP4ADDR.spad" 954001 954009 954434 954439) (-592 "IOMODE.spad" 953523 953531 953991 953996) (-591 "IOBFILE.spad" 952908 952916 953513 953518) (-590 "IOBCON.spad" 952773 952781 952898 952903) (-589 "INVLAPLA.spad" 952422 952438 952763 952768) (-588 "INTTR.spad" 945804 945821 952412 952417) (-587 "INTTOOLS.spad" 943547 943563 945366 945371) (-586 "INTSLPE.spad" 942875 942883 943537 943542) (-585 "INTRVL.spad" 942441 942451 942789 942870) (-584 "INTRF.spad" 940873 940887 942431 942436) (-583 "INTRET.spad" 940305 940315 940863 940868) (-582 "INTRAT.spad" 939040 939057 940295 940300) (-581 "INTPM.spad" 937407 937423 938665 938670) (-580 "INTPAF.spad" 935276 935294 937336 937341) (-579 "INTPACK.spad" 925842 925850 935266 935271) (-578 "INTHERTR.spad" 925116 925133 925832 925837) (-577 "INTHERAL.spad" 924786 924810 925106 925111) (-576 "INTHEORY.spad" 921225 921233 924776 924781) (-575 "INTG0.spad" 914971 914989 921154 921159) (-574 "INTFTBL.spad" 909000 909008 914961 914966) (-573 "INTFACT.spad" 908067 908077 908990 908995) (-572 "INTEF.spad" 906476 906492 908057 908062) (-571 "INTDOM.spad" 905099 905107 906402 906471) (-570 "INTDOM.spad" 903784 903794 905089 905094) (-569 "INTCAT.spad" 902051 902061 903698 903779) (-568 "INTBIT.spad" 901558 901566 902041 902046) (-567 "INTALG.spad" 900746 900773 901548 901553) (-566 "INTAF.spad" 900246 900262 900736 900741) (-565 "INTABL.spad" 898286 898317 898449 898476) (-564 "INT8.spad" 898166 898174 898276 898281) (-563 "INT64.spad" 898045 898053 898156 898161) (-562 "INT32.spad" 897924 897932 898035 898040) (-561 "INT16.spad" 897803 897811 897914 897919) (-560 "INT.spad" 897251 897259 897657 897798) (-559 "INS.spad" 894754 894762 897153 897246) (-558 "INS.spad" 892343 892353 894744 894749) (-557 "INPSIGN.spad" 891791 891804 892333 892338) (-556 "INPRODPF.spad" 890887 890906 891781 891786) (-555 "INPRODFF.spad" 889975 889999 890877 890882) (-554 "INNMFACT.spad" 888950 888967 889965 889970) (-553 "INMODGCD.spad" 888454 888484 888940 888945) (-552 "INFSP.spad" 886751 886773 888444 888449) (-551 "INFPROD0.spad" 885831 885850 886741 886746) (-550 "INFORM1.spad" 885456 885466 885821 885826) (-549 "INFORM.spad" 882663 882671 885446 885451) (-548 "INFINITY.spad" 882215 882223 882653 882658) (-547 "INETCLTS.spad" 882192 882200 882205 882210) (-546 "INEP.spad" 880738 880760 882182 882187) (-545 "INDE.spad" 880387 880404 880648 880653) (-544 "INCRMAPS.spad" 879824 879834 880377 880382) (-543 "INBFILE.spad" 878920 878928 879814 879819) (-542 "INBFF.spad" 874770 874781 878910 878915) (-541 "INBCON.spad" 873036 873044 874760 874765) (-540 "INBCON.spad" 871300 871310 873026 873031) (-539 "INAST.spad" 870961 870969 871290 871295) (-538 "IMPTAST.spad" 870669 870677 870951 870956) (-537 "IMATRIX.spad" 869485 869511 869997 870024) (-536 "IMATQF.spad" 868579 868623 869441 869446) (-535 "IMATLIN.spad" 867200 867224 868535 868540) (-534 "ILIST.spad" 865684 865699 866209 866236) (-533 "IIARRAY2.spad" 864959 864997 865162 865189) (-532 "IFF.spad" 864369 864385 864640 864733) (-531 "IFAST.spad" 863983 863991 864359 864364) (-530 "IFARRAY.spad" 861294 861309 862992 863019) (-529 "IFAMON.spad" 861156 861173 861250 861255) (-528 "IEVALAB.spad" 860569 860581 861146 861151) (-527 "IEVALAB.spad" 859980 859994 860559 860564) (-526 "IDPOAMS.spad" 859658 859670 859892 859897) (-525 "IDPOAM.spad" 859300 859312 859570 859575) (-524 "IDPO.spad" 859035 859047 859212 859217) (-523 "IDPC.spad" 857764 857776 859025 859030) (-522 "IDPAM.spad" 857431 857443 857676 857681) (-521 "IDPAG.spad" 857100 857112 857343 857348) (-520 "IDENT.spad" 856750 856758 857090 857095) (-519 "IDECOMP.spad" 853989 854007 856740 856745) (-518 "IDEAL.spad" 848935 848974 853921 853926) (-517 "ICDEN.spad" 848148 848164 848925 848930) (-516 "ICARD.spad" 847339 847347 848138 848143) (-515 "IBPTOOLS.spad" 845946 845963 847329 847334) (-514 "IBITS.spad" 845102 845115 845535 845562) (-513 "IBATOOL.spad" 842087 842106 845092 845097) (-512 "IBACHIN.spad" 840594 840609 842077 842082) (-511 "IARRAY2.spad" 839461 839487 840072 840099) (-510 "IARRAY1.spad" 838324 838339 838470 838497) (-509 "IAN.spad" 836544 836552 838137 838230) (-508 "IALGFACT.spad" 836155 836188 836534 836539) (-507 "HYPCAT.spad" 835579 835587 836145 836150) (-506 "HYPCAT.spad" 835001 835011 835569 835574) (-505 "HOSTNAME.spad" 834817 834825 834991 834996) (-504 "HOMOTOP.spad" 834560 834570 834807 834812) (-503 "HOAGG.spad" 831842 831852 834550 834555) (-502 "HOAGG.spad" 828857 828869 831567 831572) (-501 "HEXADEC.spad" 826817 826825 827182 827275) (-500 "HEUGCD.spad" 825908 825919 826807 826812) (-499 "HELLFDIV.spad" 825514 825538 825898 825903) (-498 "HEAP.spad" 824777 824787 824992 825019) (-497 "HEADAST.spad" 824318 824326 824767 824772) (-496 "HDP.spad" 811813 811829 812190 812289) (-495 "HDMP.spad" 808955 808970 809571 809698) (-494 "HB.spad" 807230 807238 808945 808950) (-493 "HASHTBL.spad" 805222 805253 805433 805460) (-492 "HASAST.spad" 804938 804946 805212 805217) (-491 "HACKPI.spad" 804429 804437 804840 804933) (-490 "GTSET.spad" 803323 803339 804030 804057) (-489 "GSTBL.spad" 801364 801399 801538 801553) (-488 "GSERIES.spad" 798596 798623 799415 799564) (-487 "GROUP.spad" 797869 797877 798576 798591) (-486 "GROUP.spad" 797150 797160 797859 797864) (-485 "GROEBSOL.spad" 795644 795665 797140 797145) (-484 "GRMOD.spad" 794223 794235 795634 795639) (-483 "GRMOD.spad" 792800 792814 794213 794218) (-482 "GRIMAGE.spad" 785713 785721 792790 792795) (-481 "GRDEF.spad" 784092 784100 785703 785708) (-480 "GRAY.spad" 782563 782571 784082 784087) (-479 "GRALG.spad" 781656 781668 782553 782558) (-478 "GRALG.spad" 780747 780761 781646 781651) (-477 "GPOLSET.spad" 780172 780195 780384 780411) (-476 "GOSPER.spad" 779449 779467 780162 780167) (-475 "GMODPOL.spad" 778597 778624 779417 779444) (-474 "GHENSEL.spad" 777680 777694 778587 778592) (-473 "GENUPS.spad" 773973 773986 777670 777675) (-472 "GENUFACT.spad" 773550 773560 773963 773968) (-471 "GENPGCD.spad" 773152 773169 773540 773545) (-470 "GENMFACT.spad" 772604 772623 773142 773147) (-469 "GENEEZ.spad" 770563 770576 772594 772599) (-468 "GDMP.spad" 767547 767564 768321 768448) (-467 "GCNAALG.spad" 761470 761497 767341 767408) (-466 "GCDDOM.spad" 760662 760670 761396 761465) (-465 "GCDDOM.spad" 759916 759926 760652 760657) (-464 "GBINTERN.spad" 755936 755974 759906 759911) (-463 "GBF.spad" 751719 751757 755926 755931) (-462 "GBEUCLID.spad" 749601 749639 751709 751714) (-461 "GB.spad" 747127 747165 749557 749562) (-460 "GAUSSFAC.spad" 746440 746448 747117 747122) (-459 "GALUTIL.spad" 744766 744776 746396 746401) (-458 "GALPOLYU.spad" 743220 743233 744756 744761) (-457 "GALFACTU.spad" 741433 741452 743210 743215) (-456 "GALFACT.spad" 731646 731657 741423 741428) (-455 "FVFUN.spad" 728669 728677 731636 731641) (-454 "FVC.spad" 727721 727729 728659 728664) (-453 "FUNDESC.spad" 727399 727407 727711 727716) (-452 "FUNCTION.spad" 727248 727260 727389 727394) (-451 "FTEM.spad" 726413 726421 727238 727243) (-450 "FT.spad" 724710 724718 726403 726408) (-449 "FSUPFACT.spad" 723607 723626 724643 724648) (-448 "FST.spad" 721693 721701 723597 723602) (-447 "FSRED.spad" 721173 721189 721683 721688) (-446 "FSPRMELT.spad" 720039 720055 721130 721135) (-445 "FSPECF.spad" 718130 718146 720029 720034) (-444 "FSINT.spad" 717790 717806 718120 718125) (-443 "FSERIES.spad" 716981 716993 717610 717709) (-442 "FSCINT.spad" 716298 716314 716971 716976) (-441 "FSAGG2.spad" 715033 715049 716288 716293) (-440 "FSAGG.spad" 714150 714160 714989 715028) (-439 "FSAGG.spad" 713229 713241 714070 714075) (-438 "FS2UPS.spad" 707744 707778 713219 713224) (-437 "FS2EXPXP.spad" 706885 706908 707734 707739) (-436 "FS2.spad" 706540 706556 706875 706880) (-435 "FS.spad" 700808 700818 706315 706535) (-434 "FS.spad" 694848 694860 700357 700362) (-433 "FRUTIL.spad" 693802 693812 694838 694843) (-432 "FRNAALG.spad" 689079 689089 693744 693797) (-431 "FRNAALG.spad" 684368 684380 689035 689040) (-430 "FRNAAF2.spad" 683816 683834 684358 684363) (-429 "FRMOD.spad" 683223 683253 683744 683749) (-428 "FRIDEAL2.spad" 682827 682859 683213 683218) (-427 "FRIDEAL.spad" 682052 682073 682807 682822) (-426 "FRETRCT.spad" 681571 681581 682042 682047) (-425 "FRETRCT.spad" 680947 680959 681420 681425) (-424 "FRAMALG.spad" 679327 679340 680903 680942) (-423 "FRAMALG.spad" 677739 677754 679317 679322) (-422 "FRAC2.spad" 677344 677356 677729 677734) (-421 "FRAC.spad" 674303 674313 674690 674863) (-420 "FR2.spad" 673639 673651 674293 674298) (-419 "FR.spad" 667234 667244 672534 672603) (-418 "FPS.spad" 664073 664081 667124 667229) (-417 "FPS.spad" 660940 660950 663993 663998) (-416 "FPC.spad" 659986 659994 660842 660935) (-415 "FPC.spad" 659118 659128 659976 659981) (-414 "FPATMAB.spad" 658880 658890 659108 659113) (-413 "FPARFRAC.spad" 657722 657739 658870 658875) (-412 "FORTRAN.spad" 656228 656271 657712 657717) (-411 "FORTFN.spad" 653398 653406 656218 656223) (-410 "FORTCAT.spad" 653082 653090 653388 653393) (-409 "FORT.spad" 652031 652039 653072 653077) (-408 "FORMULA1.spad" 651510 651520 652021 652026) (-407 "FORMULA.spad" 648984 648992 651500 651505) (-406 "FORDER.spad" 648675 648699 648974 648979) (-405 "FOP.spad" 647876 647884 648665 648670) (-404 "FNLA.spad" 647300 647322 647844 647871) (-403 "FNCAT.spad" 645895 645903 647290 647295) (-402 "FNAME.spad" 645787 645795 645885 645890) (-401 "FMTC.spad" 645585 645593 645713 645782) (-400 "FMONOID.spad" 645266 645276 645541 645546) (-399 "FMONCAT.spad" 642435 642445 645256 645261) (-398 "FMFUN.spad" 639465 639473 642425 642430) (-397 "FMCAT.spad" 637141 637159 639433 639460) (-396 "FMC.spad" 636193 636201 637131 637136) (-395 "FM1.spad" 635558 635570 636127 636154) (-394 "FM.spad" 635173 635185 635412 635439) (-393 "FLOATRP.spad" 632916 632930 635163 635168) (-392 "FLOATCP.spad" 630355 630369 632906 632911) (-391 "FLOAT.spad" 623669 623677 630221 630350) (-390 "FLINEXP.spad" 623391 623401 623659 623664) (-389 "FLINEXP.spad" 623054 623066 623324 623329) (-388 "FLASORT.spad" 622380 622392 623044 623049) (-387 "FLALG.spad" 620050 620069 622306 622375) (-386 "FLAGG2.spad" 618767 618783 620040 620045) (-385 "FLAGG.spad" 615833 615843 618747 618762) (-384 "FLAGG.spad" 612800 612812 615716 615721) (-383 "FINRALG.spad" 610885 610898 612756 612795) (-382 "FINRALG.spad" 608896 608911 610769 610774) (-381 "FINITE.spad" 608048 608056 608886 608891) (-380 "FINAALG.spad" 597233 597243 607990 608043) (-379 "FINAALG.spad" 586430 586442 597189 597194) (-378 "FILECAT.spad" 584964 584981 586420 586425) (-377 "FILE.spad" 584547 584557 584954 584959) (-376 "FIELD.spad" 583953 583961 584449 584542) (-375 "FIELD.spad" 583445 583455 583943 583948) (-374 "FGROUP.spad" 582108 582118 583425 583440) (-373 "FGLMICPK.spad" 580903 580918 582098 582103) (-372 "FFX.spad" 580286 580301 580619 580712) (-371 "FFSLPE.spad" 579797 579818 580276 580281) (-370 "FFPOLY2.spad" 578857 578874 579787 579792) (-369 "FFPOLY.spad" 570199 570210 578847 578852) (-368 "FFP.spad" 569604 569624 569915 570008) (-367 "FFNBX.spad" 568124 568144 569320 569413) (-366 "FFNBP.spad" 566645 566662 567840 567933) (-365 "FFNB.spad" 565110 565131 566326 566419) (-364 "FFINTBAS.spad" 562624 562643 565100 565105) (-363 "FFIELDC.spad" 560209 560217 562526 562619) (-362 "FFIELDC.spad" 557880 557890 560199 560204) (-361 "FFHOM.spad" 556652 556669 557870 557875) (-360 "FFF.spad" 554095 554106 556642 556647) (-359 "FFCGX.spad" 552950 552970 553811 553904) (-358 "FFCGP.spad" 551847 551867 552666 552759) (-357 "FFCG.spad" 550639 550660 551528 551621) (-356 "FFCAT2.spad" 550386 550426 550629 550634) (-355 "FFCAT.spad" 543551 543573 550225 550381) (-354 "FFCAT.spad" 536795 536819 543471 543476) (-353 "FF.spad" 536243 536259 536476 536569) (-352 "FEXPR.spad" 527943 527989 535990 536029) (-351 "FEVALAB.spad" 527651 527661 527933 527938) (-350 "FEVALAB.spad" 527135 527147 527419 527424) (-349 "FDIVCAT.spad" 525231 525255 527125 527130) (-348 "FDIVCAT.spad" 523325 523351 525221 525226) (-347 "FDIV2.spad" 522981 523021 523315 523320) (-346 "FDIV.spad" 522439 522463 522971 522976) (-345 "FCTRDATA.spad" 521447 521455 522429 522434) (-344 "FCPAK1.spad" 519982 519990 521437 521442) (-343 "FCOMP.spad" 519361 519371 519972 519977) (-342 "FC.spad" 509368 509376 519351 519356) (-341 "FAXF.spad" 502403 502417 509270 509363) (-340 "FAXF.spad" 495490 495506 502359 502364) (-339 "FARRAY.spad" 493466 493476 494499 494526) (-338 "FAMR.spad" 491610 491622 493364 493461) (-337 "FAMR.spad" 489738 489752 491494 491499) (-336 "FAMONOID.spad" 489422 489432 489692 489697) (-335 "FAMONC.spad" 487742 487754 489412 489417) (-334 "FAGROUP.spad" 487382 487392 487638 487665) (-333 "FACUTIL.spad" 485594 485611 487372 487377) (-332 "FACTFUNC.spad" 484796 484806 485584 485589) (-331 "EXPUPXS.spad" 481548 481571 482847 482996) (-330 "EXPRTUBE.spad" 478836 478844 481538 481543) (-329 "EXPRODE.spad" 476004 476020 478826 478831) (-328 "EXPR2UPS.spad" 472126 472139 475994 475999) (-327 "EXPR2.spad" 471831 471843 472116 472121) (-326 "EXPR.spad" 466916 466926 467630 467925) (-325 "EXPEXPAN.spad" 463660 463685 464292 464385) (-324 "EXITAST.spad" 463396 463404 463650 463655) (-323 "EXIT.spad" 463067 463075 463386 463391) (-322 "EVALCYC.spad" 462527 462541 463057 463062) (-321 "EVALAB.spad" 462107 462117 462517 462522) (-320 "EVALAB.spad" 461685 461697 462097 462102) (-319 "EUCDOM.spad" 459275 459283 461611 461680) (-318 "EUCDOM.spad" 456927 456937 459265 459270) (-317 "ESTOOLS2.spad" 456522 456536 456917 456922) (-316 "ESTOOLS1.spad" 456199 456210 456512 456517) (-315 "ESTOOLS.spad" 448077 448085 456189 456194) (-314 "ESCONT1.spad" 447818 447830 448067 448072) (-313 "ESCONT.spad" 444611 444619 447808 447813) (-312 "ES2.spad" 444124 444140 444601 444606) (-311 "ES1.spad" 443694 443710 444114 444119) (-310 "ES.spad" 436565 436573 443684 443689) (-309 "ES.spad" 429339 429349 436460 436465) (-308 "ERROR.spad" 426666 426674 429329 429334) (-307 "EQTBL.spad" 424660 424682 424869 424896) (-306 "EQ2.spad" 424378 424390 424650 424655) (-305 "EQ.spad" 419154 419164 421949 422061) (-304 "EP.spad" 415480 415490 419144 419149) (-303 "ENV.spad" 414158 414166 415470 415475) (-302 "ENTIRER.spad" 413826 413834 414102 414153) (-301 "EMR.spad" 413114 413155 413752 413821) (-300 "ELTAGG.spad" 411368 411387 413104 413109) (-299 "ELTAGG.spad" 409586 409607 411324 411329) (-298 "ELTAB.spad" 409061 409074 409576 409581) (-297 "ELFUTS.spad" 408496 408515 409051 409056) (-296 "ELEMFUN.spad" 408185 408193 408486 408491) (-295 "ELEMFUN.spad" 407872 407882 408175 408180) (-294 "ELAGG.spad" 405843 405853 407852 407867) (-293 "ELAGG.spad" 403751 403763 405762 405767) (-292 "ELABOR.spad" 403097 403105 403741 403746) (-291 "ELABEXPR.spad" 402029 402037 403087 403092) (-290 "EFUPXS.spad" 398805 398835 401985 401990) (-289 "EFULS.spad" 395641 395664 398761 398766) (-288 "EFSTRUC.spad" 393656 393672 395631 395636) (-287 "EF.spad" 388432 388448 393646 393651) (-286 "EAB.spad" 386732 386740 388422 388427) (-285 "E04UCFA.spad" 386268 386276 386722 386727) (-284 "E04NAFA.spad" 385845 385853 386258 386263) (-283 "E04MBFA.spad" 385425 385433 385835 385840) (-282 "E04JAFA.spad" 384961 384969 385415 385420) (-281 "E04GCFA.spad" 384497 384505 384951 384956) (-280 "E04FDFA.spad" 384033 384041 384487 384492) (-279 "E04DGFA.spad" 383569 383577 384023 384028) (-278 "E04AGNT.spad" 379443 379451 383559 383564) (-277 "DVARCAT.spad" 376333 376343 379433 379438) (-276 "DVARCAT.spad" 373221 373233 376323 376328) (-275 "DSMP.spad" 370517 370531 370822 370949) (-274 "DSEXT.spad" 369819 369829 370507 370512) (-273 "DSEXT.spad" 369025 369037 369715 369720) (-272 "DROPT1.spad" 368690 368700 369015 369020) (-271 "DROPT0.spad" 363555 363563 368680 368685) (-270 "DROPT.spad" 357514 357522 363545 363550) (-269 "DRAWPT.spad" 355687 355695 357504 357509) (-268 "DRAWHACK.spad" 354995 355005 355677 355682) (-267 "DRAWCX.spad" 352473 352481 354985 354990) (-266 "DRAWCURV.spad" 352020 352035 352463 352468) (-265 "DRAWCFUN.spad" 341552 341560 352010 352015) (-264 "DRAW.spad" 334428 334441 341542 341547) (-263 "DQAGG.spad" 332606 332616 334396 334423) (-262 "DPOLCAT.spad" 327963 327979 332474 332601) (-261 "DPOLCAT.spad" 323406 323424 327919 327924) (-260 "DPMO.spad" 314929 314945 315067 315280) (-259 "DPMM.spad" 306465 306483 306590 306803) (-258 "DOMTMPLT.spad" 306236 306244 306455 306460) (-257 "DOMCTOR.spad" 305991 305999 306226 306231) (-256 "DOMAIN.spad" 305102 305110 305981 305986) (-255 "DMP.spad" 302290 302305 302860 302987) (-254 "DMEXT.spad" 302157 302167 302258 302285) (-253 "DLP.spad" 301517 301527 302147 302152) (-252 "DLIST.spad" 299922 299932 300526 300553) (-251 "DLAGG.spad" 298339 298349 299912 299917) (-250 "DIVRING.spad" 297881 297889 298283 298334) (-249 "DIVRING.spad" 297467 297477 297871 297876) (-248 "DISPLAY.spad" 295657 295665 297457 297462) (-247 "DIRPROD2.spad" 294475 294493 295647 295652) (-246 "DIRPROD.spad" 281707 281723 282347 282446) (-245 "DIRPCAT.spad" 280900 280916 281603 281702) (-244 "DIRPCAT.spad" 279720 279738 280425 280430) (-243 "DIOSP.spad" 278545 278553 279710 279715) (-242 "DIOPS.spad" 277541 277551 278525 278540) (-241 "DIOPS.spad" 276511 276523 277497 277502) (-240 "DIFRING.spad" 276349 276357 276491 276506) (-239 "DIFFSPC.spad" 275928 275936 276339 276344) (-238 "DIFFSPC.spad" 275505 275515 275918 275923) (-237 "DIFFMOD.spad" 274994 275004 275473 275500) (-236 "DIFFDOM.spad" 274159 274170 274984 274989) (-235 "DIFFDOM.spad" 273322 273335 274149 274154) (-234 "DIFEXT.spad" 273141 273151 273302 273317) (-233 "DIAGG.spad" 272771 272781 273121 273136) (-232 "DIAGG.spad" 272409 272421 272761 272766) (-231 "DHMATRIX.spad" 270592 270602 271737 271764) (-230 "DFSFUN.spad" 264232 264240 270582 270587) (-229 "DFLOAT.spad" 260963 260971 264122 264227) (-228 "DFINTTLS.spad" 259194 259210 260953 260958) (-227 "DERHAM.spad" 257108 257140 259174 259189) (-226 "DEQUEUE.spad" 256303 256313 256586 256613) (-225 "DEGRED.spad" 255920 255934 256293 256298) (-224 "DEFINTRF.spad" 253457 253467 255910 255915) (-223 "DEFINTEF.spad" 251967 251983 253447 253452) (-222 "DEFAST.spad" 251351 251359 251957 251962) (-221 "DECIMAL.spad" 249315 249323 249676 249769) (-220 "DDFACT.spad" 247136 247153 249305 249310) (-219 "DBLRESP.spad" 246736 246760 247126 247131) (-218 "DBASIS.spad" 246362 246377 246726 246731) (-217 "DBASE.spad" 245026 245036 246352 246357) (-216 "DATAARY.spad" 244512 244525 245016 245021) (-215 "D03FAFA.spad" 244340 244348 244502 244507) (-214 "D03EEFA.spad" 244160 244168 244330 244335) (-213 "D03AGNT.spad" 243246 243254 244150 244155) (-212 "D02EJFA.spad" 242708 242716 243236 243241) (-211 "D02CJFA.spad" 242186 242194 242698 242703) (-210 "D02BHFA.spad" 241676 241684 242176 242181) (-209 "D02BBFA.spad" 241166 241174 241666 241671) (-208 "D02AGNT.spad" 236036 236044 241156 241161) (-207 "D01WGTS.spad" 234355 234363 236026 236031) (-206 "D01TRNS.spad" 234332 234340 234345 234350) (-205 "D01GBFA.spad" 233854 233862 234322 234327) (-204 "D01FCFA.spad" 233376 233384 233844 233849) (-203 "D01ASFA.spad" 232844 232852 233366 233371) (-202 "D01AQFA.spad" 232298 232306 232834 232839) (-201 "D01APFA.spad" 231738 231746 232288 232293) (-200 "D01ANFA.spad" 231232 231240 231728 231733) (-199 "D01AMFA.spad" 230742 230750 231222 231227) (-198 "D01ALFA.spad" 230282 230290 230732 230737) (-197 "D01AKFA.spad" 229808 229816 230272 230277) (-196 "D01AJFA.spad" 229331 229339 229798 229803) (-195 "D01AGNT.spad" 225398 225406 229321 229326) (-194 "CYCLOTOM.spad" 224904 224912 225388 225393) (-193 "CYCLES.spad" 221696 221704 224894 224899) (-192 "CVMP.spad" 221113 221123 221686 221691) (-191 "CTRIGMNP.spad" 219613 219629 221103 221108) (-190 "CTORKIND.spad" 219216 219224 219603 219608) (-189 "CTORCAT.spad" 218457 218465 219206 219211) (-188 "CTORCAT.spad" 217696 217706 218447 218452) (-187 "CTORCALL.spad" 217285 217295 217686 217691) (-186 "CTOR.spad" 216976 216984 217275 217280) (-185 "CSTTOOLS.spad" 216221 216234 216966 216971) (-184 "CRFP.spad" 209993 210006 216211 216216) (-183 "CRCEAST.spad" 209713 209721 209983 209988) (-182 "CRAPACK.spad" 208780 208790 209703 209708) (-181 "CPMATCH.spad" 208281 208296 208702 208707) (-180 "CPIMA.spad" 207986 208005 208271 208276) (-179 "COORDSYS.spad" 202995 203005 207976 207981) (-178 "CONTOUR.spad" 202422 202430 202985 202990) (-177 "CONTFRAC.spad" 198172 198182 202324 202417) (-176 "CONDUIT.spad" 197930 197938 198162 198167) (-175 "COMRING.spad" 197604 197612 197868 197925) (-174 "COMPPROP.spad" 197122 197130 197594 197599) (-173 "COMPLPAT.spad" 196889 196904 197112 197117) (-172 "COMPLEX2.spad" 196604 196616 196879 196884) (-171 "COMPLEX.spad" 191915 191925 192159 192420) (-170 "COMPILER.spad" 191464 191472 191905 191910) (-169 "COMPFACT.spad" 191066 191080 191454 191459) (-168 "COMPCAT.spad" 189138 189148 190800 191061) (-167 "COMPCAT.spad" 186935 186947 188599 188604) (-166 "COMMUPC.spad" 186683 186701 186925 186930) (-165 "COMMONOP.spad" 186216 186224 186673 186678) (-164 "COMMAAST.spad" 185979 185987 186206 186211) (-163 "COMM.spad" 185790 185798 185969 185974) (-162 "COMBOPC.spad" 184713 184721 185780 185785) (-161 "COMBINAT.spad" 183480 183490 184703 184708) (-160 "COMBF.spad" 180902 180918 183470 183475) (-159 "COLOR.spad" 179739 179747 180892 180897) (-158 "COLONAST.spad" 179405 179413 179729 179734) (-157 "CMPLXRT.spad" 179116 179133 179395 179400) (-156 "CLLCTAST.spad" 178778 178786 179106 179111) (-155 "CLIP.spad" 174886 174894 178768 178773) (-154 "CLIF.spad" 173541 173557 174842 174881) (-153 "CLAGG.spad" 170078 170088 173531 173536) (-152 "CLAGG.spad" 166483 166495 169938 169943) (-151 "CINTSLPE.spad" 165838 165851 166473 166478) (-150 "CHVAR.spad" 163976 163998 165828 165833) (-149 "CHARZ.spad" 163891 163899 163956 163971) (-148 "CHARPOL.spad" 163417 163427 163881 163886) (-147 "CHARNZ.spad" 163170 163178 163397 163412) (-146 "CHAR.spad" 160538 160546 163160 163165) (-145 "CFCAT.spad" 159866 159874 160528 160533) (-144 "CDEN.spad" 159086 159100 159856 159861) (-143 "CCLASS.spad" 157182 157190 158444 158483) (-142 "CATEGORY.spad" 156256 156264 157172 157177) (-141 "CATCTOR.spad" 156147 156155 156246 156251) (-140 "CATAST.spad" 155773 155781 156137 156142) (-139 "CASEAST.spad" 155487 155495 155763 155768) (-138 "CARTEN2.spad" 154877 154904 155477 155482) (-137 "CARTEN.spad" 150244 150268 154867 154872) (-136 "CARD.spad" 147539 147547 150218 150239) (-135 "CAPSLAST.spad" 147321 147329 147529 147534) (-134 "CACHSET.spad" 146945 146953 147311 147316) (-133 "CABMON.spad" 146500 146508 146935 146940) (-132 "BYTEORD.spad" 146175 146183 146490 146495) (-131 "BYTEBUF.spad" 143876 143884 145162 145189) (-130 "BYTE.spad" 143351 143359 143866 143871) (-129 "BTREE.spad" 142295 142305 142829 142856) (-128 "BTOURN.spad" 141171 141181 141773 141800) (-127 "BTCAT.spad" 140563 140573 141139 141166) (-126 "BTCAT.spad" 139975 139987 140553 140558) (-125 "BTAGG.spad" 139441 139449 139943 139970) (-124 "BTAGG.spad" 138927 138937 139431 139436) (-123 "BSTREE.spad" 137539 137549 138405 138432) (-122 "BRILL.spad" 135744 135755 137529 137534) (-121 "BRAGG.spad" 134700 134710 135734 135739) (-120 "BRAGG.spad" 133620 133632 134656 134661) (-119 "BPADICRT.spad" 131445 131457 131692 131785) (-118 "BPADIC.spad" 131117 131129 131371 131440) (-117 "BOUNDZRO.spad" 130773 130790 131107 131112) (-116 "BOP1.spad" 128231 128241 130763 130768) (-115 "BOP.spad" 123365 123373 128221 128226) (-114 "BOOLEAN.spad" 122803 122811 123355 123360) (-113 "BOOLE.spad" 122453 122461 122793 122798) (-112 "BOOLE.spad" 122101 122111 122443 122448) (-111 "BMODULE.spad" 121813 121825 122069 122096) (-110 "BITS.spad" 121187 121195 121402 121429) (-109 "BINDING.spad" 120608 120616 121177 121182) (-108 "BINARY.spad" 118577 118585 118933 119026) (-107 "BGAGG.spad" 117782 117792 118557 118572) (-106 "BGAGG.spad" 116995 117007 117772 117777) (-105 "BFUNCT.spad" 116559 116567 116975 116990) (-104 "BEZOUT.spad" 115699 115726 116509 116514) (-103 "BBTREE.spad" 112447 112457 115177 115204) (-102 "BASTYPE.spad" 111946 111954 112437 112442) (-101 "BASTYPE.spad" 111443 111453 111936 111941) (-100 "BALFACT.spad" 110902 110915 111433 111438) (-99 "AUTOMOR.spad" 110353 110362 110882 110897) (-98 "ATTREG.spad" 107076 107083 110105 110348) (-97 "ATTRBUT.spad" 103099 103106 107056 107071) (-96 "ATTRAST.spad" 102816 102823 103089 103094) (-95 "ATRIG.spad" 102286 102293 102806 102811) (-94 "ATRIG.spad" 101754 101763 102276 102281) (-93 "ASTCAT.spad" 101658 101665 101744 101749) (-92 "ASTCAT.spad" 101560 101569 101648 101653) (-91 "ASTACK.spad" 100770 100779 101038 101065) (-90 "ASSOCEQ.spad" 99604 99615 100726 100731) (-89 "ASP9.spad" 98685 98698 99594 99599) (-88 "ASP80.spad" 98007 98020 98675 98680) (-87 "ASP8.spad" 97050 97063 97997 98002) (-86 "ASP78.spad" 96501 96514 97040 97045) (-85 "ASP77.spad" 95870 95883 96491 96496) (-84 "ASP74.spad" 94962 94975 95860 95865) (-83 "ASP73.spad" 94233 94246 94952 94957) (-82 "ASP7.spad" 93393 93406 94223 94228) (-81 "ASP6.spad" 92260 92273 93383 93388) (-80 "ASP55.spad" 90769 90782 92250 92255) (-79 "ASP50.spad" 88586 88599 90759 90764) (-78 "ASP49.spad" 87585 87598 88576 88581) (-77 "ASP42.spad" 86000 86039 87575 87580) (-76 "ASP41.spad" 84587 84626 85990 85995) (-75 "ASP4.spad" 83882 83895 84577 84582) (-74 "ASP35.spad" 82870 82883 83872 83877) (-73 "ASP34.spad" 82171 82184 82860 82865) (-72 "ASP33.spad" 81731 81744 82161 82166) (-71 "ASP31.spad" 80871 80884 81721 81726) (-70 "ASP30.spad" 79763 79776 80861 80866) (-69 "ASP29.spad" 79229 79242 79753 79758) (-68 "ASP28.spad" 70502 70515 79219 79224) (-67 "ASP27.spad" 69399 69412 70492 70497) (-66 "ASP24.spad" 68486 68499 69389 69394) (-65 "ASP20.spad" 67950 67963 68476 68481) (-64 "ASP19.spad" 62636 62649 67940 67945) (-63 "ASP12.spad" 62050 62063 62626 62631) (-62 "ASP10.spad" 61321 61334 62040 62045) (-61 "ASP1.spad" 60702 60715 61311 61316) (-60 "ARRAY2.spad" 59941 59950 60180 60207) (-59 "ARRAY12.spad" 58654 58665 59931 59936) (-58 "ARRAY1.spad" 57317 57326 57663 57690) (-57 "ARR2CAT.spad" 53099 53120 57285 57312) (-56 "ARR2CAT.spad" 48901 48924 53089 53094) (-55 "ARITY.spad" 48273 48280 48891 48896) (-54 "APPRULE.spad" 47557 47579 48263 48268) (-53 "APPLYORE.spad" 47176 47189 47547 47552) (-52 "ANY1.spad" 46247 46256 47166 47171) (-51 "ANY.spad" 45098 45105 46237 46242) (-50 "ANTISYM.spad" 43543 43559 45078 45093) (-49 "ANON.spad" 43252 43259 43533 43538) (-48 "AN.spad" 41558 41565 43065 43158) (-47 "AMR.spad" 39743 39754 41456 41553) (-46 "AMR.spad" 37759 37772 39474 39479) (-45 "ALIST.spad" 34599 34620 34949 34976) (-44 "ALGSC.spad" 33734 33760 34471 34524) (-43 "ALGPKG.spad" 29517 29528 33690 33695) (-42 "ALGMFACT.spad" 28710 28724 29507 29512) (-41 "ALGMANIP.spad" 26194 26209 28537 28542) (-40 "ALGFF.spad" 23799 23826 24016 24172) (-39 "ALGFACT.spad" 22918 22928 23789 23794) (-38 "ALGEBRA.spad" 22751 22760 22874 22913) (-37 "ALGEBRA.spad" 22616 22627 22741 22746) (-36 "ALAGG.spad" 22128 22149 22584 22611) (-35 "AHYP.spad" 21509 21516 22118 22123) (-34 "AGG.spad" 19842 19849 21499 21504) (-33 "AGG.spad" 18139 18148 19798 19803) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file -- cgit v1.2.3