From 13c00cb56547feb8cd6b5b3c6386a881072862f6 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Mon, 7 Mar 2011 04:02:08 +0000 Subject: * algebra/si.spad.pamphlet (SingleInteger): Logic is indirectly included through BooleanLogic. --- src/share/algebra/browse.daase | 636 ++++++++++++++++++++--------------------- 1 file changed, 318 insertions(+), 318 deletions(-) (limited to 'src/share/algebra/browse.daase') diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 42ca82cb..820272fa 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(2294384 . 3508426629) +(2294384 . 3508454526) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -56,7 +56,7 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -4340) +(-32 R -4341) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL ((|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) @@ -88,11 +88,11 @@ NIL ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -4340 UP UPUP -2179) +(-40 -4341 UP UPUP -4100) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4501 |has| (-421 |#2|) (-376)) (-4506 |has| (-421 |#2|) (-376)) (-4500 |has| (-421 |#2|) (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2219 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2219 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2219 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2219 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2219 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-2219 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) -(-41 R -4340) +((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2222 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2222 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2222 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2222 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2222 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-2222 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) +(-41 R -4341) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -435) (|devaluate| |#1|))))) @@ -111,7 +111,7 @@ NIL (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) ((-4508 . T) (-4509 . T)) -((-2219 (-12 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3463) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3463) (|devaluate| |#2|))))))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-871))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3463) (|devaluate| |#2|))))))) +((-2222 (-12 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3436) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3436) (|devaluate| |#2|))))))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-871))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3436) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -4340) +(-54 |Base| R -4341) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -163,7 +163,7 @@ NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL @@ -171,64 +171,64 @@ NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -2113) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -2121) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-62 -2113) +(-62 -2121) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -2113) +(-63 -2121) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-64 -2113) +(-64 -2121) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -2113) +(-65 -2121) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2113) +(-66 -2121) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -2113) +(-67 -2121) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2113) +(-68 -2121) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2113) +(-69 -2121) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -2113) +(-70 -2121) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -2113) +(-71 -2121) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -2113) +(-72 -2121) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -2113) +(-73 -2121) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -2113) +(-74 -2121) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -2113) +(-75 -2121) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -240,51 +240,51 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives wrt \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -2113) +(-78 -2121) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -2113) +(-79 -2121) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2113) +(-80 -2121) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2113) +(-81 -2121) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -2113) +(-82 -2121) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2113) +(-83 -2121) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2113) +(-84 -2121) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2113) +(-85 -2121) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2113) +(-86 -2121) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2113) +(-87 -2121) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-88 -2113) +(-88 -2121) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-89 -2113) +(-89 -2121) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -295,7 +295,7 @@ NIL (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -343,7 +343,7 @@ NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL @@ -363,7 +363,7 @@ NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2219 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2222 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -396,7 +396,7 @@ NIL ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-117 -4340 UP) +(-117 -4341 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL @@ -407,7 +407,7 @@ NIL (-119 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-118 |#1|) (QUOTE (-939))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-118 |#1|) (QUOTE (-1051))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871))) (-2219 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-1182))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) +((|HasCategory| (-118 |#1|) (QUOTE (-939))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-118 |#1|) (QUOTE (-1051))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871))) (-2222 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-1182))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) (-120 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -423,7 +423,7 @@ NIL (-123 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-124 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL @@ -443,11 +443,11 @@ NIL (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL @@ -455,7 +455,7 @@ NIL (-131) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-2219 (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-130) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-130) (QUOTE (-871))) (-2219 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) +((-2222 (-12 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-2222 (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-130) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-130) (QUOTE (-871))) (-2222 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-132) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -476,11 +476,11 @@ NIL ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) (((-4510 "*") . T)) NIL -(-137 |minix| -2969 R) +(-137 |minix| -2945 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-138 |minix| -2969 S T$) +(-138 |minix| -2945 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -503,7 +503,7 @@ NIL (-143) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) ((-4508 . T) (-4498 . T) (-4509 . T)) -((-2219 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) +((-2222 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-144 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL @@ -528,7 +528,7 @@ NIL ((|constructor| (NIL "Rings of Characteristic Zero."))) ((-4505 . T)) NIL -(-150 -4340 UP UPUP) +(-150 -4341 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -568,7 +568,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-160 R -4340) +(-160 R -4341) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -602,7 +602,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4504)) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571)))) (-168 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4501 -2219 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-4435 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-4501 -2222 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-4433 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-169 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4501 -2219 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-4435 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2219 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-571)))) (-2219 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1091))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasAttribute| |#1| (QUOTE -4507)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-363))))) +((-4501 -2222 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-4433 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2222 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-571)))) (-2222 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1091))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasAttribute| |#1| (QUOTE -4507)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-363))))) (-172 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL @@ -692,7 +692,7 @@ NIL ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-191 R -4340) +(-191 R -4341) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -804,23 +804,23 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-219 -4340 UP UPUP R) +(-219 -4341 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-220 -4340 FP) +(-220 -4341 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-221) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2219 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2222 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-222) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-223 R -4340) +(-223 R -4341) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -835,18 +835,18 @@ NIL (-226 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-227 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) ((-4505 . T)) NIL -(-228 R -4340) +(-228 R -4341) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-229) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4423 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-4419 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-230) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -855,7 +855,7 @@ NIL (-231 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-232 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL @@ -904,19 +904,19 @@ NIL ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-244 S -2969 R) +(-244 S -2945 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL ((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasAttribute| |#3| (QUOTE -4505)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) -(-245 -2969 R) +(-245 -2945 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) ((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T)) NIL -(-246 -2969 R) +(-246 -2945 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) ((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2219 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2219 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2219 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) -(-247 -2969 A B) +((-2222 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2222 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2222 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2222 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +(-247 -2945 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL @@ -939,7 +939,7 @@ NIL (-252 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-253 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL @@ -951,7 +951,7 @@ NIL (-255 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-256) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL @@ -966,12 +966,12 @@ NIL NIL (-259 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4505 -2219 (-2818 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4505)) (-2818 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1207))))) (-4502 |has| |#4| (-1080)) (-4503 |has| |#4| (-1080)) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-376))) (-2219 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2219 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2219 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2219 (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080))))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2219 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2219 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2219 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-1132))) (-2219 (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132))))) (-2219 (-12 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2219 (-12 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2219 (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (-2219 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2219 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132)))) (-2219 (|HasAttribute| |#4| (QUOTE -4505)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))))) +((-4505 -2222 (-2807 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4505)) (-2807 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1207))))) (-4502 |has| |#4| (-1080)) (-4503 |has| |#4| (-1080)) (-4508 . T)) +((-2222 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-376))) (-2222 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2222 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2222 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2222 (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080))))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2222 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2222 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2222 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-1132))) (-2222 (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132))))) (-2222 (-12 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2222 (-12 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2222 (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (-2222 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2222 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132)))) (-2222 (|HasAttribute| |#4| (QUOTE -4505)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))))) (-260 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4505 -2219 (-2818 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4505)) (-2818 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1207))))) (-4502 |has| |#3| (-1080)) (-4503 |has| |#3| (-1080)) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-376))) (-2219 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2219 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2219 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2219 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2219 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2219 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2219 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2219 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2219 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2219 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2219 (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (-2219 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2219 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2219 (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) +((-4505 -2222 (-2807 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4505)) (-2807 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1207))))) (-4502 |has| |#3| (-1080)) (-4503 |has| |#3| (-1080)) (-4508 . T)) +((-2222 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-376))) (-2222 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2222 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2222 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2222 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2222 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2222 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2222 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2222 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2222 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2222 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2222 (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (-2222 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2222 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2222 (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (-261 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL @@ -1031,7 +1031,7 @@ NIL (-275 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-276 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1076,11 +1076,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-287 R -4340) +(-287 R -4341) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-288 R -4340) +(-288 R -4341) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1132,7 +1132,7 @@ NIL ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-301 S R |Mod| -4336 -3462 |exactQuo|) +(-301 S R |Mod| -2709 -2184 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL @@ -1150,8 +1150,8 @@ NIL NIL (-305 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4505 -2219 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4502 |has| |#1| (-1080)) (-4503 |has| |#1| (-1080))) -((|HasCategory| |#1| (QUOTE (-376))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2219 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-310))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-2219 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-2219 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-748)))) +((-4505 -2222 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4502 |has| |#1| (-1080)) (-4503 |has| |#1| (-1080))) +((|HasCategory| |#1| (QUOTE (-376))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2222 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-310))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-2222 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-2222 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-748)))) (-306 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL @@ -1159,7 +1159,7 @@ NIL (-307 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3463) (|devaluate| |#2|)))))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3436) (|devaluate| |#2|)))))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102)))) (-308) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL @@ -1172,11 +1172,11 @@ NIL ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-311 -4340 S) +(-311 -4341 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-312 E -4340) +(-312 E -4341) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1216,7 +1216,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-322 -4340) +(-322 -4341) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1231,11 +1231,11 @@ NIL (-325 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1051))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871))) (-2219 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))) (-2219 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))))) +((|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1051))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871))) (-2222 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))) (-2222 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))))) (-326 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4505 -2219 (-12 (|has| |#1| (-571)) (-2219 (|has| |#1| (-1080)) (|has| |#1| (-487)))) (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571))) -((-2219 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (-2219 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-1080))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-147)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080))))) (-2219 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2219 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2219 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2219 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571)))) (-2219 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21)))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143)))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25)))) (-2219 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%list| (QUOTE -1069) (QUOTE (-560))))) +((-4505 -2222 (-12 (|has| |#1| (-571)) (-2222 (|has| |#1| (-1080)) (|has| |#1| (-487)))) (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571))) +((-2222 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (-2222 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-1080))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-147)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080))))) (-2222 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2222 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2222 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2222 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571)))) (-2222 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21)))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143)))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25)))) (-2222 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%list| (QUOTE -1069) (QUOTE (-560))))) (-327 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1244,7 +1244,7 @@ NIL ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-329 R -4340) +(-329 R -4341) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1255,7 +1255,7 @@ NIL (-331 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -3782) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4394) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2601) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -3785) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -1999) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2597) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-332 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1287,12 +1287,12 @@ NIL (-339 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-340 S -4340) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-340 S -4341) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-381)))) -(-341 -4340) +(-341 -4341) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL @@ -1312,7 +1312,7 @@ NIL ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-346 -4340 UP UPUP R) +(-346 -4341 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1320,11 +1320,11 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-348 S -4340 UP UPUP R) +(-348 S -4341 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-349 -4340 UP UPUP R) +(-349 -4341 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL @@ -1343,12 +1343,12 @@ NIL (-353 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2219 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) -(-354 S -4340 UP UPUP) +((-2222 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) +(-354 S -4341 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-376)))) -(-355 -4340 UP UPUP) +(-355 -4341 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) ((-4501 |has| (-421 |#2|) (-376)) (-4506 |has| (-421 |#2|) (-376)) (-4500 |has| (-421 |#2|) (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL @@ -1359,15 +1359,15 @@ NIL (-357 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2219 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) +((-2222 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) (-358 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2219 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2222 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-359 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2219 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2222 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-360 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1384,42 +1384,42 @@ NIL ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL -(-364 R UP -4340) +(-364 R UP -4341) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-365 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2219 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) +((-2222 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) (-366 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2219 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2222 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-367 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2219 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2222 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-368 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2219 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2222 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-369 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-370 -4340 GF) +(-370 -4341 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-371 -4340 FP FPP) +(-371 -4341 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL (-372 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2219 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2222 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-373 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL @@ -1494,7 +1494,7 @@ NIL NIL (-391) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4491 . T) (-4499 . T) (-4423 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-4491 . T) (-4499 . T) (-4419 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-392 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1552,7 +1552,7 @@ NIL ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-406 -4340 UP UPUP R) +(-406 -4341 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1576,11 +1576,11 @@ NIL ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-412 -2113 |returnType| -2520 |symbols|) +(-412 -2121 |returnType| -2489 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-413 -4340 UP) +(-413 -4341 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1602,12 +1602,12 @@ NIL ((|HasAttribute| |#1| (QUOTE -4491)) (|HasAttribute| |#1| (QUOTE -4499))) (-418) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4423 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-4419 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-419 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) ((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1252))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1252)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466)))) +((|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1252))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1252)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466)))) (-420 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL @@ -1615,7 +1615,7 @@ NIL (-421 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) ((-4495 -12 (|has| |#1| (-6 -4506)) (|has| |#1| (-466)) (|has| |#1| (-6 -4495))) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4506)) (|HasAttribute| |#1| (QUOTE -4495)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4506)) (|HasAttribute| |#1| (QUOTE -4495)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-422 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL @@ -1636,7 +1636,7 @@ NIL ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-427 R -4340 UP A) +(-427 R -4341 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) ((-4505 . T)) NIL @@ -1644,7 +1644,7 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-429 R -4340 UP A |ibasis|) +(-429 R -4341 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL ((|HasCategory| |#4| (|%list| (QUOTE -1069) (|devaluate| |#2|)))) @@ -1670,7 +1670,7 @@ NIL ((|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (-435 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4505 -2219 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571))) +((-4505 -2222 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571))) NIL (-436 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) @@ -1696,7 +1696,7 @@ NIL ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-442 R -4340) +(-442 R -4341) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL @@ -1704,19 +1704,19 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) ((-4495 -12 (|has| |#1| (-6 -4495)) (|has| |#2| (-6 -4495))) (-4502 . T) (-4503 . T) (-4505 . T)) ((-12 (|HasAttribute| |#1| (QUOTE -4495)) (|HasAttribute| |#2| (QUOTE -4495)))) -(-444 R -4340) +(-444 R -4341) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-445 R -4340) +(-445 R -4341) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-446 R -4340) +(-446 R -4341) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-447 R -4340) +(-447 R -4341) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1724,7 +1724,7 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-449 R -4340 UP) +(-449 R -4341 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-48))))) @@ -1756,7 +1756,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-457 R UP -4340) +(-457 R UP -4341) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1803,7 +1803,7 @@ NIL (-468 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-469 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL @@ -1868,7 +1868,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-485 |lv| -4340 R) +(-485 |lv| -4341 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1883,11 +1883,11 @@ NIL (-488 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -3782) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4394) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2601) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -3785) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -1999) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2597) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-489 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3463) (|devaluate| |#2|)))))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132)))) +((-12 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3436) (|devaluate| |#2|)))))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132)))) (-490 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) ((-4509 . T) (-4508 . T)) @@ -1903,7 +1903,7 @@ NIL (-493 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3463) (|devaluate| |#2|)))))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3436) (|devaluate| |#2|)))))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102)))) (-494) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL @@ -1911,11 +1911,11 @@ NIL (-495 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-496 -2969 S) +((|HasCategory| |#2| (QUOTE (-939))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-496 -2945 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2219 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2219 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2219 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +((-2222 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2222 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2222 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2222 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) (-497) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL @@ -1923,8 +1923,8 @@ NIL (-498 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-499 -4340 UP UPUP R) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-499 -4341 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1935,7 +1935,7 @@ NIL (-501) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2219 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2222 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-502 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1960,7 +1960,7 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-508 -4340 UP |AlExt| |AlPol|) +(-508 -4341 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL @@ -1971,16 +1971,16 @@ NIL (-510 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-511 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-512 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-513 R UP -4340) +(-513 R UP -4341) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL @@ -2000,7 +2000,7 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-518 -4340 |Expon| |VarSet| |DPoly|) +(-518 -4341 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL ((|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-1207))))) @@ -2051,7 +2051,7 @@ NIL (-530 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-531) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL @@ -2059,15 +2059,15 @@ NIL (-532 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2219 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147)))) +((-2222 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147)))) (-533 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-534 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-535 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL @@ -2079,7 +2079,7 @@ NIL (-537 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-538) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2112,7 +2112,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL ((-12 (|HasCategory| (-793) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-1132))))) -(-546 K -4340 |Par|) +(-546 K -4341 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2136,7 +2136,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-552 K -4340 |Par|) +(-552 K -4341 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2191,12 +2191,12 @@ NIL (-565 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3463) (|devaluate| |#2|)))))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102)))) -(-566 R -4340) +((-12 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3436) (|devaluate| |#2|)))))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102)))) +(-566 R -4341) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-567 R0 -4340 UP UPUP R) +(-567 R0 -4341 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2206,7 +2206,7 @@ NIL NIL (-569 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4423 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-4419 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-570 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2216,7 +2216,7 @@ NIL ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) ((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL -(-572 R -4340) +(-572 R -4341) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2228,7 +2228,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-575 R -4340 L) +(-575 R -4341 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (|%list| (QUOTE -680) (|devaluate| |#2|)))) @@ -2236,11 +2236,11 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-577 -4340 UP UPUP R) +(-577 -4341 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-578 -4340 UP) +(-578 -4341 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL @@ -2248,15 +2248,15 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\tt numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\tt \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-580 R -4340 L) +(-580 R -4341 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (|%list| (QUOTE -680) (|devaluate| |#2|)))) -(-581 R -4340) +(-581 R -4341) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL ((-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-649))))) -(-582 -4340 UP) +(-582 -4341 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2264,27 +2264,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-584 -4340) +(-584 -4341) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-585 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4423 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-4419 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-586) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-587 R -4340) +(-587 R -4341) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL ((-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-649))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-571)))) -(-588 -4340 UP) +(-588 -4341 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-589 R -4340) +(-589 R -4341) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2316,15 +2316,15 @@ NIL ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-597 -4340) +(-597 -4341) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) ((-4503 . T) (-4502 . T)) ((|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-1207))))) -(-598 E -4340) +(-598 E -4341) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-599 R -4340) +(-599 R -4341) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL @@ -2359,7 +2359,7 @@ NIL (-607 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-2219 (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2219 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) +((-2222 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-2222 (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2222 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-608 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL @@ -2367,7 +2367,7 @@ NIL (-609 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (|HasCategory| (-560) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3782) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560)))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (|HasCategory| (-560) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3785) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560)))))) (-610 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) (((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) @@ -2384,7 +2384,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-614 R -4340 FG) +(-614 R -4341 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2395,7 +2395,7 @@ NIL (-616 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-617 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2410,8 +2410,8 @@ NIL NIL (-620 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4505 -2219 (-2818 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T)) -((-2219 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) +((-4505 -2222 (-2807 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T)) +((-2222 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-621) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL @@ -2439,7 +2439,7 @@ NIL (-627 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -3463) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -3436) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (QUOTE (-102)))) (-628 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL @@ -2464,7 +2464,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-634 -4340 UP) +(-634 -4341 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2492,7 +2492,7 @@ NIL ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) ((-4505 . T)) NIL -(-641 R -4340) +(-641 R -4341) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL @@ -2520,7 +2520,7 @@ NIL ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-648 R -4340) +(-648 R -4341) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL @@ -2528,18 +2528,18 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-650 |lv| -4340) +(-650 |lv| -4341) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-651) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) ((-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -3463) (QUOTE (-51))))))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1189) (QUOTE (-871))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 (-51))) (QUOTE (-1132)))) +((-12 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -3436) (QUOTE (-51))))))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1189) (QUOTE (-871))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 (-51))) (QUOTE (-1132)))) (-652 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4505 -2219 (-2818 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T)) -((-2219 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) +((-4505 -2222 (-2807 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T)) +((-2222 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-653 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL @@ -2563,7 +2563,7 @@ NIL (-658 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2807 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) +((-2796 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) (-659 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) ((-4503 . T) (-4502 . T)) @@ -2583,7 +2583,7 @@ NIL (-663 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-664 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL @@ -2607,7 +2607,7 @@ NIL (-669 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-670 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL @@ -2628,11 +2628,11 @@ NIL ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) ((-4503 . T) (-4502 . T)) ((|HasCategory| |#1| (QUOTE (-813)))) -(-675 R -4340 L) +(-675 R -4341 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-676 A -3412) +(-676 A -1784) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4502 . T) (-4503 . T) (-4505 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) @@ -2652,7 +2652,7 @@ NIL ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) ((-4502 . T) (-4503 . T) (-4505 . T)) NIL -(-681 -4340 UP) +(-681 -4341 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) @@ -2684,11 +2684,11 @@ NIL ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) ((-4509 . T) (-4508 . T)) NIL -(-689 -4340 |Row| |Col| M) +(-689 -4341 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-690 -4340) +(-690 -4341) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2699,7 +2699,7 @@ NIL (-692 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) ((-4505 . T) (-4508 . T) (-4502 . T) (-4503 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-571))) (-2219 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-571))) (-2222 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) (-693) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2719,7 +2719,7 @@ NIL (-697 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-698) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2775,7 +2775,7 @@ NIL (-711 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) ((-4508 . T) (-4509 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-712 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2784,7 +2784,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-714 S -4340 FLAF FLAS) +(-714 S -4341 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row \\spad{ku+1},{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2794,8 +2794,8 @@ NIL NIL (-716) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4501 . T) (-4506 |has| (-721) (-376)) (-4500 |has| (-721) (-376)) (-4435 . T) (-4507 |has| (-721) (-6 -4507)) (-4504 |has| (-721) (-6 -4504)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-2219 (|HasCategory| (-721) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-2219 (-12 (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2219 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (|%list| (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-721) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (-2219 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-721) (QUOTE (-1051))) (|HasCategory| (-721) (QUOTE (-1233))) (-12 (|HasCategory| (-721) (QUOTE (-1033))) (|HasCategory| (-721) (QUOTE (-1233)))) (-2219 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (-2219 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-1233)))) (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939))) (-2219 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376)))) (-2219 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-2219 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-571)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-571))) (|HasAttribute| (-721) (QUOTE -4507)) (|HasAttribute| (-721) (QUOTE -4504)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1207)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-147)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-363))))) +((-4501 . T) (-4506 |has| (-721) (-376)) (-4500 |has| (-721) (-376)) (-4433 . T) (-4507 |has| (-721) (-6 -4507)) (-4504 |has| (-721) (-6 -4504)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-2222 (|HasCategory| (-721) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-2222 (-12 (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2222 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (|%list| (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-721) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (-2222 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-721) (QUOTE (-1051))) (|HasCategory| (-721) (QUOTE (-1233))) (-12 (|HasCategory| (-721) (QUOTE (-1033))) (|HasCategory| (-721) (QUOTE (-1233)))) (-2222 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (-2222 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-1233)))) (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939))) (-2222 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376)))) (-2222 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-2222 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-571)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-571))) (|HasAttribute| (-721) (QUOTE -4507)) (|HasAttribute| (-721) (QUOTE -4504)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1207)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-147)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-363))))) (-717 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) ((-4509 . T)) @@ -2808,13 +2808,13 @@ NIL ((|constructor| (NIL "\\indented{1}{} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-720 OV E -4340 PG) +(-720 OV E -4341 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-721) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4423 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-4419 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-722 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2840,7 +2840,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-728 S -3002 I) +(-728 S -2978 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2860,14 +2860,14 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-733 R |Mod| -4336 -3462 |exactQuo|) +(-733 R |Mod| -2709 -2184 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-734 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-735 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL @@ -2876,7 +2876,7 @@ NIL ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) (-4505 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) -(-737 R |Mod| -4336 -3462 |exactQuo|) +(-737 R |Mod| -2709 -2184 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4505 . T)) NIL @@ -2888,7 +2888,7 @@ NIL ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) ((-4503 . T) (-4502 . T)) NIL -(-740 -4340) +(-740 -4341) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) ((-4505 . T)) NIL @@ -2924,7 +2924,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-749 -4340 UP) +(-749 -4341 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2943,7 +2943,7 @@ NIL (-753 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) (((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-754 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -3076,11 +3076,11 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-787 -4340) +(-787 -4341) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-788 P -4340) +(-788 P -4341) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL @@ -3088,7 +3088,7 @@ NIL NIL NIL NIL -(-790 UP -4340) +(-790 UP -4341) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -3104,7 +3104,7 @@ NIL ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) (((-4510 "*") . T)) NIL -(-794 R -4340) +(-794 R -4341) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -3124,7 +3124,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-799 -4340 |ExtF| |SUEx| |ExtP| |n|) +(-799 -4341 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -3139,11 +3139,11 @@ NIL (-802 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207))))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-2807 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-2807 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2807 (|HasCategory| |#1| (QUOTE (-559))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-2807 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2807 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-2807 (|HasCategory| |#1| (|%list| (QUOTE -1022) (QUOTE (-560))))))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207))))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-2796 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-2796 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2796 (|HasCategory| |#1| (QUOTE (-559))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-2796 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2796 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-2796 (|HasCategory| |#1| (|%list| (QUOTE -1022) (QUOTE (-560))))))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-803 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-804 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL @@ -3211,8 +3211,8 @@ NIL (-820 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) ((-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-2219 (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2219 (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) -(-821 -2219 R OS S) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-2222 (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2222 (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) +(-821 -2222 R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL @@ -3220,11 +3220,11 @@ NIL ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-823 R -4340 L) +(-823 R -4341 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-824 R -4340) +(-824 R -4341) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -3232,7 +3232,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE's.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-826 R -4340) +(-826 R -4341) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3240,11 +3240,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-828 -4340 UP UPUP R) +(-828 -4341 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-829 -4340 UP L LQ) +(-829 -4341 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3252,38 +3252,38 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-831 -4340 UP L LQ) +(-831 -4341 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-832 -4340 UP) +(-832 -4341 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-833 -4340 L UP A LO) +(-833 -4341 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-834 -4340 UP) +(-834 -4341 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-835 -4340 LO) +(-835 -4341 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-836 -4340 LODO) +(-836 -4341 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-837 -2969 S |f|) +(-837 -2945 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2219 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2219 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2219 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2219 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +((-2222 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2222 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2222 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2222 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2222 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) (-838 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-839 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) (((-4510 "*") |has| |#2| (-376)) (-4501 |has| |#2| (-376)) (-4506 |has| |#2| (-376)) (-4500 |has| |#2| (-376)) (-4505 . T) (-4503 . T) (-4502 . T)) @@ -3347,7 +3347,7 @@ NIL (-854 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) ((-4505 |has| |#1| (-870))) -((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2219 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2219 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2222 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2222 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) (-855 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL @@ -3387,7 +3387,7 @@ NIL (-864 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) ((-4505 |has| |#1| (-870))) -((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2219 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2219 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2222 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2222 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) (-865 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL @@ -3396,7 +3396,7 @@ NIL ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-867 -2969 S) +(-867 -2945 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3440,11 +3440,11 @@ NIL ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) -(-878 R |sigma| -3892) +(-878 R |sigma| -3862) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4502 . T) (-4503 . T) (-4505 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) -(-879 |x| R |sigma| -3892) +(-879 |x| R |sigma| -3862) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) ((-4502 . T) (-4503 . T) (-4505 . T)) ((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-376)))) @@ -3511,15 +3511,15 @@ NIL (-895 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-893 |#1|) (QUOTE (-939))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-149))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1051))) (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871))) (-2219 (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-1182))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-240))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -893) (|devaluate| |#1|)) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-319))) (|HasCategory| (-893 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))))) +((|HasCategory| (-893 |#1|) (QUOTE (-939))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-149))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1051))) (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871))) (-2222 (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-1182))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-240))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -893) (|devaluate| |#1|)) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-319))) (|HasCategory| (-893 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))))) (-896 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (-2219 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (-2222 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-897 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))))) (-898) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL @@ -3579,7 +3579,7 @@ NIL (-912 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2807 (|HasCategory| |#2| (QUOTE (-1080)))) (-2807 (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (-2807 (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207))))) +((-12 (-2796 (|HasCategory| |#2| (QUOTE (-1080)))) (-2796 (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (-2796 (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207))))) (-913 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL @@ -3592,7 +3592,7 @@ NIL ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-916 R -3002) +(-916 R -2978) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3620,7 +3620,7 @@ NIL ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-923 UP -4340) +(-923 UP -4341) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3651,11 +3651,11 @@ NIL (-930 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-931 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) ((-4505 . T)) -((-2219 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) +((-2222 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (-932 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL @@ -3688,7 +3688,7 @@ NIL ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) ((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL -(-940 R0 -4340 UP UPUP R) +(-940 R0 -4341 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3716,7 +3716,7 @@ NIL ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-947 -4340) +(-947 -4341) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL @@ -3732,11 +3732,11 @@ NIL ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) ((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL -(-951 |xx| -4340) +(-951 |xx| -4341) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-952 -4340 P) +(-952 -4341 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL @@ -3764,7 +3764,7 @@ NIL ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-959 R -4340) +(-959 R -4341) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL @@ -3772,7 +3772,7 @@ NIL ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-961 S R -4340) +(-961 S R -4341) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL @@ -3792,11 +3792,11 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (|%list| (QUOTE -911) (|devaluate| |#1|)))) -(-966 -3002) +(-966 -2978) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-967 R -4340 -3002) +(-967 R -4341 -2978) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL @@ -3819,7 +3819,7 @@ NIL (-972 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-973 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3831,7 +3831,7 @@ NIL (-975 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-976 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL @@ -3848,7 +3848,7 @@ NIL ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) NIL -(-980 E V R P -4340) +(-980 E V R P -4341) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL @@ -3856,7 +3856,7 @@ NIL ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-982 E V R P -4340) +(-982 E V R P -4341) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-466)))) @@ -3871,7 +3871,7 @@ NIL (-985 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4506))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4506))) (-986 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL @@ -3879,7 +3879,7 @@ NIL (-987 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-988 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL @@ -3888,7 +3888,7 @@ NIL ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-990 -4340) +(-990 -4341) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL @@ -3903,7 +3903,7 @@ NIL (-993 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) ((-4505 -12 (|has| |#2| (-487)) (|has| |#1| (-487)))) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-994) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL @@ -3992,7 +3992,7 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1016 K R UP -4340) +(-1016 K R UP -4341) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL @@ -4039,7 +4039,7 @@ NIL (-1027 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) ((-4501 |has| |#1| (-302)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376))) (-2219 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559)))) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376))) (-2222 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559)))) (-1028 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL @@ -4055,7 +4055,7 @@ NIL (-1031 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1032 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -4064,14 +4064,14 @@ NIL ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1034 -4340 UP UPUP |radicnd| |n|) +(-1034 -4341 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) ((-4501 |has| (-421 |#2|) (-376)) (-4506 |has| (-421 |#2|) (-376)) (-4500 |has| (-421 |#2|) (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2219 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2219 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2219 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2219 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2219 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-2219 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) +((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2222 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2222 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2222 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2222 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2222 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-2222 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (-1035 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2219 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2222 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-1036) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -4104,19 +4104,19 @@ NIL ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) ((-4501 . T) (-4506 . T) (-4500 . T) (-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4505 . T)) NIL -(-1044 R -4340) +(-1044 R -4341) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1045 R -4340) +(-1045 R -4341) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1046 -4340 UP) +(-1046 -4341 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1047 -4340 UP) +(-1047 -4341 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL @@ -4151,8 +4151,8 @@ NIL (-1055 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) ((-4501 . T) (-4506 . T) (-4500 . T) (-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4505 . T)) -((-2219 (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (QUOTE (-560))))) -(-1056 -4340 L) +((-2222 (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (QUOTE (-560))))) +(-1056 -4341 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL @@ -4188,14 +4188,14 @@ NIL ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1065 -4340 |Expon| |VarSet| |FPol| |LFPol|) +(-1065 -4341 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) (((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-1066) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (QUOTE (-1207))) (|%list| (QUOTE |:|) (QUOTE -3463) (QUOTE (-51))))))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (QUOTE (-1207))) (|%list| (QUOTE |:|) (QUOTE -3436) (QUOTE (-51))))))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-102)))) (-1067) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -4252,7 +4252,7 @@ NIL ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) ((-4505 . T)) NIL -(-1081 |xx| -4340) +(-1081 |xx| -4341) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL @@ -4271,7 +4271,7 @@ NIL (-1085 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) ((-4508 . T) (-4503 . T) (-4502 . T)) -((|HasCategory| |#3| (QUOTE (-175))) (-2219 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-571))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887))))) +((|HasCategory| |#3| (QUOTE (-175))) (-2222 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-571))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887))))) (-1086 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL @@ -4307,7 +4307,7 @@ NIL (-1094) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE's")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE's")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (QUOTE (-1207))) (|%list| (QUOTE |:|) (QUOTE -3463) (QUOTE (-51))))))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 (-1207)) (|:| -3463 (-51))) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (QUOTE (-1207))) (|%list| (QUOTE |:|) (QUOTE -3436) (QUOTE (-51))))))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 (-1207)) (|:| -3436 (-51))) (QUOTE (-102)))) (-1095 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL @@ -4352,7 +4352,7 @@ NIL ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1106 |Base| R -4340) +(-1106 |Base| R -4341) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL @@ -4360,7 +4360,7 @@ NIL ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1108 |Base| R -4340) +(-1108 |Base| R -4341) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL @@ -4371,7 +4371,7 @@ NIL (-1110 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) ((-4501 |has| |#1| (-376)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))))) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-1111 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -4403,7 +4403,7 @@ NIL (-1118 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1119 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -4443,7 +4443,7 @@ NIL (-1128 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) ((-4508 . T) (-4498 . T) (-4509 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-1129 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL @@ -4507,7 +4507,7 @@ NIL (-1144 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4502 |has| |#3| (-1080)) (-4503 |has| |#3| (-1080)) (-4505 |has| |#3| (-6 -4505)) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2219 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#3| (QUOTE (-376))) (-2219 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2219 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2219 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2219 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2219 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2219 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2219 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2219 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2219 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2219 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2219 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2219 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2219 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2219 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2219 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2219 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2219 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) +((-2222 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2222 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#3| (QUOTE (-376))) (-2222 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2222 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2222 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2222 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2222 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2222 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2222 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2222 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2222 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2222 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2222 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2222 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2222 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2222 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2222 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2222 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2222 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (-1145 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL @@ -4520,7 +4520,7 @@ NIL ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) NIL NIL -(-1148 R -4340) +(-1148 R -4341) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL @@ -4555,16 +4555,16 @@ NIL (-1156 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1157 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376)))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376)))) (-1158 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) ((-4509 . T) (-4508 . T)) NIL -(-1159 UP -4340) +(-1159 UP -4341) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL @@ -4619,11 +4619,11 @@ NIL (-1172 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))) (-2219 (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (-2219 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))))) (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102)))) +((-12 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))) (-2222 (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (-2222 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))))) (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102)))) (-1173 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) ((-4505 . T) (-4497 |has| |#2| (-6 (-4510 "*"))) (-4508 . T) (-4502 . T) (-4503 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (-2219 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (-2222 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) (-1174 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL @@ -4643,7 +4643,7 @@ NIL (-1178 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1179 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL @@ -4655,7 +4655,7 @@ NIL (-1181 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3463) (|devaluate| |#2|)))))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2219 (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 |#1|) (|:| -3463 |#2|)) (QUOTE (-1132)))) +((-12 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -3436) (|devaluate| |#2|)))))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2222 (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 |#1|) (|:| -3436 |#2|)) (QUOTE (-1132)))) (-1182) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}'s are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL @@ -4671,7 +4671,7 @@ NIL (-1185 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) ((-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1186 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL @@ -4687,11 +4687,11 @@ NIL (-1189) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-2219 (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2219 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) +((-2222 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-2222 (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2222 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-1190 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1885) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -3463) (|devaluate| |#1|)))))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2219 (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1885 (-1189)) (|:| -3463 |#1|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -1883) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -3436) (|devaluate| |#1|)))))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2222 (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -1883 (-1189)) (|:| -3436 |#1|)) (QUOTE (-102)))) (-1191 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b = sum(i+j=k,a)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL @@ -4722,9 +4722,9 @@ NIL NIL (-1198 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4510 "*") -2219 (-2818 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-2818 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4501 -2219 (-2818 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-2818 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2219 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2219 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2219 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2219 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2219 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2219 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2219 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3782) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4394) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2601) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2219 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2219 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2219 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1199 R -4340) +(((-4510 "*") -2222 (-2807 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-2807 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4501 -2222 (-2807 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-2807 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) +((-2222 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2222 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2222 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2222 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2222 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2222 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2222 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3785) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -1999) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2597) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2222 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2222 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2222 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1199 R -4341) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL @@ -4735,7 +4735,7 @@ NIL (-1201 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2219 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2219 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2222 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2222 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1202 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL @@ -4747,11 +4747,11 @@ NIL (-1204 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2219 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -3782) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4394) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2601) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2222 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -3785) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -1999) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2597) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-1205 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -3782) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4394) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2601) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -3785) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -1999) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2597) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-1206) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) (((-4510 "*") |has| (-1278 |#2| |#3| |#4|) (-175)) (-4501 |has| (-1278 |#2| |#3| |#4|) (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-175))) (-2219 (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-571)))) +((|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-175))) (-2222 (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-571)))) (-1285 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL @@ -5079,7 +5079,7 @@ NIL (-1287 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2219 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -3782) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2219 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4394) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2601) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2222 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -3785) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2222 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -1999) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2597) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-1288 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL @@ -5087,7 +5087,7 @@ NIL (-1289 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (|%list| (QUOTE -2601) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -4394) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) +((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (|%list| (QUOTE -2597) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -1999) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-1290 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) @@ -5096,7 +5096,7 @@ NIL ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y=f(y,y',..,y)} such that \\spad{y(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1292 -4340 UP L UTS) +(-1292 -4341 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-571)))) @@ -5119,7 +5119,7 @@ NIL (-1297 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) ((-4509 . T) (-4508 . T)) -((-2219 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2219 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2219 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2219 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-2222 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2222 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2222 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2222 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-1298 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL @@ -5156,7 +5156,7 @@ NIL ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1307 K R UP -4340) +(-1307 K R UP -4341) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL @@ -5188,11 +5188,11 @@ NIL ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1315 S -4340) +(-1315 S -4341) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149)))) -(-1316 -4340) +(-1316 -4341) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL -- cgit v1.2.3