From 024f4b2055594e528ec98e733bd50684b2366db0 Mon Sep 17 00:00:00 2001 From: dos-reis Date: Thu, 22 Jul 2010 21:44:34 +0000 Subject: * interp/g-util.boot (expandIeq): New expander for %ieq. * interp/g-opt.boot (optIeq): New. (optIadd): Likewise. (optIsub): Likewise. (optImul): Likewise. (optIneg): Likewise. (lispize): Remove. --- src/share/algebra/browse.daase | 646 ++++++++++++++++++++--------------------- 1 file changed, 323 insertions(+), 323 deletions(-) (limited to 'src/share/algebra/browse.daase') diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index b5dad787..abfaa051 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(2296416 . 3488491117) +(2299819 . 3488813772) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -56,7 +56,7 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -2057) +(-32 R -2068) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) @@ -88,11 +88,11 @@ NIL ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-40 -2057 UP UPUP -3351) +(-40 -2068 UP UPUP -3700) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4492 |has| (-420 |#2|) (-375)) (-4497 |has| (-420 |#2|) (-375)) (-4491 |has| (-420 |#2|) (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2867 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2867 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2867 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2867 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2867 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -659) (QUOTE (-577)))) (-2867 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) -(-41 R -2057) +((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2816 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2816 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2816 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2816 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2816 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -659) (QUOTE (-577)))) (-2816 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) +(-41 R -2068) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -443) (|devaluate| |#1|))))) @@ -111,7 +111,7 @@ NIL (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) ((-4499 . T) (-4500 . T)) -((-2867 (-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|))))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-870))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|))))))) +((-2816 (-12 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3988) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3988) (|devaluate| |#2|))))))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-870))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3988) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -2057) +(-54 |Base| R -2068) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -167,64 +167,64 @@ NIL (-59 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -2758) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -2721) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -2758) +(-62 -2721) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-63 -2758) +(-63 -2721) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -2758) +(-64 -2721) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -2758) +(-65 -2721) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -2758) +(-66 -2721) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -2758) +(-67 -2721) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -2758) +(-68 -2721) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -2758) +(-69 -2721) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -2758) +(-70 -2721) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -2758) +(-71 -2721) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -2758) +(-72 -2721) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -2758) +(-73 -2721) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -2758) +(-74 -2721) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -236,55 +236,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-77 -2758) +(-77 -2721) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-78 -2758) +(-78 -2721) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -2758) +(-79 -2721) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -2758) +(-80 -2721) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -2758) +(-81 -2721) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -2758) +(-82 -2721) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -2758) +(-83 -2721) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -2758) +(-84 -2721) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -2758) +(-85 -2721) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -2758) +(-86 -2721) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -2758) +(-87 -2721) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-88 -2758) +(-88 -2721) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-89 -2758) +(-89 -2721) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -295,7 +295,7 @@ NIL (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -343,7 +343,7 @@ NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL @@ -363,7 +363,7 @@ NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2867 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) +((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2816 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -392,7 +392,7 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op, l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|Identifier|) (|None|)) "\\spad{setProperty(op, p, v)} attaches property \\spad{p} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|) (|None|)) "\\spad{setProperty(op, s, v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Maybe| (|None|)) $ (|Identifier|)) "\\spad{property(op, p)} returns the value of property \\spad{p} if it is attached to \\spad{op},{} otherwise \\spad{nothing}.") (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op, s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|Identifier|)) "\\spad{deleteProperty!(op, p)} unattaches property \\spad{p} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.") (($ $ (|String|)) "\\spad{deleteProperty!(op, s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|Identifier|)) "\\spad{assert(op, p)} attaches property \\spad{p} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|Identifier|)) "\\spad{has?(op,p)} tests if property \\spad{s} is attached to \\spad{op}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op, foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to InputForm as \\spad{f(a1,...,an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op, foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,...,an)} gets converted to OutputForm as \\spad{f(a1,...,an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op, foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op, foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1, op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op, n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|operator| (($ (|Symbol|) (|Arity|)) "\\spad{operator(f, a)} makes \\spad{f} into an operator of arity \\spad{a}.") (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f, n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}."))) NIL NIL -(-116 -2057 UP) +(-116 -2068 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL @@ -403,7 +403,7 @@ NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-117 |#1|) (QUOTE (-937))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-117 |#1|) (QUOTE (-1052))) (|HasCategory| (-117 |#1|) (QUOTE (-841))) (|HasCategory| (-117 |#1|) (QUOTE (-870))) (-2867 (|HasCategory| (-117 |#1|) (QUOTE (-841))) (|HasCategory| (-117 |#1|) (QUOTE (-870)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-1182))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-318))) (|HasCategory| (-117 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-937)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) +((|HasCategory| (-117 |#1|) (QUOTE (-937))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-148))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-117 |#1|) (QUOTE (-1052))) (|HasCategory| (-117 |#1|) (QUOTE (-841))) (|HasCategory| (-117 |#1|) (QUOTE (-870))) (-2816 (|HasCategory| (-117 |#1|) (QUOTE (-841))) (|HasCategory| (-117 |#1|) (QUOTE (-870)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-1182))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-117 |#1|) (QUOTE (-238))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (QUOTE (-239))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -117) (|devaluate| |#1|)) (LIST (QUOTE -117) (|devaluate| |#1|)))) (|HasCategory| (-117 |#1|) (QUOTE (-318))) (|HasCategory| (-117 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-117 |#1|) (QUOTE (-937)))) (|HasCategory| (-117 |#1|) (QUOTE (-146))))) (-119 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -419,7 +419,7 @@ NIL (-122 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-123 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL @@ -439,15 +439,15 @@ NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) (-2867 (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-130) (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130)))) (|HasCategory| (-130) (QUOTE (-870))) (-2867 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) +((-2816 (-12 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) (-2816 (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130))))) (|HasCategory| (-130) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-130) (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130)))) (|HasCategory| (-130) (QUOTE (-870))) (-2816 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1130))) (|HasCategory| (-130) (LIST (QUOTE -320) (QUOTE (-130)))))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -472,11 +472,11 @@ NIL ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) (((-4501 "*") . T)) NIL -(-136 |minix| -3651 S T$) +(-136 |minix| -3746 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-137 |minix| -3651 R) +(-137 |minix| -3746 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -499,7 +499,7 @@ NIL (-142) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) ((-4499 . T) (-4489 . T) (-4500 . T)) -((-2867 (-12 (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) +((-2816 (-12 (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-145) (QUOTE (-380))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-143 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -524,7 +524,7 @@ NIL ((|constructor| (NIL "Rings of Characteristic Zero."))) ((-4496 . T)) NIL -(-149 -2057 UP UPUP) +(-149 -2068 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -564,7 +564,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-159 R -2057) +(-159 R -2068) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -598,7 +598,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (QUOTE (-558))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (QUOTE (-1232))) (|HasCategory| |#2| (QUOTE (-1090))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4495)) (|HasAttribute| |#2| (QUOTE -4498)) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-569)))) (-167 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4492 -2867 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4495 |has| |#1| (-6 -4495)) (-4498 |has| |#1| (-6 -4498)) (-4225 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4492 -2816 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4495 |has| |#1| (-6 -4495)) (-4498 |has| |#1| (-6 -4498)) (-4185 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-168 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4492 -2867 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4495 |has| |#1| (-6 -4495)) (-4498 |has| |#1| (-6 -4498)) (-4225 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2867 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-361)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-937))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-937))))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1232)))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1232)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasAttribute| |#1| (QUOTE -4495)) (|HasAttribute| |#1| (QUOTE -4498)) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-361))))) +((-4492 -2816 (|has| |#1| (-569)) (-12 (|has| |#1| (-318)) (|has| |#1| (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4495 |has| |#1| (-6 -4495)) (-4498 |has| |#1| (-6 -4498)) (-4185 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2816 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-361)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-937))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-937)))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-937))))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1232)))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-569)))) (-2816 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| |#1| (QUOTE (-1090))) (-12 (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-1232)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-238)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (-12 (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasAttribute| |#1| (QUOTE -4495)) (|HasAttribute| |#1| (QUOTE -4498)) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-361))))) (-172 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -688,7 +688,7 @@ NIL ((|constructor| (NIL "This domain provides implementations for constructors.")) (|findConstructor| (((|Maybe| $) (|Identifier|)) "\\spad{findConstructor(s)} attempts to find a constructor named \\spad{s}. If successful,{} returns that constructor; otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-190 R -2057) +(-190 R -2068) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -800,23 +800,23 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-218 -2057 UP UPUP R) +(-218 -2068 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-219 -2057 FP) +(-219 -2068 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-220) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2867 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) +((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2816 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) (-221) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-222 R -2057) +(-222 R -2068) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -831,18 +831,18 @@ NIL (-225 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-226 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) ((-4496 . T)) NIL -(-227 R -2057) +(-227 R -2068) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-228) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4215 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4179 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-229) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -851,7 +851,7 @@ NIL (-230 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-231 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL @@ -900,22 +900,22 @@ NIL ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-243 S -3651 R) +(-243 S -3746 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL ((|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870))) (|HasAttribute| |#3| (QUOTE -4496)) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1130)))) -(-244 -3651 R) +(-244 -3746 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) ((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) NIL -(-245 -3651 A B) +(-245 -3746 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-246 -3651 R) +(-246 -3746 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) ((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2867 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2867 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2867 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) +((-2816 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2816 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2816 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2816 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) (-247) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,i,s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,i,s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -935,7 +935,7 @@ NIL (-251 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-252 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL @@ -947,7 +947,7 @@ NIL (-254 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-937))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) +((|HasCategory| |#2| (QUOTE (-937))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) (-255) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}."))) NIL @@ -962,12 +962,12 @@ NIL NIL (-258 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4496 -2867 (-2790 (|has| |#4| (-1079)) (|has| |#4| (-239))) (|has| |#4| (-6 -4496)) (-2790 (|has| |#4| (-1079)) (|has| |#4| (-926 (-1206))))) (-4493 |has| |#4| (-1079)) (-4494 |has| |#4| (-1079)) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#4| (QUOTE (-375))) (-2867 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (QUOTE (-1079)))) (-2867 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375)))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (QUOTE (-814))) (-2867 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (QUOTE (-870)))) (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (|HasCategory| |#4| (QUOTE (-239))) (-2867 (|HasCategory| |#4| (QUOTE (-239))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079))))) (-2867 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#4| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-375)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-380)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-747)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-814)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-870)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1079))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-2867 (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2867 (|HasCategory| |#4| (QUOTE (-1079))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1130)))) (-2867 (|HasAttribute| |#4| (QUOTE -4496)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))))) +((-4496 -2816 (-2750 (|has| |#4| (-1079)) (|has| |#4| (-239))) (|has| |#4| (-6 -4496)) (-2750 (|has| |#4| (-1079)) (|has| |#4| (-926 (-1206))))) (-4493 |has| |#4| (-1079)) (-4494 |has| |#4| (-1079)) (-4499 . T)) +((-2816 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#4| (QUOTE (-375))) (-2816 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (QUOTE (-1079)))) (-2816 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-375)))) (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (QUOTE (-814))) (-2816 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (QUOTE (-870)))) (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (QUOTE (-380))) (-2816 (-12 (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2816 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (|HasCategory| |#4| (QUOTE (-239))) (-2816 (|HasCategory| |#4| (QUOTE (-239))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079))))) (-2816 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#4| (QUOTE (-1130))) (-2816 (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-174)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-239)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-375)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-380)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-747)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-814)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-870)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1130))))) (-2816 (-12 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1079))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2816 (-12 (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-375))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-380))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-747))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-870))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -659) (QUOTE (-577))))) (-2816 (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2816 (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079))))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2816 (|HasCategory| |#4| (QUOTE (-1079))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#4| (QUOTE (-1130)))) (-2816 (|HasAttribute| |#4| (QUOTE -4496)) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-12 (|HasCategory| |#4| (QUOTE (-238))) (|HasCategory| |#4| (QUOTE (-1079)))) (-12 (|HasCategory| |#4| (QUOTE (-1079))) (|HasCategory| |#4| (LIST (QUOTE -928) (QUOTE (-1206))))) (|HasCategory| |#4| (QUOTE (-174))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-132))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1130))) (|HasCategory| |#4| (LIST (QUOTE -320) (|devaluate| |#4|))))) (-259 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4496 -2867 (-2790 (|has| |#3| (-1079)) (|has| |#3| (-239))) (|has| |#3| (-6 -4496)) (-2790 (|has| |#3| (-1079)) (|has| |#3| (-926 (-1206))))) (-4493 |has| |#3| (-1079)) (-4494 |has| |#3| (-1079)) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-375))) (-2867 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (-2867 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasCategory| |#3| (QUOTE (-239))) (-2867 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-747)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-814)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-870)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-2867 (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2867 (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2867 (|HasAttribute| |#3| (QUOTE -4496)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) +((-4496 -2816 (-2750 (|has| |#3| (-1079)) (|has| |#3| (-239))) (|has| |#3| (-6 -4496)) (-2750 (|has| |#3| (-1079)) (|has| |#3| (-926 (-1206))))) (-4493 |has| |#3| (-1079)) (-4494 |has| |#3| (-1079)) (-4499 . T)) +((-2816 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-375))) (-2816 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2816 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (-2816 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-380))) (-2816 (-12 (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2816 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasCategory| |#3| (QUOTE (-239))) (-2816 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-2816 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-1130))) (-2816 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-747)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-814)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-870)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130))))) (-2816 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2816 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-2816 (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (-2816 (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2816 (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2816 (|HasAttribute| |#3| (QUOTE -4496)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) (-260 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL @@ -1027,7 +1027,7 @@ NIL (-274 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#3| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-937))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#3| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-275 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1072,11 +1072,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-286 R -2057) +(-286 R -2068) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-287 R -2057) +(-287 R -2068) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1128,7 +1128,7 @@ NIL ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-300 S R |Mod| -3530 -3771 |exactQuo|) +(-300 S R |Mod| -1773 -2269 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL @@ -1150,21 +1150,21 @@ NIL NIL (-305 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4496 -2867 (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4493 |has| |#1| (-1079)) (-4494 |has| |#1| (-1079))) -((|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747)))) (|HasCategory| |#1| (QUOTE (-486))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-313))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486)))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747)))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-747)))) +((-4496 -2816 (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4493 |has| |#1| (-1079)) (-4494 |has| |#1| (-1079))) +((|HasCategory| |#1| (QUOTE (-375))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2816 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747)))) (|HasCategory| |#1| (QUOTE (-486))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-313))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-486)))) (-2816 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747)))) (-2816 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-747)))) (-306 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3988) (|devaluate| |#2|)))))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102)))) (-307) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-308 -2057 S) +(-308 -2068 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-309 E -2057) +(-309 E -2068) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1212,7 +1212,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-321 -2057) +(-321 -2068) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1227,7 +1227,7 @@ NIL (-324 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-1052))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-870))) (-2867 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-870)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -320) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -297) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-318))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-558))) (-12 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| $ (QUOTE (-146)))) (-2867 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| $ (QUOTE (-146)))))) +((|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-1052))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-870))) (-2816 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-870)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-238))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -320) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (LIST (QUOTE -297) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1283) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-318))) (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-558))) (-12 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| $ (QUOTE (-146)))) (-2816 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (-12 (|HasCategory| (-1283 |#1| |#2| |#3| |#4|) (QUOTE (-937))) (|HasCategory| $ (QUOTE (-146)))))) (-325 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1238,9 +1238,9 @@ NIL NIL (-327 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4496 -2867 (-12 (|has| |#1| (-569)) (-2867 (|has| |#1| (-1079)) (|has| |#1| (-486)))) (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) ((-4501 "*") |has| |#1| (-569)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-569)) (-4491 |has| |#1| (-569))) -((-2867 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (-2867 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-21))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-1079))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2867 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1142)))) (-2867 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2867 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (LIST (QUOTE -1068) (QUOTE (-577))))) -(-328 R -2057) +((-4496 -2816 (-12 (|has| |#1| (-569)) (-2816 (|has| |#1| (-1079)) (|has| |#1| (-486)))) (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) ((-4501 "*") |has| |#1| (-569)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-569)) (-4491 |has| |#1| (-569))) +((-2816 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (-2816 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-21))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (QUOTE (-1079))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2816 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (-2816 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2816 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2816 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1079)))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569)))) (-2816 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (-2816 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2816 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1142)))) (-2816 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))))) (-2816 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#1| (QUOTE (-1079)))) (-2816 (-12 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1142))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| $ (QUOTE (-1079))) (|HasCategory| $ (LIST (QUOTE -1068) (QUOTE (-577))))) +(-328 R -2068) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1251,7 +1251,7 @@ NIL (-330 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3630) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2816 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4311) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2104) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) (-331 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1283,12 +1283,12 @@ NIL (-338 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) -(-339 S -2057) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +(-339 S -2068) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-380)))) -(-340 -2057) +(-340 -2068) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL @@ -1312,15 +1312,15 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-346 S -2057 UP UPUP R) +(-346 S -2068 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-347 -2057 UP UPUP R) +(-347 -2068 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor \\spad{P:} \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-348 -2057 UP UPUP R) +(-348 -2068 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1340,26 +1340,26 @@ NIL ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-353 S -2057 UP UPUP) +(-353 S -2068 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-375)))) -(-354 -2057 UP UPUP) +(-354 -2068 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) ((-4492 |has| (-420 |#2|) (-375)) (-4497 |has| (-420 |#2|) (-375)) (-4491 |has| (-420 |#2|) (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-355 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2867 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) +((-2816 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) (-356 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +((-2816 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) (-357 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +((-2816 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) (-358 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1376,31 +1376,31 @@ NIL ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-362 R UP -2057) +(-362 R UP -2068) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-363 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2867 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) +((-2816 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) (-364 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +((-2816 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) (-365 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +((-2816 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) (-366 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2867 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) +((-2816 (|HasCategory| (-938 |#1|) (QUOTE (-146))) (|HasCategory| (-938 |#1|) (QUOTE (-380)))) (|HasCategory| (-938 |#1|) (QUOTE (-148))) (|HasCategory| (-938 |#1|) (QUOTE (-380))) (|HasCategory| (-938 |#1|) (QUOTE (-146)))) (-367 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) -(-368 -2057 GF) +((-2816 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +(-368 -2068 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1408,14 +1408,14 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-370 -2057 FP FPP) +(-370 -2068 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-371 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2867 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) +((-2816 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-380)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-146)))) (-372 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL @@ -1494,7 +1494,7 @@ NIL NIL (-391) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4482 . T) (-4490 . T) (-4215 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4482 . T) (-4490 . T) (-4179 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-392 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf, eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,lv,eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1548,7 +1548,7 @@ NIL ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-405 -2057 UP UPUP R) +(-405 -2068 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1572,11 +1572,11 @@ NIL ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,t,lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,l,ll,lv,t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,l,ll,lv)} \\undocumented{}"))) NIL NIL -(-411 -2758 |returnType| -2112 |symbols|) +(-411 -2721 |returnType| -3667 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-412 -2057 UP) +(-412 -2068 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1598,7 +1598,7 @@ NIL ((|HasAttribute| |#1| (QUOTE -4482)) (|HasAttribute| |#1| (QUOTE -4490))) (-417) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4215 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4179 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-418 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1611,7 +1611,7 @@ NIL (-420 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) ((-4486 -12 (|has| |#1| (-6 -4497)) (|has| |#1| (-465)) (|has| |#1| (-6 -4486))) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-870)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849))))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-558))) (-12 (|HasAttribute| |#1| (QUOTE -4497)) (|HasAttribute| |#1| (QUOTE -4486)) (|HasCategory| |#1| (QUOTE (-465)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-870)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849))))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849))))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-849)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-558))) (-12 (|HasAttribute| |#1| (QUOTE -4497)) (|HasAttribute| |#1| (QUOTE -4486)) (|HasCategory| |#1| (QUOTE (-465)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-421 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL @@ -1632,11 +1632,11 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-426 R -2057 UP A) +(-426 R -2068 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) ((-4496 . T)) NIL -(-427 R -2057 UP A |ibasis|) +(-427 R -2068 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL ((|HasCategory| |#4| (LIST (QUOTE -1068) (|devaluate| |#2|)))) @@ -1655,7 +1655,7 @@ NIL (-431 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) ((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -320) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -297) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1251))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1251)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-465)))) +((|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -320) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -297) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1251))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-1251)))) (|HasCategory| |#1| (QUOTE (-1052))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-465)))) (-432 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) NIL @@ -1684,7 +1684,7 @@ NIL ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) ((-4499 . T) (-4489 . T) (-4500 . T)) NIL -(-439 R -2057) +(-439 R -2068) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL @@ -1692,7 +1692,7 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) ((-4486 -12 (|has| |#1| (-6 -4486)) (|has| |#2| (-6 -4486))) (-4493 . T) (-4494 . T) (-4496 . T)) ((-12 (|HasAttribute| |#1| (QUOTE -4486)) (|HasAttribute| |#2| (QUOTE -4486)))) -(-441 R -2057) +(-441 R -2068) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL @@ -1702,17 +1702,17 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-1142))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (-443 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4496 -2867 (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) ((-4501 "*") |has| |#1| (-569)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-569)) (-4491 |has| |#1| (-569))) +((-4496 -2816 (|has| |#1| (-1079)) (|has| |#1| (-486))) (-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) ((-4501 "*") |has| |#1| (-569)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-569)) (-4491 |has| |#1| (-569))) NIL -(-444 R -2057) +(-444 R -2068) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-445 R -2057) +(-445 R -2068) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-446 R -2057) +(-446 R -2068) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1720,7 +1720,7 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-448 R -2057 UP) +(-448 R -2068 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-48))))) @@ -1752,7 +1752,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-456 R UP -2057) +(-456 R UP -2068) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1799,7 +1799,7 @@ NIL (-467 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-937))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) +((|HasCategory| |#2| (QUOTE (-937))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) (-468 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1864,7 +1864,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-484 |lv| -2057 R) +(-484 |lv| -2068 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1879,11 +1879,11 @@ NIL (-487 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3630) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2816 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4311) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2104) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) (-488 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130)))) +((-12 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3988) (|devaluate| |#2|)))))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130)))) (-489 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) ((-4500 . T) (-4499 . T)) @@ -1899,7 +1899,7 @@ NIL (-492 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3988) (|devaluate| |#2|)))))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102)))) (-493) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL @@ -1907,11 +1907,11 @@ NIL (-494 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-937))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) -(-495 -3651 S) +((|HasCategory| |#2| (QUOTE (-937))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) +(-495 -3746 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2867 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2867 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2867 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) +((-2816 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2816 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2816 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2816 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) (-496) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL @@ -1919,8 +1919,8 @@ NIL (-497 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-498 -2057 UP UPUP R) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-498 -2068 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1931,7 +1931,7 @@ NIL (-500) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2867 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) +((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2816 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) (-501 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1956,7 +1956,7 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-507 -2057 UP |AlExt| |AlPol|) +(-507 -2068 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL @@ -1967,16 +1967,16 @@ NIL (-509 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-510 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-511 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-512 R UP -2057) +(-512 R UP -2068) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL @@ -1996,7 +1996,7 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-517 -2057 |Expon| |VarSet| |DPoly|) +(-517 -2068 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-1206))))) @@ -2047,7 +2047,7 @@ NIL (-529 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-530) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL @@ -2055,15 +2055,15 @@ NIL (-531 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2867 (|HasCategory| (-594 |#1|) (QUOTE (-146))) (|HasCategory| (-594 |#1|) (QUOTE (-380)))) (|HasCategory| (-594 |#1|) (QUOTE (-148))) (|HasCategory| (-594 |#1|) (QUOTE (-380))) (|HasCategory| (-594 |#1|) (QUOTE (-146)))) +((-2816 (|HasCategory| (-594 |#1|) (QUOTE (-146))) (|HasCategory| (-594 |#1|) (QUOTE (-380)))) (|HasCategory| (-594 |#1|) (QUOTE (-148))) (|HasCategory| (-594 |#1|) (QUOTE (-380))) (|HasCategory| (-594 |#1|) (QUOTE (-146)))) (-532 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-533 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-534 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL @@ -2075,7 +2075,7 @@ NIL (-536 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-537) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2108,7 +2108,7 @@ NIL ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL ((-12 (|HasCategory| (-792) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1130))))) -(-545 K -2057 |Par|) +(-545 K -2068 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2132,7 +2132,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-551 K -2057 |Par|) +(-551 K -2068 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2183,12 +2183,12 @@ NIL (-563 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102)))) -(-564 R -2057) +((-12 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3988) (|devaluate| |#2|)))))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1130))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102)))) +(-564 R -2068) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-565 R0 -2057 UP UPUP R) +(-565 R0 -2068 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2198,7 +2198,7 @@ NIL NIL (-567 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4215 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4179 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-568 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2208,7 +2208,7 @@ NIL ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) ((-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-570 R -2057) +(-570 R -2068) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2220,7 +2220,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-573 R -2057 L) +(-573 R -2068 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -677) (|devaluate| |#2|)))) @@ -2228,11 +2228,11 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-575 -2057 UP UPUP R) +(-575 -2068 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-576 -2057 UP) +(-576 -2068 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL @@ -2244,15 +2244,15 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-579 R -2057 L) +(-579 R -2068 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -677) (|devaluate| |#2|)))) -(-580 R -2057) +(-580 R -2068) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1169)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-647))))) -(-581 -2057 UP) +(-581 -2068 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2260,27 +2260,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-583 -2057) +(-583 -2068) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-584 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4215 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4179 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-585) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-586 R -2057) +(-586 R -2068) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-295))) (|HasCategory| |#2| (QUOTE (-647))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-295)))) (|HasCategory| |#1| (QUOTE (-569)))) -(-587 -2057 UP) +(-587 -2068 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-588 R -2057) +(-588 R -2068) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2312,11 +2312,11 @@ NIL ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-596 R -2057) +(-596 R -2068) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-597 E -2057) +(-597 E -2068) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL @@ -2324,7 +2324,7 @@ NIL ((|constructor| (NIL "This domain provides representations for the intermediate form data structure used by the Spad elaborator.")) (|irDef| (($ (|Identifier|) (|InternalTypeForm|) $) "\\spad{irDef(f,ts,e)} returns an IR representation for a definition of a function named \\spad{f},{} with signature \\spad{ts} and body \\spad{e}.")) (|irCtor| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irCtor(n,t)} returns an IR for a constructor reference of type designated by the type form \\spad{t}")) (|irVar| (($ (|Identifier|) (|InternalTypeForm|)) "\\spad{irVar(x,t)} returns an IR for a variable reference of type designated by the type form \\spad{t}"))) NIL NIL -(-599 -2057) +(-599 -2068) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) ((-4494 . T) (-4493 . T)) ((|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-1206))))) @@ -2355,7 +2355,7 @@ NIL (-606 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2867 (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-145) (QUOTE (-870))) (-2867 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) +((-2816 (-12 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2816 (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-145) (QUOTE (-870))) (-2816 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-607 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL @@ -2363,7 +2363,7 @@ NIL (-608 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))) (|HasCategory| (-577) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577)))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))) (|HasCategory| (-577) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3630) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577)))))) (-609 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) (((-4501 "*") |has| |#1| (-569)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) @@ -2380,7 +2380,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-613 R -2057 FG) +(-613 R -2068 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2391,7 +2391,7 @@ NIL (-615 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-616 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2406,26 +2406,26 @@ NIL NIL (-619 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4496 -2867 (-2790 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4494 . T) (-4493 . T)) -((-2867 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) +((-4496 -2816 (-2750 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4494 . T) (-4493 . T)) +((-2816 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-620) ((|constructor| (NIL "This is the datatype for the \\spad{JVM} bytecodes."))) NIL NIL (-621) -NIL +((|constructor| (NIL "\\spad{JVM} class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the \\spad{JVM} to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL (-622) -NIL +((|constructor| (NIL "\\spad{JVM} class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java UTF8 string constant."))) NIL NIL (-623) -NIL +((|constructor| (NIL "\\spad{JVM} class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL (-624) -NIL +((|constructor| (NIL "\\spad{JVM} class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is \\spad{FP}-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL (-625) @@ -2435,7 +2435,7 @@ NIL (-626 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -3988) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (QUOTE (-102)))) (-627 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL @@ -2460,7 +2460,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-633 -2057 UP) +(-633 -2068 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2488,7 +2488,7 @@ NIL ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) ((-4493 . T) (-4494 . T) (-4496 . T)) ((|HasCategory| |#1| (QUOTE (-869)))) -(-640 R -2057) +(-640 R -2068) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL @@ -2520,18 +2520,18 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-648 R -2057) +(-648 R -2068) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-649 |lv| -2057) +(-649 |lv| -2068) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-650) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) ((-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2727) (QUOTE (-52))))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-1188) (QUOTE (-870))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 (-52))) (QUOTE (-1130)))) +((-12 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -3988) (QUOTE (-52))))))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-1188) (QUOTE (-870))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 (-52))) (QUOTE (-1130)))) (-651 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL @@ -2542,8 +2542,8 @@ NIL NIL (-653 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4496 -2867 (-2790 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4494 . T) (-4493 . T)) -((-2867 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) +((-4496 -2816 (-2750 (|has| |#2| (-379 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4494 . T) (-4493 . T)) +((-2816 (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (LIST (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -379) (|devaluate| |#1|)))) (-654 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL @@ -2559,7 +2559,7 @@ NIL (-657 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2779 (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-375)))) +((-2740 (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-375)))) (-658 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) ((-4494 . T) (-4493 . T)) @@ -2591,7 +2591,7 @@ NIL (-665 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-849))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-666 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL @@ -2603,7 +2603,7 @@ NIL (-668 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-669 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline"))) NIL @@ -2620,7 +2620,7 @@ NIL ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-673 R -2057 L) +(-673 R -2068 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL @@ -2640,11 +2640,11 @@ NIL ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) ((-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-678 -2057 UP) +(-678 -2068 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-679 A -1357) +(-679 A -1426) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4493 . T) (-4494 . T) (-4496 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) @@ -2680,11 +2680,11 @@ NIL ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) ((-4500 . T) (-4499 . T)) NIL -(-688 -2057) +(-688 -2068) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-689 -2057 |Row| |Col| M) +(-689 -2068 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2695,7 +2695,7 @@ NIL (-691 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) ((-4496 . T) (-4499 . T) (-4493 . T) (-4494 . T)) -((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-569))) (-2867 (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-569))) (-2816 (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) (-692) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2715,7 +2715,7 @@ NIL (-696 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (QUOTE (-1079))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-697) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2771,7 +2771,7 @@ NIL (-710 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) ((-4499 . T) (-4500 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4501 "*"))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-711 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2780,7 +2780,7 @@ NIL ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value \\spad{`x'} into \\%."))) NIL NIL -(-713 S -2057 FLAF FLAS) +(-713 S -2068 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2790,8 +2790,8 @@ NIL NIL (-715) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4492 . T) (-4497 |has| (-720) (-375)) (-4491 |has| (-720) (-375)) (-4225 . T) (-4498 |has| (-720) (-6 -4498)) (-4495 |has| (-720) (-6 -4495)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-720) (QUOTE (-148))) (|HasCategory| (-720) (QUOTE (-146))) (|HasCategory| (-720) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-720) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-720) (QUOTE (-380))) (|HasCategory| (-720) (QUOTE (-375))) (-2867 (|HasCategory| (-720) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-238))) (-2867 (-12 (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206))))) (-2867 (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-361)))) (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (LIST (QUOTE -297) (QUOTE (-720)) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -320) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-720) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-720) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-720) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (-2867 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-361)))) (|HasCategory| (-720) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-720) (QUOTE (-1052))) (|HasCategory| (-720) (QUOTE (-1232))) (-12 (|HasCategory| (-720) (QUOTE (-1032))) (|HasCategory| (-720) (QUOTE (-1232)))) (-2867 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-375))) (-12 (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (QUOTE (-937))))) (-2867 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (-12 (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-937)))) (-12 (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (QUOTE (-937))))) (|HasCategory| (-720) (QUOTE (-558))) (-12 (|HasCategory| (-720) (QUOTE (-1090))) (|HasCategory| (-720) (QUOTE (-1232)))) (|HasCategory| (-720) (QUOTE (-1090))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937))) (-2867 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-375)))) (-2867 (-12 (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (QUOTE (-238)))) (-2867 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-569)))) (-12 (|HasCategory| (-720) (QUOTE (-238))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-720) (QUOTE (-569))) (|HasAttribute| (-720) (QUOTE -4498)) (|HasAttribute| (-720) (QUOTE -4495)) (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-146)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-361))))) +((-4492 . T) (-4497 |has| (-720) (-375)) (-4491 |has| (-720) (-375)) (-4185 . T) (-4498 |has| (-720) (-6 -4498)) (-4495 |has| (-720) (-6 -4495)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((|HasCategory| (-720) (QUOTE (-148))) (|HasCategory| (-720) (QUOTE (-146))) (|HasCategory| (-720) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-720) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-720) (QUOTE (-380))) (|HasCategory| (-720) (QUOTE (-375))) (-2816 (|HasCategory| (-720) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-238))) (-2816 (-12 (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206))))) (-2816 (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-361)))) (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (LIST (QUOTE -297) (QUOTE (-720)) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -320) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-720)))) (|HasCategory| (-720) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-720) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-720) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-720) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (-2816 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-361)))) (|HasCategory| (-720) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-720) (QUOTE (-1052))) (|HasCategory| (-720) (QUOTE (-1232))) (-12 (|HasCategory| (-720) (QUOTE (-1032))) (|HasCategory| (-720) (QUOTE (-1232)))) (-2816 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-375))) (-12 (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (QUOTE (-937))))) (-2816 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (-12 (|HasCategory| (-720) (QUOTE (-375))) (|HasCategory| (-720) (QUOTE (-937)))) (-12 (|HasCategory| (-720) (QUOTE (-361))) (|HasCategory| (-720) (QUOTE (-937))))) (|HasCategory| (-720) (QUOTE (-558))) (-12 (|HasCategory| (-720) (QUOTE (-1090))) (|HasCategory| (-720) (QUOTE (-1232)))) (|HasCategory| (-720) (QUOTE (-1090))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937))) (-2816 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-375)))) (-2816 (-12 (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (QUOTE (-238)))) (-2816 (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-569)))) (-12 (|HasCategory| (-720) (QUOTE (-238))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (QUOTE (-239))) (|HasCategory| (-720) (QUOTE (-375)))) (-12 (|HasCategory| (-720) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-720) (QUOTE (-375)))) (|HasCategory| (-720) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-720) (QUOTE (-569))) (|HasAttribute| (-720) (QUOTE -4498)) (|HasAttribute| (-720) (QUOTE -4495)) (-12 (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (LIST (QUOTE -928) (QUOTE (-1206)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-146)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-720) (QUOTE (-318))) (|HasCategory| (-720) (QUOTE (-937)))) (|HasCategory| (-720) (QUOTE (-361))))) (-716 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) ((-4500 . T)) @@ -2804,13 +2804,13 @@ NIL ((|constructor| (NIL "\\indented{1}{} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-719 OV E -2057 PG) +(-719 OV E -2068 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-720) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4215 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) +((-4179 . T) (-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-721 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2836,7 +2836,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-727 S -2389 I) +(-727 S -3740 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2856,14 +2856,14 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-732 R |Mod| -3530 -3771 |exactQuo|) +(-732 R |Mod| -1773 -2269 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-733 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4495 |has| |#1| (-375)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-734 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL @@ -2872,7 +2872,7 @@ NIL ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4494 |has| |#1| (-174)) (-4493 |has| |#1| (-174)) (-4496 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148)))) -(-736 R |Mod| -3530 -3771 |exactQuo|) +(-736 R |Mod| -1773 -2269 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4496 . T)) NIL @@ -2884,7 +2884,7 @@ NIL ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) ((-4494 . T) (-4493 . T)) NIL -(-739 -2057) +(-739 -2068) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) ((-4496 . T)) NIL @@ -2920,7 +2920,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-748 -2057 UP) +(-748 -2068 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2939,7 +2939,7 @@ NIL (-752 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) (((-4501 "*") |has| |#2| (-174)) (-4492 |has| |#2| (-569)) (-4497 |has| |#2| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-937))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) +((|HasCategory| |#2| (QUOTE (-937))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-174))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-887 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375))) (|HasAttribute| |#2| (QUOTE -4497)) (|HasCategory| |#2| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) (-753 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -3072,11 +3072,11 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-786 -2057) +(-786 -2068) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-787 P -2057) +(-787 P -2068) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL @@ -3084,7 +3084,7 @@ NIL NIL NIL NIL -(-789 UP -2057) +(-789 UP -2068) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -3100,7 +3100,7 @@ NIL ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) (((-4501 "*") . T)) NIL -(-793 R -2057) +(-793 R -2068) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -3120,7 +3120,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-798 -2057 |ExtF| |SUEx| |ExtP| |n|) +(-798 -2068 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -3135,7 +3135,7 @@ NIL (-801 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2779 (|HasCategory| |#1| (QUOTE (-558)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577))))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2779 (|HasCategory| |#1| (LIST (QUOTE -1022) (QUOTE (-577))))))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-937))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206))))) (-2816 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2740 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))))) (-2816 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2740 (|HasCategory| |#1| (QUOTE (-558)))) (-2740 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2740 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-577))))) (-2740 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-1206)))) (-2740 (|HasCategory| |#1| (LIST (QUOTE -1022) (QUOTE (-577))))))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-802 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL @@ -3143,7 +3143,7 @@ NIL (-803 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4495 |has| |#1| (-375)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-804 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL @@ -3204,23 +3204,23 @@ NIL ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) ((-4493 . T) (-4494 . T) (-4496 . T)) NIL -(-819 -2867 R OS S) +(-819 -2816 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL (-820 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) ((-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-2867 (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (-2816 (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2816 (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1029 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (-821) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-822 R -2057 L) +(-822 R -2068 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-823 R -2057) +(-823 R -2068) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -3228,7 +3228,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-825 R -2057) +(-825 R -2068) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -3236,11 +3236,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-827 -2057 UP UPUP R) +(-827 -2068 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-828 -2057 UP L LQ) +(-828 -2068 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -3248,38 +3248,38 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-830 -2057 UP L LQ) +(-830 -2068 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-831 -2057 UP) +(-831 -2068 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-832 -2057 L UP A LO) +(-832 -2068 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-833 -2057 UP) +(-833 -2068 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-834 -2057 LO) +(-834 -2068 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-835 -2057 LODO) +(-835 -2068 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-836 -3651 S |f|) +(-836 -3746 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4493 |has| |#2| (-1079)) (-4494 |has| |#2| (-1079)) (-4496 |has| |#2| (-6 -4496)) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2867 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2867 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2867 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2867 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) +((-2816 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-375))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-375)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (-2816 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-380))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (QUOTE (-1079)))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (|HasCategory| |#2| (QUOTE (-239))) (-2816 (|HasCategory| |#2| (QUOTE (-239))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079))))) (-2816 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#2| (QUOTE (-1130))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-174)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-239)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-380)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-870)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130))))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2816 (-12 (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-375))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-747))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-870))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2816 (|HasCategory| |#2| (QUOTE (-1079))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-1130)))) (|HasAttribute| |#2| (QUOTE -4496)) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1079)))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))))) (-837 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-937))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-839 (-1206)) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-838 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) (((-4501 "*") |has| |#2| (-375)) (-4492 |has| |#2| (-375)) (-4497 |has| |#2| (-375)) (-4491 |has| |#2| (-375)) (-4496 . T) (-4494 . T) (-4493 . T)) @@ -3347,7 +3347,7 @@ NIL (-854 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) ((-4496 |has| |#1| (-869))) -((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-2816 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2816 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) (-855 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL @@ -3387,12 +3387,12 @@ NIL (-864 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) ((-4496 |has| |#1| (-869))) -((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-2867 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) +((|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (QUOTE (-21))) (-2816 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-869)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2816 (|HasCategory| |#1| (QUOTE (-869))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-558)))) (-865) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-866 -3651 S) +(-866 -3746 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3436,11 +3436,11 @@ NIL ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) -(-877 R |sigma| -1797) +(-877 R |sigma| -3852) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4493 . T) (-4494 . T) (-4496 . T)) ((|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-375)))) -(-878 |x| R |sigma| -1797) +(-878 |x| R |sigma| -3852) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) ((-4493 . T) (-4494 . T) (-4496 . T)) ((|HasCategory| |#2| (QUOTE (-174))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-465))) (|HasCategory| |#2| (QUOTE (-375)))) @@ -3507,15 +3507,15 @@ NIL (-894 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-893 |#1|) (QUOTE (-937))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-148))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1052))) (|HasCategory| (-893 |#1|) (QUOTE (-841))) (|HasCategory| (-893 |#1|) (QUOTE (-870))) (-2867 (|HasCategory| (-893 |#1|) (QUOTE (-841))) (|HasCategory| (-893 |#1|) (QUOTE (-870)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (QUOTE (-1182))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (QUOTE (-238))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -893) (|devaluate| |#1|)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-318))) (|HasCategory| (-893 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-937)))) (|HasCategory| (-893 |#1|) (QUOTE (-146))))) +((|HasCategory| (-893 |#1|) (QUOTE (-937))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-148))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1052))) (|HasCategory| (-893 |#1|) (QUOTE (-841))) (|HasCategory| (-893 |#1|) (QUOTE (-870))) (-2816 (|HasCategory| (-893 |#1|) (QUOTE (-841))) (|HasCategory| (-893 |#1|) (QUOTE (-870)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (QUOTE (-1182))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| (-893 |#1|) (QUOTE (-238))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -320) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (LIST (QUOTE -297) (LIST (QUOTE -893) (|devaluate| |#1|)) (LIST (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-318))) (|HasCategory| (-893 |#1|) (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-893 |#1|) (QUOTE (-937)))) (|HasCategory| (-893 |#1|) (QUOTE (-146))))) (-895 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-870))) (-2867 (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) +((|HasCategory| |#2| (QUOTE (-937))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1052))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-870))) (-2816 (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-870)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-238))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -297) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-558))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-937)))) (|HasCategory| |#2| (QUOTE (-146))))) (-896 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))))) (-897) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3575,7 +3575,7 @@ NIL (-911 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2779 (|HasCategory| |#2| (QUOTE (-1079)))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (-2779 (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206))))) +((-12 (-2740 (|HasCategory| |#2| (QUOTE (-1079)))) (-2740 (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (-12 (|HasCategory| |#2| (QUOTE (-1079))) (-2740 (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206)))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-1206))))) (-912 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL @@ -3584,7 +3584,7 @@ NIL ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-914 R -2389) +(-914 R -3740) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3616,7 +3616,7 @@ NIL ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-922 UP -2057) +(-922 UP -2068) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3647,7 +3647,7 @@ NIL (-929 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-930 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL @@ -3663,7 +3663,7 @@ NIL (-933 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) ((-4496 . T)) -((-2867 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-870)))) +((-2816 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-870)))) (-934 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL @@ -3684,7 +3684,7 @@ NIL ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) ((|HasCategory| $ (QUOTE (-148))) (|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-380)))) -(-939 R0 -2057 UP UPUP R) +(-939 R0 -2068 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3712,7 +3712,7 @@ NIL ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-946 -2057) +(-946 -2068) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL @@ -3728,11 +3728,11 @@ NIL ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) (((-4501 "*") . T)) NIL -(-950 -2057 P) +(-950 -2068 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-951 |xx| -2057) +(-951 |xx| -2068) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL @@ -3756,7 +3756,7 @@ NIL ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-957 R -2057) +(-957 R -2068) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL @@ -3768,7 +3768,7 @@ NIL ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-960 S R -2057) +(-960 S R -2068) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL @@ -3788,11 +3788,11 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -910) (|devaluate| |#1|)))) -(-965 R -2057 -2389) +(-965 R -2068 -3740) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-966 -2389) +(-966 -3740) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL @@ -3815,7 +3815,7 @@ NIL (-971 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-972 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3840,7 +3840,7 @@ NIL ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) NIL -(-978 E V R P -2057) +(-978 E V R P -2068) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL @@ -3851,8 +3851,8 @@ NIL (-980 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-981 E V R P -2057) +((|HasCategory| |#1| (QUOTE (-937))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1206) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-981 E V R P -2068) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-465)))) @@ -3875,12 +3875,12 @@ NIL (-986 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-987) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-988 -2057) +(-988 -2068) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL @@ -3895,11 +3895,11 @@ NIL (-991 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4497))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-132)))) (|HasAttribute| |#1| (QUOTE -4497))) (-992 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) ((-4496 -12 (|has| |#2| (-486)) (|has| |#1| (-486)))) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870))))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747))))) (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-380)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870))))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747))))) (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-380)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-486))) (|HasCategory| |#2| (QUOTE (-486)))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814))))) (-12 (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#2| (QUOTE (-747)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-132))) (|HasCategory| |#2| (QUOTE (-132)))) (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#2| (QUOTE (-870))))) (-993) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL @@ -3988,7 +3988,7 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1015 K R UP -2057) +(-1015 K R UP -2068) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL @@ -4047,11 +4047,11 @@ NIL (-1029 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) ((-4492 |has| |#1| (-301)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-558)))) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375))) (-2816 (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-301))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -527) (QUOTE (-1206)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -297) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-1090))) (|HasCategory| |#1| (QUOTE (-558)))) (-1030 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1031 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -4060,14 +4060,14 @@ NIL ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1033 -2057 UP UPUP |radicnd| |n|) +(-1033 -2068 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) ((-4492 |has| (-420 |#2|) (-375)) (-4497 |has| (-420 |#2|) (-375)) (-4491 |has| (-420 |#2|) (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2867 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2867 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2867 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2867 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2867 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -659) (QUOTE (-577)))) (-2867 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) +((|HasCategory| (-420 |#2|) (QUOTE (-146))) (|HasCategory| (-420 |#2|) (QUOTE (-148))) (|HasCategory| (-420 |#2|) (QUOTE (-361))) (-2816 (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))) (|HasCategory| (-420 |#2|) (QUOTE (-380))) (-2816 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2816 (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (QUOTE (-361)))) (-2816 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-361))))) (-2816 (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -659) (QUOTE (-577)))) (-2816 (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 |#2|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-238))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (QUOTE (-239))) (|HasCategory| (-420 |#2|) (QUOTE (-375)))) (-12 (|HasCategory| (-420 |#2|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-420 |#2|) (QUOTE (-375))))) (-1034 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2867 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) +((|HasCategory| (-577) (QUOTE (-937))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-148))) (|HasCategory| (-577) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-1052))) (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870))) (-2816 (|HasCategory| (-577) (QUOTE (-841))) (|HasCategory| (-577) (QUOTE (-870)))) (|HasCategory| (-577) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-1182))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| (-577) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| (-577) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| (-577) (QUOTE (-238))) (|HasCategory| (-577) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| (-577) (QUOTE (-239))) (|HasCategory| (-577) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| (-577) (LIST (QUOTE -527) (QUOTE (-1206)) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -320) (QUOTE (-577)))) (|HasCategory| (-577) (LIST (QUOTE -297) (QUOTE (-577)) (QUOTE (-577)))) (|HasCategory| (-577) (QUOTE (-318))) (|HasCategory| (-577) (QUOTE (-558))) (|HasCategory| (-577) (LIST (QUOTE -659) (QUOTE (-577)))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-577) (QUOTE (-937)))) (|HasCategory| (-577) (QUOTE (-146))))) (-1035) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -4100,19 +4100,19 @@ NIL ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) ((-4492 . T) (-4497 . T) (-4491 . T) (-4494 . T) (-4493 . T) ((-4501 "*") . T) (-4496 . T)) NIL -(-1043 R -2057) +(-1043 R -2068) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1044 R -2057) +(-1044 R -2068) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1045 -2057 UP) +(-1045 -2068 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1046 -2057 UP) +(-1046 -2068 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL @@ -4147,8 +4147,8 @@ NIL (-1054 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) ((-4492 . T) (-4497 . T) (-4491 . T) (-4494 . T) (-4493 . T) ((-4501 "*") . T) (-4496 . T)) -((-2867 (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (QUOTE (-577))))) -(-1055 -2057 L) +((-2816 (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-420 (-577)) (LIST (QUOTE -1068) (QUOTE (-577))))) +(-1055 -2068 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL @@ -4184,14 +4184,14 @@ NIL ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1064 -2057 |Expon| |VarSet| |FPol| |LFPol|) +(-1064 -2068 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) (((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL (-1065) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -2727) (QUOTE (-52))))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -3988) (QUOTE (-52))))))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-102)))) (-1066) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -4248,7 +4248,7 @@ NIL ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) ((-4496 . T)) NIL -(-1080 |xx| -2057) +(-1080 |xx| -2068) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL @@ -4267,7 +4267,7 @@ NIL (-1084 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) ((-4499 . T) (-4494 . T) (-4493 . T)) -((|HasCategory| |#3| (QUOTE (-174))) (-2867 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-569))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885))))) +((|HasCategory| |#3| (QUOTE (-174))) (-2816 (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (QUOTE (-318))) (|HasCategory| |#3| (QUOTE (-569))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885))))) (-1085 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL @@ -4303,7 +4303,7 @@ NIL (-1093) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -2727) (QUOTE (-52))))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1206)) (|:| -2727 (-52))) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (QUOTE (-1206))) (LIST (QUOTE |:|) (QUOTE -3988) (QUOTE (-52))))))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| (-52) (QUOTE (-1130))) (|HasCategory| (-52) (LIST (QUOTE -320) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-1130))) (|HasCategory| (-1206) (QUOTE (-870))) (|HasCategory| (-52) (QUOTE (-1130))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885))))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-102))) (|HasCategory| (-52) (QUOTE (-102)))) (|HasCategory| (-52) (QUOTE (-102))) (|HasCategory| (-52) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 (-1206)) (|:| -3988 (-52))) (QUOTE (-102)))) (-1094 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL @@ -4352,11 +4352,11 @@ NIL ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1106 |Base| R -2057) +(-1106 |Base| R -2068) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1107 |Base| R -2057) +(-1107 |Base| R -2068) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL @@ -4371,7 +4371,7 @@ NIL (-1110 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) ((-4492 |has| |#1| (-375)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) +((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-361))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-361)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-380))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-361))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-361)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206))))) (-12 (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-1111 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -4399,7 +4399,7 @@ NIL (-1117 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-937))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1118 (-1206)) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1118 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -4459,7 +4459,7 @@ NIL (-1132 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) ((-4499 . T) (-4489 . T) (-4500 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-380))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-1133 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL @@ -4503,7 +4503,7 @@ NIL (-1143 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4493 |has| |#3| (-1079)) (-4494 |has| |#3| (-1079)) (-4496 |has| |#3| (-6 -4496)) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#3| (QUOTE (-375))) (-2867 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (-2867 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-380))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasCategory| |#3| (QUOTE (-239))) (-2867 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-2867 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-1130))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-747)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-814)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-870)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130))))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2867 (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (|HasAttribute| |#3| (QUOTE -4496)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) +((-2816 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))))) (-2816 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#3| (QUOTE (-375))) (-2816 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2816 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-375)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (-2816 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870)))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-380))) (-2816 (-12 (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577)))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-2816 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2816 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (QUOTE (-1130)))) (-2816 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2816 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2816 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2816 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (QUOTE (-1079)))) (-2816 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (|HasCategory| |#3| (QUOTE (-239))) (-2816 (|HasCategory| |#3| (QUOTE (-239))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079))))) (-2816 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206)))))) (|HasCategory| |#3| (QUOTE (-1130))) (-2816 (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-132)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-174)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-239)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-375)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-380)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-747)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-814)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-870)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130))))) (-2816 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-2816 (-12 (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-375))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-380))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-747))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-870))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (|HasCategory| (-577) (QUOTE (-870))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (QUOTE (-238))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -928) (QUOTE (-1206))))) (-2816 (|HasCategory| |#3| (QUOTE (-1079))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577)))))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -1068) (QUOTE (-577))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#3| (QUOTE (-1130)))) (|HasAttribute| |#3| (QUOTE -4496)) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1079)))) (-12 (|HasCategory| |#3| (QUOTE (-1079))) (|HasCategory| |#3| (LIST (QUOTE -926) (QUOTE (-1206))))) (|HasCategory| |#3| (QUOTE (-174))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-132))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1130))) (|HasCategory| |#3| (LIST (QUOTE -320) (|devaluate| |#3|))))) (-1144 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL @@ -4512,7 +4512,7 @@ NIL ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}"))) NIL NIL -(-1146 R -2057) +(-1146 R -2068) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL @@ -4551,16 +4551,16 @@ NIL (-1155 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-937))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1156 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375)))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-375)))) (-1157 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) ((-4500 . T) (-4499 . T)) NIL -(-1158 UP -2057) +(-1158 UP -2068) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL @@ -4615,11 +4615,11 @@ NIL (-1171 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130))) (-2867 (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130)))) (-2867 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130))))) (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102)))) +((-12 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130))) (-2816 (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130)))) (-2816 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -320) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-1130))))) (|HasCategory| (-1170 |#1| |#2|) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-1170 |#1| |#2|) (QUOTE (-102)))) (-1172 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) ((-4496 . T) (-4488 |has| |#2| (-6 (-4501 "*"))) (-4499 . T) (-4493 . T) (-4494 . T)) -((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-375))) (-2867 (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) +((|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-238))) (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#2| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -659) (QUOTE (-577))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))))) (|HasCategory| |#2| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-318))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-375))) (-2816 (|HasAttribute| |#2| (QUOTE (-4501 "*"))) (|HasCategory| |#2| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-174)))) (-1173 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL @@ -4639,7 +4639,7 @@ NIL (-1177 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1178 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL @@ -4651,7 +4651,7 @@ NIL (-1180 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#2|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2867 (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 |#1|) (|:| -2727 |#2|)) (QUOTE (-1130)))) +((-12 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3988) (|devaluate| |#2|)))))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (LIST (QUOTE -320) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2816 (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#2| (QUOTE (-1130))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 |#1|) (|:| -3988 |#2|)) (QUOTE (-1130)))) (-1181) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL @@ -4679,15 +4679,15 @@ NIL (-1187 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) ((-4500 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1188) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2867 (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-145) (QUOTE (-870))) (-2867 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) +((-2816 (-12 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145))))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-2816 (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (|HasCategory| (-145) (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-145) (QUOTE (-870))) (-2816 (|HasCategory| (-145) (QUOTE (-102))) (|HasCategory| (-145) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-145) (QUOTE (-102))) (-12 (|HasCategory| (-145) (QUOTE (-1130))) (|HasCategory| (-145) (LIST (QUOTE -320) (QUOTE (-145)))))) (-1189 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) ((-4499 . T) (-4500 . T)) -((-12 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4376) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -2727) (|devaluate| |#1|)))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (-2867 (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4376 (-1188)) (|:| -2727 |#1|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (LIST (QUOTE -320) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -4375) (QUOTE (-1188))) (LIST (QUOTE |:|) (QUOTE -3988) (|devaluate| |#1|)))))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1130)))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (QUOTE (-1130))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (LIST (QUOTE -632) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (QUOTE (-1130))) (|HasCategory| (-1188) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (-2816 (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| (-2 (|:| -4375 (-1188)) (|:| -3988 |#1|)) (QUOTE (-102)))) (-1190 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b = sum(i+j=k,a)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL @@ -4718,9 +4718,9 @@ NIL NIL (-1197 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4501 "*") -2867 (-2790 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-841))) (|has| |#1| (-174)) (-2790 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4492 -2867 (-2790 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-841))) (|has| |#1| (-569)) (-2790 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146))))) -(-1198 R -2057) +(((-4501 "*") -2816 (-2750 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-841))) (|has| |#1| (-174)) (-2750 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4492 -2816 (-2750 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-841))) (|has| |#1| (-569)) (-2750 (|has| |#1| (-375)) (|has| (-1204 |#1| |#2| |#3|) (-937)))) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) +((-2816 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-2816 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146)))) (-2816 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-148)))) (-2816 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2816 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|)))))) (-2816 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-577)) (|devaluate| |#1|))))) (|HasCategory| (-577) (QUOTE (-1142))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-375))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1052))) (|HasCategory| |#1| (QUOTE (-375)))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-2816 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -297) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -320) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -527) (QUOTE (-1206)) (LIST (QUOTE -1204) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -3630) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-577))))) (-2816 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4311) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2104) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-558))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-318))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-146))) (-2816 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-569)))) (-2816 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2816 (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-174)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-375)))) (-12 (|HasCategory| (-1204 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-375)))) (|HasCategory| |#1| (QUOTE (-146))))) +(-1198 R -2068) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL @@ -4739,15 +4739,15 @@ NIL (-1202 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4495 |has| |#1| (-375)) (-4497 |has| |#1| (-6 -4497)) (-4494 . T) (-4493 . T) (-4496 . T)) -((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2867 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2867 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) +((|HasCategory| |#1| (QUOTE (-937))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-391)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-391))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -910) (QUOTE (-577)))) (|HasCategory| |#1| (LIST (QUOTE -910) (QUOTE (-577))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-391)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -632) (LIST (QUOTE -916) (QUOTE (-577)))))) (-12 (|HasCategory| (-1112) (LIST (QUOTE -632) (QUOTE (-549)))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549))))) (|HasCategory| |#1| (LIST (QUOTE -659) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-148))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (QUOTE (-577)))) (-2816 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| |#1| (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-465))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (LIST (QUOTE -928) (QUOTE (-1206)))) (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasCategory| |#1| (QUOTE (-238))) (|HasCategory| |#1| (QUOTE (-239))) (|HasAttribute| |#1| (QUOTE -4497)) (|HasCategory| |#1| (QUOTE (-465))) (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (-2816 (-12 (|HasCategory| $ (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-937)))) (|HasCategory| |#1| (QUOTE (-146))))) (-1203 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4497 |has| |#1| (-375)) (-4491 |has| |#1| (-375)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2867 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-174))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577))) (|devaluate| |#1|)))) (|HasCategory| (-420 (-577)) (QUOTE (-1142))) (|HasCategory| |#1| (QUOTE (-375))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-2816 (|HasCategory| |#1| (QUOTE (-375))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasSignature| |#1| (LIST (QUOTE -3630) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -420) (QUOTE (-577)))))) (-2816 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4311) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2104) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) (-1204 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -3630) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2816 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4311) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2104) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) (-1205) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) (((-4501 "*") |has| (-1282 |#2| |#3| |#4|) (-174)) (-4492 |has| (-1282 |#2| |#3| |#4|) (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-174))) (-2867 (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-375))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-465))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-569)))) +((|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-148))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-174))) (-2816 (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577)))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| (-1282 |#2| |#3| |#4|) (LIST (QUOTE -1068) (QUOTE (-577)))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-375))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-465))) (|HasCategory| (-1282 |#2| |#3| |#4|) (QUOTE (-569)))) (-1284 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL @@ -5079,7 +5079,7 @@ NIL (-1287 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-987))) (|HasCategory| |#2| (QUOTE (-1232))) (|HasSignature| |#2| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1869) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1206))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#2| (QUOTE (-987))) (|HasCategory| |#2| (QUOTE (-1232))) (|HasSignature| |#2| (LIST (QUOTE -2104) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4311) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1206))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#2| (QUOTE (-375)))) (-1288 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) @@ -5087,12 +5087,12 @@ NIL (-1289 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4501 "*") |has| |#1| (-174)) (-4492 |has| |#1| (-569)) (-4493 . T) (-4494 . T) (-4496 . T)) -((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2867 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -3709) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2867 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -1869) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -3891) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasCategory| |#1| (QUOTE (-569))) (-2816 (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-174))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-148))) (-12 (|HasCategory| |#1| (LIST (QUOTE -926) (QUOTE (-1206)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-792)) (|devaluate| |#1|)))) (|HasCategory| (-792) (QUOTE (-1142))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasSignature| |#1| (LIST (QUOTE -3630) (LIST (|devaluate| |#1|) (QUOTE (-1206)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-792))))) (|HasCategory| |#1| (QUOTE (-375))) (-2816 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-577)))) (|HasCategory| |#1| (QUOTE (-987))) (|HasCategory| |#1| (QUOTE (-1232))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -420) (QUOTE (-577))))) (|HasSignature| |#1| (LIST (QUOTE -4311) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1206))))) (|HasSignature| |#1| (LIST (QUOTE -2104) (LIST (LIST (QUOTE -665) (QUOTE (-1206))) (|devaluate| |#1|))))))) (-1290 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y=f(y,y',..,y)} such that \\spad{y(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1291 -2057 UP L UTS) +(-1291 -2068 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-569)))) @@ -5119,7 +5119,7 @@ NIL (-1297 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) ((-4500 . T) (-4499 . T)) -((-2867 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2867 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2867 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2867 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) +((-2816 (-12 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-2816 (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885))))) (|HasCategory| |#1| (LIST (QUOTE -632) (QUOTE (-549)))) (-2816 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| |#1| (QUOTE (-870))) (-2816 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130)))) (|HasCategory| (-577) (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-747))) (|HasCategory| |#1| (QUOTE (-1079))) (-12 (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1079)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-885)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1130))) (|HasCategory| |#1| (LIST (QUOTE -320) (|devaluate| |#1|))))) (-1298) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL @@ -5152,7 +5152,7 @@ NIL ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1306 K R UP -2057) +(-1306 K R UP -2068) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL @@ -5188,11 +5188,11 @@ NIL ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) ((-4492 |has| |#2| (-6 -4492)) (-4494 . T) (-4493 . T) (-4496 . T)) NIL -(-1315 S -2057) +(-1315 S -2068) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-380))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-148)))) -(-1316 -2057) +(-1316 -2068) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) ((-4491 . T) (-4497 . T) (-4492 . T) ((-4501 "*") . T) (-4493 . T) (-4494 . T) (-4496 . T)) NIL @@ -5252,4 +5252,4 @@ NIL NIL NIL NIL -((-3 NIL 2296396 2296401 2296406 2296411) (-2 NIL 2296376 2296381 2296386 2296391) (-1 NIL 2296356 2296361 2296366 2296371) (0 NIL 2296336 2296341 2296346 2296351) (-1326 "ZMOD.spad" 2296145 2296158 2296274 2296331) (-1325 "ZLINDEP.spad" 2295211 2295222 2296135 2296140) (-1324 "ZDSOLVE.spad" 2285156 2285178 2295201 2295206) (-1323 "YSTREAM.spad" 2284651 2284662 2285146 2285151) (-1322 "YDIAGRAM.spad" 2284285 2284294 2284641 2284646) (-1321 "XRPOLY.spad" 2283505 2283525 2284141 2284210) (-1320 "XPR.spad" 2281300 2281313 2283223 2283322) (-1319 "XPOLY.spad" 2280855 2280866 2281156 2281225) (-1318 "XPOLYC.spad" 2280174 2280190 2280781 2280850) (-1317 "XPBWPOLY.spad" 2278611 2278631 2279954 2280023) (-1316 "XF.spad" 2277074 2277089 2278513 2278606) (-1315 "XF.spad" 2275517 2275534 2276958 2276963) (-1314 "XFALG.spad" 2272565 2272581 2275443 2275512) (-1313 "XEXPPKG.spad" 2271816 2271842 2272555 2272560) (-1312 "XDPOLY.spad" 2271430 2271446 2271672 2271741) (-1311 "XALG.spad" 2271090 2271101 2271386 2271425) (-1310 "WUTSET.spad" 2266893 2266910 2270700 2270727) (-1309 "WP.spad" 2266092 2266136 2266751 2266818) (-1308 "WHILEAST.spad" 2265890 2265899 2266082 2266087) (-1307 "WHEREAST.spad" 2265561 2265570 2265880 2265885) (-1306 "WFFINTBS.spad" 2263224 2263246 2265551 2265556) (-1305 "WEIER.spad" 2261446 2261457 2263214 2263219) (-1304 "VSPACE.spad" 2261119 2261130 2261414 2261441) (-1303 "VSPACE.spad" 2260812 2260825 2261109 2261114) (-1302 "VOID.spad" 2260489 2260498 2260802 2260807) (-1301 "VIEW.spad" 2258169 2258178 2260479 2260484) (-1300 "VIEWDEF.spad" 2253370 2253379 2258159 2258164) (-1299 "VIEW3D.spad" 2237331 2237340 2253360 2253365) (-1298 "VIEW2D.spad" 2225222 2225231 2237321 2237326) (-1297 "VECTOR.spad" 2223743 2223754 2223994 2224021) (-1296 "VECTOR2.spad" 2222382 2222395 2223733 2223738) (-1295 "VECTCAT.spad" 2220286 2220297 2222350 2222377) (-1294 "VECTCAT.spad" 2217997 2218010 2220063 2220068) (-1293 "VARIABLE.spad" 2217777 2217792 2217987 2217992) (-1292 "UTYPE.spad" 2217421 2217430 2217767 2217772) (-1291 "UTSODETL.spad" 2216716 2216740 2217377 2217382) (-1290 "UTSODE.spad" 2214932 2214952 2216706 2216711) (-1289 "UTS.spad" 2209879 2209907 2213399 2213496) (-1288 "UTSCAT.spad" 2207358 2207374 2209777 2209874) (-1287 "UTSCAT.spad" 2204481 2204499 2206902 2206907) (-1286 "UTS2.spad" 2204076 2204111 2204471 2204476) (-1285 "URAGG.spad" 2198749 2198760 2204066 2204071) (-1284 "URAGG.spad" 2193386 2193399 2198705 2198710) (-1283 "UPXSSING.spad" 2191031 2191057 2192467 2192600) (-1282 "UPXS.spad" 2188327 2188355 2189163 2189312) (-1281 "UPXSCONS.spad" 2186086 2186106 2186459 2186608) (-1280 "UPXSCCA.spad" 2184657 2184677 2185932 2186081) (-1279 "UPXSCCA.spad" 2183370 2183392 2184647 2184652) (-1278 "UPXSCAT.spad" 2181959 2181975 2183216 2183365) (-1277 "UPXS2.spad" 2181502 2181555 2181949 2181954) (-1276 "UPSQFREE.spad" 2179916 2179930 2181492 2181497) (-1275 "UPSCAT.spad" 2177703 2177727 2179814 2179911) (-1274 "UPSCAT.spad" 2175196 2175222 2177309 2177314) (-1273 "UPOLYC.spad" 2170236 2170247 2175038 2175191) (-1272 "UPOLYC.spad" 2165168 2165181 2169972 2169977) (-1271 "UPOLYC2.spad" 2164639 2164658 2165158 2165163) (-1270 "UP.spad" 2161745 2161760 2162132 2162285) (-1269 "UPMP.spad" 2160645 2160658 2161735 2161740) (-1268 "UPDIVP.spad" 2160210 2160224 2160635 2160640) (-1267 "UPDECOMP.spad" 2158455 2158469 2160200 2160205) (-1266 "UPCDEN.spad" 2157664 2157680 2158445 2158450) (-1265 "UP2.spad" 2157028 2157049 2157654 2157659) (-1264 "UNISEG.spad" 2156381 2156392 2156947 2156952) (-1263 "UNISEG2.spad" 2155878 2155891 2156337 2156342) (-1262 "UNIFACT.spad" 2154981 2154993 2155868 2155873) (-1261 "ULS.spad" 2144765 2144793 2145710 2146139) (-1260 "ULSCONS.spad" 2135899 2135919 2136269 2136418) (-1259 "ULSCCAT.spad" 2133636 2133656 2135745 2135894) (-1258 "ULSCCAT.spad" 2131481 2131503 2133592 2133597) (-1257 "ULSCAT.spad" 2129713 2129729 2131327 2131476) (-1256 "ULS2.spad" 2129227 2129280 2129703 2129708) (-1255 "UINT8.spad" 2129104 2129113 2129217 2129222) (-1254 "UINT64.spad" 2128980 2128989 2129094 2129099) (-1253 "UINT32.spad" 2128856 2128865 2128970 2128975) (-1252 "UINT16.spad" 2128732 2128741 2128846 2128851) (-1251 "UFD.spad" 2127797 2127806 2128658 2128727) (-1250 "UFD.spad" 2126924 2126935 2127787 2127792) (-1249 "UDVO.spad" 2125805 2125814 2126914 2126919) (-1248 "UDPO.spad" 2123298 2123309 2125761 2125766) (-1247 "TYPE.spad" 2123230 2123239 2123288 2123293) (-1246 "TYPEAST.spad" 2123149 2123158 2123220 2123225) (-1245 "TWOFACT.spad" 2121801 2121816 2123139 2123144) (-1244 "TUPLE.spad" 2121287 2121298 2121700 2121705) (-1243 "TUBETOOL.spad" 2118154 2118163 2121277 2121282) (-1242 "TUBE.spad" 2116801 2116818 2118144 2118149) (-1241 "TS.spad" 2115400 2115416 2116366 2116463) (-1240 "TSETCAT.spad" 2102527 2102544 2115368 2115395) (-1239 "TSETCAT.spad" 2089640 2089659 2102483 2102488) (-1238 "TRMANIP.spad" 2084006 2084023 2089346 2089351) (-1237 "TRIMAT.spad" 2082969 2082994 2083996 2084001) (-1236 "TRIGMNIP.spad" 2081496 2081513 2082959 2082964) (-1235 "TRIGCAT.spad" 2081008 2081017 2081486 2081491) (-1234 "TRIGCAT.spad" 2080518 2080529 2080998 2081003) (-1233 "TREE.spad" 2078976 2078987 2080008 2080035) (-1232 "TRANFUN.spad" 2078815 2078824 2078966 2078971) (-1231 "TRANFUN.spad" 2078652 2078663 2078805 2078810) (-1230 "TOPSP.spad" 2078326 2078335 2078642 2078647) (-1229 "TOOLSIGN.spad" 2077989 2078000 2078316 2078321) (-1228 "TEXTFILE.spad" 2076550 2076559 2077979 2077984) (-1227 "TEX.spad" 2073696 2073705 2076540 2076545) (-1226 "TEX1.spad" 2073252 2073263 2073686 2073691) (-1225 "TEMUTL.spad" 2072807 2072816 2073242 2073247) (-1224 "TBCMPPK.spad" 2070900 2070923 2072797 2072802) (-1223 "TBAGG.spad" 2069950 2069973 2070880 2070895) (-1222 "TBAGG.spad" 2069008 2069033 2069940 2069945) (-1221 "TANEXP.spad" 2068416 2068427 2068998 2069003) (-1220 "TALGOP.spad" 2068140 2068151 2068406 2068411) (-1219 "TABLE.spad" 2066109 2066132 2066379 2066406) (-1218 "TABLEAU.spad" 2065590 2065601 2066099 2066104) (-1217 "TABLBUMP.spad" 2062393 2062404 2065580 2065585) (-1216 "SYSTEM.spad" 2061621 2061630 2062383 2062388) (-1215 "SYSSOLP.spad" 2059104 2059115 2061611 2061616) (-1214 "SYSPTR.spad" 2059003 2059012 2059094 2059099) (-1213 "SYSNNI.spad" 2058194 2058205 2058993 2058998) (-1212 "SYSINT.spad" 2057598 2057609 2058184 2058189) (-1211 "SYNTAX.spad" 2053804 2053813 2057588 2057593) (-1210 "SYMTAB.spad" 2051872 2051881 2053794 2053799) (-1209 "SYMS.spad" 2047895 2047904 2051862 2051867) (-1208 "SYMPOLY.spad" 2046901 2046912 2046983 2047110) (-1207 "SYMFUNC.spad" 2046402 2046413 2046891 2046896) (-1206 "SYMBOL.spad" 2043905 2043914 2046392 2046397) (-1205 "SWITCH.spad" 2040676 2040685 2043895 2043900) (-1204 "SUTS.spad" 2037724 2037752 2039143 2039240) (-1203 "SUPXS.spad" 2035007 2035035 2035856 2036005) (-1202 "SUP.spad" 2031727 2031738 2032500 2032653) (-1201 "SUPFRACF.spad" 2030832 2030850 2031717 2031722) (-1200 "SUP2.spad" 2030224 2030237 2030822 2030827) (-1199 "SUMRF.spad" 2029198 2029209 2030214 2030219) (-1198 "SUMFS.spad" 2028835 2028852 2029188 2029193) (-1197 "SULS.spad" 2018606 2018634 2019564 2019993) (-1196 "SUCHTAST.spad" 2018375 2018384 2018596 2018601) (-1195 "SUCH.spad" 2018057 2018072 2018365 2018370) (-1194 "SUBSPACE.spad" 2010172 2010187 2018047 2018052) (-1193 "SUBRESP.spad" 2009342 2009356 2010128 2010133) (-1192 "STTF.spad" 2005441 2005457 2009332 2009337) (-1191 "STTFNC.spad" 2001909 2001925 2005431 2005436) (-1190 "STTAYLOR.spad" 1994544 1994555 2001790 2001795) (-1189 "STRTBL.spad" 1992595 1992612 1992744 1992771) (-1188 "STRING.spad" 1991382 1991391 1991603 1991630) (-1187 "STREAM.spad" 1988183 1988194 1990790 1990805) (-1186 "STREAM3.spad" 1987756 1987771 1988173 1988178) (-1185 "STREAM2.spad" 1986884 1986897 1987746 1987751) (-1184 "STREAM1.spad" 1986590 1986601 1986874 1986879) (-1183 "STINPROD.spad" 1985526 1985542 1986580 1986585) (-1182 "STEP.spad" 1984727 1984736 1985516 1985521) (-1181 "STEPAST.spad" 1983961 1983970 1984717 1984722) (-1180 "STBL.spad" 1982045 1982073 1982212 1982227) (-1179 "STAGG.spad" 1981120 1981131 1982035 1982040) (-1178 "STAGG.spad" 1980193 1980206 1981110 1981115) (-1177 "STACK.spad" 1979433 1979444 1979683 1979710) (-1176 "SREGSET.spad" 1977101 1977118 1979043 1979070) (-1175 "SRDCMPK.spad" 1975662 1975682 1977091 1977096) (-1174 "SRAGG.spad" 1970805 1970814 1975630 1975657) (-1173 "SRAGG.spad" 1965968 1965979 1970795 1970800) (-1172 "SQMATRIX.spad" 1963511 1963529 1964427 1964514) (-1171 "SPLTREE.spad" 1957907 1957920 1962791 1962818) (-1170 "SPLNODE.spad" 1954495 1954508 1957897 1957902) (-1169 "SPFCAT.spad" 1953304 1953313 1954485 1954490) (-1168 "SPECOUT.spad" 1951856 1951865 1953294 1953299) (-1167 "SPADXPT.spad" 1943451 1943460 1951846 1951851) (-1166 "spad-parser.spad" 1942916 1942925 1943441 1943446) (-1165 "SPADAST.spad" 1942617 1942626 1942906 1942911) (-1164 "SPACEC.spad" 1926816 1926827 1942607 1942612) (-1163 "SPACE3.spad" 1926592 1926603 1926806 1926811) (-1162 "SORTPAK.spad" 1926141 1926154 1926548 1926553) (-1161 "SOLVETRA.spad" 1923904 1923915 1926131 1926136) (-1160 "SOLVESER.spad" 1922432 1922443 1923894 1923899) (-1159 "SOLVERAD.spad" 1918458 1918469 1922422 1922427) (-1158 "SOLVEFOR.spad" 1916920 1916938 1918448 1918453) (-1157 "SNTSCAT.spad" 1916520 1916537 1916888 1916915) (-1156 "SMTS.spad" 1914792 1914818 1916085 1916182) (-1155 "SMP.spad" 1912267 1912287 1912657 1912784) (-1154 "SMITH.spad" 1911112 1911137 1912257 1912262) (-1153 "SMATCAT.spad" 1909222 1909252 1911056 1911107) (-1152 "SMATCAT.spad" 1907264 1907296 1909100 1909105) (-1151 "SKAGG.spad" 1906227 1906238 1907232 1907259) (-1150 "SINT.spad" 1905167 1905176 1906093 1906222) (-1149 "SIMPAN.spad" 1904895 1904904 1905157 1905162) (-1148 "SIG.spad" 1904225 1904234 1904885 1904890) (-1147 "SIGNRF.spad" 1903343 1903354 1904215 1904220) (-1146 "SIGNEF.spad" 1902622 1902639 1903333 1903338) (-1145 "SIGAST.spad" 1902007 1902016 1902612 1902617) (-1144 "SHP.spad" 1899935 1899950 1901963 1901968) (-1143 "SHDP.spad" 1887613 1887640 1888122 1888221) (-1142 "SGROUP.spad" 1887221 1887230 1887603 1887608) (-1141 "SGROUP.spad" 1886827 1886838 1887211 1887216) (-1140 "SGCF.spad" 1879966 1879975 1886817 1886822) (-1139 "SFRTCAT.spad" 1878896 1878913 1879934 1879961) (-1138 "SFRGCD.spad" 1877959 1877979 1878886 1878891) (-1137 "SFQCMPK.spad" 1872596 1872616 1877949 1877954) (-1136 "SFORT.spad" 1872035 1872049 1872586 1872591) (-1135 "SEXOF.spad" 1871878 1871918 1872025 1872030) (-1134 "SEX.spad" 1871770 1871779 1871868 1871873) (-1133 "SEXCAT.spad" 1869542 1869582 1871760 1871765) (-1132 "SET.spad" 1867830 1867841 1868927 1868966) (-1131 "SETMN.spad" 1866280 1866297 1867820 1867825) (-1130 "SETCAT.spad" 1865765 1865774 1866270 1866275) (-1129 "SETCAT.spad" 1865248 1865259 1865755 1865760) (-1128 "SETAGG.spad" 1861797 1861808 1865228 1865243) (-1127 "SETAGG.spad" 1858354 1858367 1861787 1861792) (-1126 "SEQAST.spad" 1858057 1858066 1858344 1858349) (-1125 "SEGXCAT.spad" 1857213 1857226 1858047 1858052) (-1124 "SEG.spad" 1857026 1857037 1857132 1857137) (-1123 "SEGCAT.spad" 1855951 1855962 1857016 1857021) (-1122 "SEGBIND.spad" 1855709 1855720 1855898 1855903) (-1121 "SEGBIND2.spad" 1855407 1855420 1855699 1855704) (-1120 "SEGAST.spad" 1855121 1855130 1855397 1855402) (-1119 "SEG2.spad" 1854556 1854569 1855077 1855082) (-1118 "SDVAR.spad" 1853832 1853843 1854546 1854551) (-1117 "SDPOL.spad" 1851165 1851176 1851456 1851583) (-1116 "SCPKG.spad" 1849254 1849265 1851155 1851160) (-1115 "SCOPE.spad" 1848407 1848416 1849244 1849249) (-1114 "SCACHE.spad" 1847103 1847114 1848397 1848402) (-1113 "SASTCAT.spad" 1847012 1847021 1847093 1847098) (-1112 "SAOS.spad" 1846884 1846893 1847002 1847007) (-1111 "SAERFFC.spad" 1846597 1846617 1846874 1846879) (-1110 "SAE.spad" 1844067 1844083 1844678 1844813) (-1109 "SAEFACT.spad" 1843768 1843788 1844057 1844062) (-1108 "RURPK.spad" 1841427 1841443 1843758 1843763) (-1107 "RULESET.spad" 1840880 1840904 1841417 1841422) (-1106 "RULE.spad" 1839120 1839144 1840870 1840875) (-1105 "RULECOLD.spad" 1838972 1838985 1839110 1839115) (-1104 "RTVALUE.spad" 1838707 1838716 1838962 1838967) (-1103 "RSTRCAST.spad" 1838424 1838433 1838697 1838702) (-1102 "RSETGCD.spad" 1834802 1834822 1838414 1838419) (-1101 "RSETCAT.spad" 1824738 1824755 1834770 1834797) (-1100 "RSETCAT.spad" 1814694 1814713 1824728 1824733) (-1099 "RSDCMPK.spad" 1813146 1813166 1814684 1814689) (-1098 "RRCC.spad" 1811530 1811560 1813136 1813141) (-1097 "RRCC.spad" 1809912 1809944 1811520 1811525) (-1096 "RPTAST.spad" 1809614 1809623 1809902 1809907) (-1095 "RPOLCAT.spad" 1788974 1788989 1809482 1809609) (-1094 "RPOLCAT.spad" 1768047 1768064 1788557 1788562) (-1093 "ROUTINE.spad" 1763468 1763477 1766232 1766259) (-1092 "ROMAN.spad" 1762796 1762805 1763334 1763463) (-1091 "ROIRC.spad" 1761876 1761908 1762786 1762791) (-1090 "RNS.spad" 1760779 1760788 1761778 1761871) (-1089 "RNS.spad" 1759768 1759779 1760769 1760774) (-1088 "RNG.spad" 1759503 1759512 1759758 1759763) (-1087 "RNGBIND.spad" 1758663 1758677 1759458 1759463) (-1086 "RMODULE.spad" 1758428 1758439 1758653 1758658) (-1085 "RMCAT2.spad" 1757848 1757905 1758418 1758423) (-1084 "RMATRIX.spad" 1756636 1756655 1756979 1757018) (-1083 "RMATCAT.spad" 1752215 1752246 1756592 1756631) (-1082 "RMATCAT.spad" 1747684 1747717 1752063 1752068) (-1081 "RLINSET.spad" 1747388 1747399 1747674 1747679) (-1080 "RINTERP.spad" 1747276 1747296 1747378 1747383) (-1079 "RING.spad" 1746746 1746755 1747256 1747271) (-1078 "RING.spad" 1746224 1746235 1746736 1746741) (-1077 "RIDIST.spad" 1745616 1745625 1746214 1746219) (-1076 "RGCHAIN.spad" 1744144 1744160 1745046 1745073) (-1075 "RGBCSPC.spad" 1743925 1743937 1744134 1744139) (-1074 "RGBCMDL.spad" 1743455 1743467 1743915 1743920) (-1073 "RF.spad" 1741097 1741108 1743445 1743450) (-1072 "RFFACTOR.spad" 1740559 1740570 1741087 1741092) (-1071 "RFFACT.spad" 1740294 1740306 1740549 1740554) (-1070 "RFDIST.spad" 1739290 1739299 1740284 1740289) (-1069 "RETSOL.spad" 1738709 1738722 1739280 1739285) (-1068 "RETRACT.spad" 1738137 1738148 1738699 1738704) (-1067 "RETRACT.spad" 1737563 1737576 1738127 1738132) (-1066 "RETAST.spad" 1737375 1737384 1737553 1737558) (-1065 "RESULT.spad" 1734973 1734982 1735560 1735587) (-1064 "RESRING.spad" 1734320 1734367 1734911 1734968) (-1063 "RESLATC.spad" 1733644 1733655 1734310 1734315) (-1062 "REPSQ.spad" 1733375 1733386 1733634 1733639) (-1061 "REP.spad" 1730929 1730938 1733365 1733370) (-1060 "REPDB.spad" 1730636 1730647 1730919 1730924) (-1059 "REP2.spad" 1720294 1720305 1730478 1730483) (-1058 "REP1.spad" 1714490 1714501 1720244 1720249) (-1057 "REGSET.spad" 1712251 1712268 1714100 1714127) (-1056 "REF.spad" 1711586 1711597 1712206 1712211) (-1055 "REDORDER.spad" 1710792 1710809 1711576 1711581) (-1054 "RECLOS.spad" 1709575 1709595 1710279 1710372) (-1053 "REALSOLV.spad" 1708715 1708724 1709565 1709570) (-1052 "REAL.spad" 1708587 1708596 1708705 1708710) (-1051 "REAL0Q.spad" 1705885 1705900 1708577 1708582) (-1050 "REAL0.spad" 1702729 1702744 1705875 1705880) (-1049 "RDUCEAST.spad" 1702450 1702459 1702719 1702724) (-1048 "RDIV.spad" 1702105 1702130 1702440 1702445) (-1047 "RDIST.spad" 1701672 1701683 1702095 1702100) (-1046 "RDETRS.spad" 1700536 1700554 1701662 1701667) (-1045 "RDETR.spad" 1698675 1698693 1700526 1700531) (-1044 "RDEEFS.spad" 1697774 1697791 1698665 1698670) (-1043 "RDEEF.spad" 1696784 1696801 1697764 1697769) (-1042 "RCFIELD.spad" 1693970 1693979 1696686 1696779) (-1041 "RCFIELD.spad" 1691242 1691253 1693960 1693965) (-1040 "RCAGG.spad" 1689170 1689181 1691232 1691237) (-1039 "RCAGG.spad" 1687025 1687038 1689089 1689094) (-1038 "RATRET.spad" 1686385 1686396 1687015 1687020) (-1037 "RATFACT.spad" 1686077 1686089 1686375 1686380) (-1036 "RANDSRC.spad" 1685396 1685405 1686067 1686072) (-1035 "RADUTIL.spad" 1685152 1685161 1685386 1685391) (-1034 "RADIX.spad" 1681976 1681990 1683522 1683615) (-1033 "RADFF.spad" 1679715 1679752 1679834 1679990) (-1032 "RADCAT.spad" 1679310 1679319 1679705 1679710) (-1031 "RADCAT.spad" 1678903 1678914 1679300 1679305) (-1030 "QUEUE.spad" 1678134 1678145 1678393 1678420) (-1029 "QUAT.spad" 1676622 1676633 1676965 1677030) (-1028 "QUATCT2.spad" 1676242 1676261 1676612 1676617) (-1027 "QUATCAT.spad" 1674412 1674423 1676172 1676237) (-1026 "QUATCAT.spad" 1672333 1672346 1674095 1674100) (-1025 "QUAGG.spad" 1671160 1671171 1672301 1672328) (-1024 "QQUTAST.spad" 1670928 1670937 1671150 1671155) (-1023 "QFORM.spad" 1670546 1670561 1670918 1670923) (-1022 "QFCAT.spad" 1669248 1669259 1670448 1670541) (-1021 "QFCAT.spad" 1667541 1667554 1668743 1668748) (-1020 "QFCAT2.spad" 1667233 1667250 1667531 1667536) (-1019 "QEQUAT.spad" 1666791 1666800 1667223 1667228) (-1018 "QCMPACK.spad" 1661537 1661557 1666781 1666786) (-1017 "QALGSET.spad" 1657615 1657648 1661451 1661456) (-1016 "QALGSET2.spad" 1655610 1655629 1657605 1657610) (-1015 "PWFFINTB.spad" 1653025 1653047 1655600 1655605) (-1014 "PUSHVAR.spad" 1652363 1652383 1653015 1653020) (-1013 "PTRANFN.spad" 1648490 1648501 1652353 1652358) (-1012 "PTPACK.spad" 1645577 1645588 1648480 1648485) (-1011 "PTFUNC2.spad" 1645399 1645414 1645567 1645572) (-1010 "PTCAT.spad" 1644653 1644664 1645367 1645394) (-1009 "PSQFR.spad" 1643959 1643984 1644643 1644648) (-1008 "PSEUDLIN.spad" 1642844 1642855 1643949 1643954) (-1007 "PSETPK.spad" 1628276 1628293 1642722 1642727) (-1006 "PSETCAT.spad" 1622195 1622219 1628256 1628271) (-1005 "PSETCAT.spad" 1616088 1616114 1622151 1622156) (-1004 "PSCURVE.spad" 1615070 1615079 1616078 1616083) (-1003 "PSCAT.spad" 1613852 1613882 1614968 1615065) (-1002 "PSCAT.spad" 1612724 1612756 1613842 1613847) (-1001 "PRTITION.spad" 1611421 1611430 1612714 1612719) (-1000 "PRTDAST.spad" 1611139 1611148 1611411 1611416) (-999 "PRS.spad" 1600701 1600718 1611095 1611100) (-998 "PRQAGG.spad" 1600136 1600146 1600669 1600696) (-997 "PROPLOG.spad" 1599708 1599716 1600126 1600131) (-996 "PROPFUN2.spad" 1599331 1599344 1599698 1599703) (-995 "PROPFUN1.spad" 1598729 1598740 1599321 1599326) (-994 "PROPFRML.spad" 1597297 1597308 1598719 1598724) (-993 "PROPERTY.spad" 1596785 1596793 1597287 1597292) (-992 "PRODUCT.spad" 1594467 1594479 1594751 1594806) (-991 "PR.spad" 1592859 1592871 1593558 1593685) (-990 "PRINT.spad" 1592611 1592619 1592849 1592854) (-989 "PRIMES.spad" 1590864 1590874 1592601 1592606) (-988 "PRIMELT.spad" 1588945 1588959 1590854 1590859) (-987 "PRIMCAT.spad" 1588572 1588580 1588935 1588940) (-986 "PRIMARR.spad" 1587424 1587434 1587602 1587629) (-985 "PRIMARR2.spad" 1586191 1586203 1587414 1587419) (-984 "PREASSOC.spad" 1585573 1585585 1586181 1586186) (-983 "PPCURVE.spad" 1584710 1584718 1585563 1585568) (-982 "PORTNUM.spad" 1584485 1584493 1584700 1584705) (-981 "POLYROOT.spad" 1583334 1583356 1584441 1584446) (-980 "POLY.spad" 1580669 1580679 1581184 1581311) (-979 "POLYLIFT.spad" 1579934 1579957 1580659 1580664) (-978 "POLYCATQ.spad" 1578052 1578074 1579924 1579929) (-977 "POLYCAT.spad" 1571522 1571543 1577920 1578047) (-976 "POLYCAT.spad" 1564330 1564353 1570730 1570735) (-975 "POLY2UP.spad" 1563782 1563796 1564320 1564325) (-974 "POLY2.spad" 1563379 1563391 1563772 1563777) (-973 "POLUTIL.spad" 1562320 1562349 1563335 1563340) (-972 "POLTOPOL.spad" 1561068 1561083 1562310 1562315) (-971 "POINT.spad" 1559753 1559763 1559840 1559867) (-970 "PNTHEORY.spad" 1556455 1556463 1559743 1559748) (-969 "PMTOOLS.spad" 1555230 1555244 1556445 1556450) (-968 "PMSYM.spad" 1554779 1554789 1555220 1555225) (-967 "PMQFCAT.spad" 1554370 1554384 1554769 1554774) (-966 "PMPRED.spad" 1553849 1553863 1554360 1554365) (-965 "PMPREDFS.spad" 1553303 1553325 1553839 1553844) (-964 "PMPLCAT.spad" 1552383 1552401 1553235 1553240) (-963 "PMLSAGG.spad" 1551968 1551982 1552373 1552378) (-962 "PMKERNEL.spad" 1551547 1551559 1551958 1551963) (-961 "PMINS.spad" 1551127 1551137 1551537 1551542) (-960 "PMFS.spad" 1550704 1550722 1551117 1551122) (-959 "PMDOWN.spad" 1549994 1550008 1550694 1550699) (-958 "PMASS.spad" 1549004 1549012 1549984 1549989) (-957 "PMASSFS.spad" 1547971 1547987 1548994 1548999) (-956 "PLOTTOOL.spad" 1547751 1547759 1547961 1547966) (-955 "PLOT.spad" 1542674 1542682 1547741 1547746) (-954 "PLOT3D.spad" 1539138 1539146 1542664 1542669) (-953 "PLOT1.spad" 1538295 1538305 1539128 1539133) (-952 "PLEQN.spad" 1525585 1525612 1538285 1538290) (-951 "PINTERP.spad" 1525207 1525226 1525575 1525580) (-950 "PINTERPA.spad" 1524991 1525007 1525197 1525202) (-949 "PI.spad" 1524600 1524608 1524965 1524986) (-948 "PID.spad" 1523570 1523578 1524526 1524595) (-947 "PICOERCE.spad" 1523227 1523237 1523560 1523565) (-946 "PGROEB.spad" 1521828 1521842 1523217 1523222) (-945 "PGE.spad" 1513445 1513453 1521818 1521823) (-944 "PGCD.spad" 1512335 1512352 1513435 1513440) (-943 "PFRPAC.spad" 1511484 1511494 1512325 1512330) (-942 "PFR.spad" 1508147 1508157 1511386 1511479) (-941 "PFOTOOLS.spad" 1507405 1507421 1508137 1508142) (-940 "PFOQ.spad" 1506775 1506793 1507395 1507400) (-939 "PFO.spad" 1506194 1506221 1506765 1506770) (-938 "PF.spad" 1505768 1505780 1505999 1506092) (-937 "PFECAT.spad" 1503450 1503458 1505694 1505763) (-936 "PFECAT.spad" 1501160 1501170 1503406 1503411) (-935 "PFBRU.spad" 1499048 1499060 1501150 1501155) (-934 "PFBR.spad" 1496608 1496631 1499038 1499043) (-933 "PERM.spad" 1492415 1492425 1496438 1496453) (-932 "PERMGRP.spad" 1487185 1487195 1492405 1492410) (-931 "PERMCAT.spad" 1485846 1485856 1487165 1487180) (-930 "PERMAN.spad" 1484378 1484392 1485836 1485841) (-929 "PENDTREE.spad" 1483602 1483612 1483890 1483895) (-928 "PDSPC.spad" 1482415 1482425 1483592 1483597) (-927 "PDSPC.spad" 1481226 1481238 1482405 1482410) (-926 "PDRING.spad" 1481068 1481078 1481206 1481221) (-925 "PDMOD.spad" 1480884 1480896 1481036 1481063) (-924 "PDEPROB.spad" 1479899 1479907 1480874 1480879) (-923 "PDEPACK.spad" 1473939 1473947 1479889 1479894) (-922 "PDECOMP.spad" 1473409 1473426 1473929 1473934) (-921 "PDECAT.spad" 1471765 1471773 1473399 1473404) (-920 "PDDOM.spad" 1471203 1471216 1471755 1471760) (-919 "PDDOM.spad" 1470639 1470654 1471193 1471198) (-918 "PCOMP.spad" 1470492 1470505 1470629 1470634) (-917 "PBWLB.spad" 1469080 1469097 1470482 1470487) (-916 "PATTERN.spad" 1463619 1463629 1469070 1469075) (-915 "PATTERN2.spad" 1463357 1463369 1463609 1463614) (-914 "PATTERN1.spad" 1461693 1461709 1463347 1463352) (-913 "PATRES.spad" 1459268 1459280 1461683 1461688) (-912 "PATRES2.spad" 1458940 1458954 1459258 1459263) (-911 "PATMATCH.spad" 1457137 1457168 1458648 1458653) (-910 "PATMAB.spad" 1456566 1456576 1457127 1457132) (-909 "PATLRES.spad" 1455652 1455666 1456556 1456561) (-908 "PATAB.spad" 1455416 1455426 1455642 1455647) (-907 "PARTPERM.spad" 1453424 1453432 1455406 1455411) (-906 "PARSURF.spad" 1452858 1452886 1453414 1453419) (-905 "PARSU2.spad" 1452655 1452671 1452848 1452853) (-904 "script-parser.spad" 1452175 1452183 1452645 1452650) (-903 "PARSCURV.spad" 1451609 1451637 1452165 1452170) (-902 "PARSC2.spad" 1451400 1451416 1451599 1451604) (-901 "PARPCURV.spad" 1450862 1450890 1451390 1451395) (-900 "PARPC2.spad" 1450653 1450669 1450852 1450857) (-899 "PARAMAST.spad" 1449781 1449789 1450643 1450648) (-898 "PAN2EXPR.spad" 1449193 1449201 1449771 1449776) (-897 "PALETTE.spad" 1448163 1448171 1449183 1449188) (-896 "PAIR.spad" 1447150 1447163 1447751 1447756) (-895 "PADICRC.spad" 1444391 1444409 1445562 1445655) (-894 "PADICRAT.spad" 1442299 1442311 1442520 1442613) (-893 "PADIC.spad" 1441994 1442006 1442225 1442294) (-892 "PADICCT.spad" 1440543 1440555 1441920 1441989) (-891 "PADEPAC.spad" 1439232 1439251 1440533 1440538) (-890 "PADE.spad" 1437984 1438000 1439222 1439227) (-889 "OWP.spad" 1437224 1437254 1437842 1437909) (-888 "OVERSET.spad" 1436797 1436805 1437214 1437219) (-887 "OVAR.spad" 1436578 1436601 1436787 1436792) (-886 "OUT.spad" 1435664 1435672 1436568 1436573) (-885 "OUTFORM.spad" 1425056 1425064 1435654 1435659) (-884 "OUTBFILE.spad" 1424474 1424482 1425046 1425051) (-883 "OUTBCON.spad" 1423480 1423488 1424464 1424469) (-882 "OUTBCON.spad" 1422484 1422494 1423470 1423475) (-881 "OSI.spad" 1421959 1421967 1422474 1422479) (-880 "OSGROUP.spad" 1421877 1421885 1421949 1421954) (-879 "ORTHPOL.spad" 1420362 1420372 1421794 1421799) (-878 "OREUP.spad" 1419815 1419843 1420042 1420081) (-877 "ORESUP.spad" 1419116 1419140 1419495 1419534) (-876 "OREPCTO.spad" 1416973 1416985 1419036 1419041) (-875 "OREPCAT.spad" 1411120 1411130 1416929 1416968) (-874 "OREPCAT.spad" 1405157 1405169 1410968 1410973) (-873 "ORDTYPE.spad" 1404394 1404402 1405147 1405152) (-872 "ORDTYPE.spad" 1403629 1403639 1404384 1404389) (-871 "ORDSTRCT.spad" 1403402 1403417 1403565 1403570) (-870 "ORDSET.spad" 1403102 1403110 1403392 1403397) (-869 "ORDRING.spad" 1402492 1402500 1403082 1403097) (-868 "ORDRING.spad" 1401890 1401900 1402482 1402487) (-867 "ORDMON.spad" 1401745 1401753 1401880 1401885) (-866 "ORDFUNS.spad" 1400877 1400893 1401735 1401740) (-865 "ORDFIN.spad" 1400697 1400705 1400867 1400872) (-864 "ORDCOMP.spad" 1399162 1399172 1400244 1400273) (-863 "ORDCOMP2.spad" 1398455 1398467 1399152 1399157) (-862 "OPTPROB.spad" 1397093 1397101 1398445 1398450) (-861 "OPTPACK.spad" 1389502 1389510 1397083 1397088) (-860 "OPTCAT.spad" 1387181 1387189 1389492 1389497) (-859 "OPSIG.spad" 1386835 1386843 1387171 1387176) (-858 "OPQUERY.spad" 1386384 1386392 1386825 1386830) (-857 "OP.spad" 1386126 1386136 1386206 1386273) (-856 "OPERCAT.spad" 1385592 1385602 1386116 1386121) (-855 "OPERCAT.spad" 1385056 1385068 1385582 1385587) (-854 "ONECOMP.spad" 1383801 1383811 1384603 1384632) (-853 "ONECOMP2.spad" 1383225 1383237 1383791 1383796) (-852 "OMSERVER.spad" 1382231 1382239 1383215 1383220) (-851 "OMSAGG.spad" 1382019 1382029 1382187 1382226) (-850 "OMPKG.spad" 1380635 1380643 1382009 1382014) (-849 "OM.spad" 1379608 1379616 1380625 1380630) (-848 "OMLO.spad" 1379033 1379045 1379494 1379533) (-847 "OMEXPR.spad" 1378867 1378877 1379023 1379028) (-846 "OMERR.spad" 1378412 1378420 1378857 1378862) (-845 "OMERRK.spad" 1377446 1377454 1378402 1378407) (-844 "OMENC.spad" 1376790 1376798 1377436 1377441) (-843 "OMDEV.spad" 1371099 1371107 1376780 1376785) (-842 "OMCONN.spad" 1370508 1370516 1371089 1371094) (-841 "OINTDOM.spad" 1370271 1370279 1370434 1370503) (-840 "OFMONOID.spad" 1368394 1368404 1370227 1370232) (-839 "ODVAR.spad" 1367655 1367665 1368384 1368389) (-838 "ODR.spad" 1367299 1367325 1367467 1367616) (-837 "ODPOL.spad" 1364588 1364598 1364928 1365055) (-836 "ODP.spad" 1352402 1352422 1352775 1352874) (-835 "ODETOOLS.spad" 1351051 1351070 1352392 1352397) (-834 "ODESYS.spad" 1348745 1348762 1351041 1351046) (-833 "ODERTRIC.spad" 1344754 1344771 1348702 1348707) (-832 "ODERED.spad" 1344153 1344177 1344744 1344749) (-831 "ODERAT.spad" 1341768 1341785 1344143 1344148) (-830 "ODEPRRIC.spad" 1338805 1338827 1341758 1341763) (-829 "ODEPROB.spad" 1338062 1338070 1338795 1338800) (-828 "ODEPRIM.spad" 1335396 1335418 1338052 1338057) (-827 "ODEPAL.spad" 1334782 1334806 1335386 1335391) (-826 "ODEPACK.spad" 1321448 1321456 1334772 1334777) (-825 "ODEINT.spad" 1320883 1320899 1321438 1321443) (-824 "ODEIFTBL.spad" 1318278 1318286 1320873 1320878) (-823 "ODEEF.spad" 1313769 1313785 1318268 1318273) (-822 "ODECONST.spad" 1313306 1313324 1313759 1313764) (-821 "ODECAT.spad" 1311904 1311912 1313296 1313301) (-820 "OCT.spad" 1310040 1310050 1310754 1310793) (-819 "OCTCT2.spad" 1309686 1309707 1310030 1310035) (-818 "OC.spad" 1307482 1307492 1309642 1309681) (-817 "OC.spad" 1305003 1305015 1307165 1307170) (-816 "OCAMON.spad" 1304851 1304859 1304993 1304998) (-815 "OASGP.spad" 1304666 1304674 1304841 1304846) (-814 "OAMONS.spad" 1304188 1304196 1304656 1304661) (-813 "OAMON.spad" 1304049 1304057 1304178 1304183) (-812 "OAGROUP.spad" 1303911 1303919 1304039 1304044) (-811 "NUMTUBE.spad" 1303502 1303518 1303901 1303906) (-810 "NUMQUAD.spad" 1291478 1291486 1303492 1303497) (-809 "NUMODE.spad" 1282832 1282840 1291468 1291473) (-808 "NUMINT.spad" 1280398 1280406 1282822 1282827) (-807 "NUMFMT.spad" 1279238 1279246 1280388 1280393) (-806 "NUMERIC.spad" 1271352 1271362 1279043 1279048) (-805 "NTSCAT.spad" 1269860 1269876 1271320 1271347) (-804 "NTPOLFN.spad" 1269411 1269421 1269777 1269782) (-803 "NSUP.spad" 1262364 1262374 1266904 1267057) (-802 "NSUP2.spad" 1261756 1261768 1262354 1262359) (-801 "NSMP.spad" 1257986 1258005 1258294 1258421) (-800 "NREP.spad" 1256364 1256378 1257976 1257981) (-799 "NPCOEF.spad" 1255610 1255630 1256354 1256359) (-798 "NORMRETR.spad" 1255208 1255247 1255600 1255605) (-797 "NORMPK.spad" 1253110 1253129 1255198 1255203) (-796 "NORMMA.spad" 1252798 1252824 1253100 1253105) (-795 "NONE.spad" 1252539 1252547 1252788 1252793) (-794 "NONE1.spad" 1252215 1252225 1252529 1252534) (-793 "NODE1.spad" 1251702 1251718 1252205 1252210) (-792 "NNI.spad" 1250597 1250605 1251676 1251697) (-791 "NLINSOL.spad" 1249223 1249233 1250587 1250592) (-790 "NIPROB.spad" 1247764 1247772 1249213 1249218) (-789 "NFINTBAS.spad" 1245324 1245341 1247754 1247759) (-788 "NETCLT.spad" 1245298 1245309 1245314 1245319) (-787 "NCODIV.spad" 1243514 1243530 1245288 1245293) (-786 "NCNTFRAC.spad" 1243156 1243170 1243504 1243509) (-785 "NCEP.spad" 1241322 1241336 1243146 1243151) (-784 "NASRING.spad" 1240918 1240926 1241312 1241317) (-783 "NASRING.spad" 1240512 1240522 1240908 1240913) (-782 "NARNG.spad" 1239864 1239872 1240502 1240507) (-781 "NARNG.spad" 1239214 1239224 1239854 1239859) (-780 "NAGSP.spad" 1238291 1238299 1239204 1239209) (-779 "NAGS.spad" 1227952 1227960 1238281 1238286) (-778 "NAGF07.spad" 1226383 1226391 1227942 1227947) (-777 "NAGF04.spad" 1220785 1220793 1226373 1226378) (-776 "NAGF02.spad" 1214854 1214862 1220775 1220780) (-775 "NAGF01.spad" 1210615 1210623 1214844 1214849) (-774 "NAGE04.spad" 1204315 1204323 1210605 1210610) (-773 "NAGE02.spad" 1194975 1194983 1204305 1204310) (-772 "NAGE01.spad" 1190977 1190985 1194965 1194970) (-771 "NAGD03.spad" 1188981 1188989 1190967 1190972) (-770 "NAGD02.spad" 1181728 1181736 1188971 1188976) (-769 "NAGD01.spad" 1176021 1176029 1181718 1181723) (-768 "NAGC06.spad" 1171896 1171904 1176011 1176016) (-767 "NAGC05.spad" 1170397 1170405 1171886 1171891) (-766 "NAGC02.spad" 1169664 1169672 1170387 1170392) (-765 "NAALG.spad" 1169205 1169215 1169632 1169659) (-764 "NAALG.spad" 1168766 1168778 1169195 1169200) (-763 "MULTSQFR.spad" 1165724 1165741 1168756 1168761) (-762 "MULTFACT.spad" 1165107 1165124 1165714 1165719) (-761 "MTSCAT.spad" 1163201 1163222 1165005 1165102) (-760 "MTHING.spad" 1162860 1162870 1163191 1163196) (-759 "MSYSCMD.spad" 1162294 1162302 1162850 1162855) (-758 "MSET.spad" 1160216 1160226 1161964 1162003) (-757 "MSETAGG.spad" 1160061 1160071 1160184 1160211) (-756 "MRING.spad" 1157038 1157050 1159769 1159836) (-755 "MRF2.spad" 1156608 1156622 1157028 1157033) (-754 "MRATFAC.spad" 1156154 1156171 1156598 1156603) (-753 "MPRFF.spad" 1154194 1154213 1156144 1156149) (-752 "MPOLY.spad" 1151665 1151680 1152024 1152151) (-751 "MPCPF.spad" 1150929 1150948 1151655 1151660) (-750 "MPC3.spad" 1150746 1150786 1150919 1150924) (-749 "MPC2.spad" 1150392 1150425 1150736 1150741) (-748 "MONOTOOL.spad" 1148743 1148760 1150382 1150387) (-747 "MONOID.spad" 1148062 1148070 1148733 1148738) (-746 "MONOID.spad" 1147379 1147389 1148052 1148057) (-745 "MONOGEN.spad" 1146127 1146140 1147239 1147374) (-744 "MONOGEN.spad" 1144897 1144912 1146011 1146016) (-743 "MONADWU.spad" 1142927 1142935 1144887 1144892) (-742 "MONADWU.spad" 1140955 1140965 1142917 1142922) (-741 "MONAD.spad" 1140115 1140123 1140945 1140950) (-740 "MONAD.spad" 1139273 1139283 1140105 1140110) (-739 "MOEBIUS.spad" 1138009 1138023 1139253 1139268) (-738 "MODULE.spad" 1137879 1137889 1137977 1138004) (-737 "MODULE.spad" 1137769 1137781 1137869 1137874) (-736 "MODRING.spad" 1137104 1137143 1137749 1137764) (-735 "MODOP.spad" 1135769 1135781 1136926 1136993) (-734 "MODMONOM.spad" 1135500 1135518 1135759 1135764) (-733 "MODMON.spad" 1132202 1132218 1132921 1133074) (-732 "MODFIELD.spad" 1131564 1131603 1132104 1132197) (-731 "MMLFORM.spad" 1130424 1130432 1131554 1131559) (-730 "MMAP.spad" 1130166 1130200 1130414 1130419) (-729 "MLO.spad" 1128625 1128635 1130122 1130161) (-728 "MLIFT.spad" 1127237 1127254 1128615 1128620) (-727 "MKUCFUNC.spad" 1126772 1126790 1127227 1127232) (-726 "MKRECORD.spad" 1126376 1126389 1126762 1126767) (-725 "MKFUNC.spad" 1125783 1125793 1126366 1126371) (-724 "MKFLCFN.spad" 1124751 1124761 1125773 1125778) (-723 "MKBCFUNC.spad" 1124246 1124264 1124741 1124746) (-722 "MINT.spad" 1123685 1123693 1124148 1124241) (-721 "MHROWRED.spad" 1122196 1122206 1123675 1123680) (-720 "MFLOAT.spad" 1120716 1120724 1122086 1122191) (-719 "MFINFACT.spad" 1120116 1120138 1120706 1120711) (-718 "MESH.spad" 1117898 1117906 1120106 1120111) (-717 "MDDFACT.spad" 1116109 1116119 1117888 1117893) (-716 "MDAGG.spad" 1115400 1115410 1116089 1116104) (-715 "MCMPLX.spad" 1110831 1110839 1111445 1111646) (-714 "MCDEN.spad" 1110041 1110053 1110821 1110826) (-713 "MCALCFN.spad" 1107163 1107189 1110031 1110036) (-712 "MAYBE.spad" 1106447 1106458 1107153 1107158) (-711 "MATSTOR.spad" 1103755 1103765 1106437 1106442) (-710 "MATRIX.spad" 1102342 1102352 1102826 1102853) (-709 "MATLIN.spad" 1099686 1099710 1102226 1102231) (-708 "MATCAT.spad" 1091208 1091230 1099654 1099681) (-707 "MATCAT.spad" 1082602 1082626 1091050 1091055) (-706 "MATCAT2.spad" 1081884 1081932 1082592 1082597) (-705 "MAPPKG3.spad" 1080799 1080813 1081874 1081879) (-704 "MAPPKG2.spad" 1080137 1080149 1080789 1080794) (-703 "MAPPKG1.spad" 1078965 1078975 1080127 1080132) (-702 "MAPPAST.spad" 1078280 1078288 1078955 1078960) (-701 "MAPHACK3.spad" 1078092 1078106 1078270 1078275) (-700 "MAPHACK2.spad" 1077861 1077873 1078082 1078087) (-699 "MAPHACK1.spad" 1077505 1077515 1077851 1077856) (-698 "MAGMA.spad" 1075295 1075312 1077495 1077500) (-697 "MACROAST.spad" 1074874 1074882 1075285 1075290) (-696 "M3D.spad" 1072477 1072487 1074135 1074140) (-695 "LZSTAGG.spad" 1069715 1069725 1072467 1072472) (-694 "LZSTAGG.spad" 1066951 1066963 1069705 1069710) (-693 "LWORD.spad" 1063656 1063673 1066941 1066946) (-692 "LSTAST.spad" 1063440 1063448 1063646 1063651) (-691 "LSQM.spad" 1061597 1061611 1061991 1062042) (-690 "LSPP.spad" 1061132 1061149 1061587 1061592) (-689 "LSMP.spad" 1059982 1060010 1061122 1061127) (-688 "LSMP1.spad" 1057800 1057814 1059972 1059977) (-687 "LSAGG.spad" 1057469 1057479 1057768 1057795) (-686 "LSAGG.spad" 1057158 1057170 1057459 1057464) (-685 "LPOLY.spad" 1056112 1056131 1057014 1057083) (-684 "LPEFRAC.spad" 1055383 1055393 1056102 1056107) (-683 "LO.spad" 1054784 1054798 1055317 1055344) (-682 "LOGIC.spad" 1054386 1054394 1054774 1054779) (-681 "LOGIC.spad" 1053986 1053996 1054376 1054381) (-680 "LODOOPS.spad" 1052916 1052928 1053976 1053981) (-679 "LODO.spad" 1052300 1052316 1052596 1052635) (-678 "LODOF.spad" 1051346 1051363 1052257 1052262) (-677 "LODOCAT.spad" 1050012 1050022 1051302 1051341) (-676 "LODOCAT.spad" 1048676 1048688 1049968 1049973) (-675 "LODO2.spad" 1047949 1047961 1048356 1048395) (-674 "LODO1.spad" 1047349 1047359 1047629 1047668) (-673 "LODEEF.spad" 1046151 1046169 1047339 1047344) (-672 "LNAGG.spad" 1042298 1042308 1046141 1046146) (-671 "LNAGG.spad" 1038409 1038421 1042254 1042259) (-670 "LMOPS.spad" 1035177 1035194 1038399 1038404) (-669 "LMODULE.spad" 1034945 1034955 1035167 1035172) (-668 "LMDICT.spad" 1034115 1034125 1034379 1034406) (-667 "LLINSET.spad" 1033822 1033832 1034105 1034110) (-666 "LITERAL.spad" 1033728 1033739 1033812 1033817) (-665 "LIST.spad" 1031310 1031320 1032722 1032749) (-664 "LIST3.spad" 1030621 1030635 1031300 1031305) (-663 "LIST2.spad" 1029323 1029335 1030611 1030616) (-662 "LIST2MAP.spad" 1026226 1026238 1029313 1029318) (-661 "LINSET.spad" 1026005 1026015 1026216 1026221) (-660 "LINFORM.spad" 1025468 1025480 1025973 1026000) (-659 "LINEXP.spad" 1024211 1024221 1025458 1025463) (-658 "LINELT.spad" 1023582 1023594 1024094 1024121) (-657 "LINDEP.spad" 1022391 1022403 1023494 1023499) (-656 "LINBASIS.spad" 1022027 1022042 1022381 1022386) (-655 "LIMITRF.spad" 1019955 1019965 1022017 1022022) (-654 "LIMITPS.spad" 1018858 1018871 1019945 1019950) (-653 "LIE.spad" 1016874 1016886 1018148 1018293) (-652 "LIECAT.spad" 1016350 1016360 1016800 1016869) (-651 "LIECAT.spad" 1015854 1015866 1016306 1016311) (-650 "LIB.spad" 1013605 1013613 1014051 1014066) (-649 "LGROBP.spad" 1010958 1010977 1013595 1013600) (-648 "LF.spad" 1009913 1009929 1010948 1010953) (-647 "LFCAT.spad" 1008972 1008980 1009903 1009908) (-646 "LEXTRIPK.spad" 1004475 1004490 1008962 1008967) (-645 "LEXP.spad" 1002478 1002505 1004455 1004470) (-644 "LETAST.spad" 1002177 1002185 1002468 1002473) (-643 "LEADCDET.spad" 1000575 1000592 1002167 1002172) (-642 "LAZM3PK.spad" 999279 999301 1000565 1000570) (-641 "LAUPOL.spad" 997879 997892 998779 998848) (-640 "LAPLACE.spad" 997462 997478 997869 997874) (-639 "LA.spad" 996902 996916 997384 997423) (-638 "LALG.spad" 996678 996688 996882 996897) (-637 "LALG.spad" 996462 996474 996668 996673) (-636 "KVTFROM.spad" 996197 996207 996452 996457) (-635 "KTVLOGIC.spad" 995709 995717 996187 996192) (-634 "KRCFROM.spad" 995447 995457 995699 995704) (-633 "KOVACIC.spad" 994170 994187 995437 995442) (-632 "KONVERT.spad" 993892 993902 994160 994165) (-631 "KOERCE.spad" 993629 993639 993882 993887) (-630 "KERNEL.spad" 992284 992294 993413 993418) (-629 "KERNEL2.spad" 991987 991999 992274 992279) (-628 "KDAGG.spad" 991096 991118 991967 991982) (-627 "KDAGG.spad" 990213 990237 991086 991091) (-626 "KAFILE.spad" 989067 989083 989302 989329) (-625 "JVMOP.spad" 988972 988980 989057 989062) (-624 "JVMMDACC.spad" 988949 988957 988962 988967) (-623 "JVMFDACC.spad" 988926 988934 988939 988944) (-622 "JVMCSTTG.spad" 988903 988911 988916 988921) (-621 "JVMCFACC.spad" 988880 988888 988893 988898) (-620 "JVMBCODE.spad" 988783 988791 988870 988875) (-619 "JORDAN.spad" 986612 986624 988073 988218) (-618 "JOINAST.spad" 986306 986314 986602 986607) (-617 "IXAGG.spad" 984439 984463 986296 986301) (-616 "IXAGG.spad" 982427 982453 984286 984291) (-615 "IVECTOR.spad" 981044 981059 981199 981226) (-614 "ITUPLE.spad" 980205 980215 981034 981039) (-613 "ITRIGMNP.spad" 979044 979063 980195 980200) (-612 "ITFUN3.spad" 978550 978564 979034 979039) (-611 "ITFUN2.spad" 978294 978306 978540 978545) (-610 "ITFORM.spad" 977649 977657 978284 978289) (-609 "ITAYLOR.spad" 975643 975658 977513 977610) (-608 "ISUPS.spad" 968080 968095 974617 974714) (-607 "ISUMP.spad" 967581 967597 968070 968075) (-606 "ISTRING.spad" 966508 966521 966589 966616) (-605 "ISAST.spad" 966227 966235 966498 966503) (-604 "IRURPK.spad" 964944 964963 966217 966222) (-603 "IRSN.spad" 962916 962924 964934 964939) (-602 "IRRF2F.spad" 961401 961411 962872 962877) (-601 "IRREDFFX.spad" 961002 961013 961391 961396) (-600 "IROOT.spad" 959341 959351 960992 960997) (-599 "IR.spad" 957142 957156 959196 959223) (-598 "IRFORM.spad" 956466 956474 957132 957137) (-597 "IR2.spad" 955494 955510 956456 956461) (-596 "IR2F.spad" 954700 954716 955484 955489) (-595 "IPRNTPK.spad" 954460 954468 954690 954695) (-594 "IPF.spad" 954025 954037 954265 954358) (-593 "IPADIC.spad" 953786 953812 953951 954020) (-592 "IP4ADDR.spad" 953343 953351 953776 953781) (-591 "IOMODE.spad" 952865 952873 953333 953338) (-590 "IOBFILE.spad" 952226 952234 952855 952860) (-589 "IOBCON.spad" 952091 952099 952216 952221) (-588 "INVLAPLA.spad" 951740 951756 952081 952086) (-587 "INTTR.spad" 945122 945139 951730 951735) (-586 "INTTOOLS.spad" 942877 942893 944696 944701) (-585 "INTSLPE.spad" 942197 942205 942867 942872) (-584 "INTRVL.spad" 941763 941773 942111 942192) (-583 "INTRF.spad" 940187 940201 941753 941758) (-582 "INTRET.spad" 939619 939629 940177 940182) (-581 "INTRAT.spad" 938346 938363 939609 939614) (-580 "INTPM.spad" 936731 936747 937989 937994) (-579 "INTPAF.spad" 934595 934613 936663 936668) (-578 "INTPACK.spad" 924969 924977 934585 934590) (-577 "INT.spad" 924417 924425 924823 924964) (-576 "INTHERTR.spad" 923691 923708 924407 924412) (-575 "INTHERAL.spad" 923361 923385 923681 923686) (-574 "INTHEORY.spad" 919800 919808 923351 923356) (-573 "INTG0.spad" 913533 913551 919732 919737) (-572 "INTFTBL.spad" 907562 907570 913523 913528) (-571 "INTFACT.spad" 906621 906631 907552 907557) (-570 "INTEF.spad" 905006 905022 906611 906616) (-569 "INTDOM.spad" 903629 903637 904932 905001) (-568 "INTDOM.spad" 902314 902324 903619 903624) (-567 "INTCAT.spad" 900573 900583 902228 902309) (-566 "INTBIT.spad" 900080 900088 900563 900568) (-565 "INTALG.spad" 899268 899295 900070 900075) (-564 "INTAF.spad" 898768 898784 899258 899263) (-563 "INTABL.spad" 896844 896875 897007 897034) (-562 "INT8.spad" 896724 896732 896834 896839) (-561 "INT64.spad" 896603 896611 896714 896719) (-560 "INT32.spad" 896482 896490 896593 896598) (-559 "INT16.spad" 896361 896369 896472 896477) (-558 "INS.spad" 893864 893872 896263 896356) (-557 "INS.spad" 891453 891463 893854 893859) (-556 "INPSIGN.spad" 890901 890914 891443 891448) (-555 "INPRODPF.spad" 889997 890016 890891 890896) (-554 "INPRODFF.spad" 889085 889109 889987 889992) (-553 "INNMFACT.spad" 888060 888077 889075 889080) (-552 "INMODGCD.spad" 887548 887578 888050 888055) (-551 "INFSP.spad" 885845 885867 887538 887543) (-550 "INFPROD0.spad" 884925 884944 885835 885840) (-549 "INFORM.spad" 882124 882132 884915 884920) (-548 "INFORM1.spad" 881749 881759 882114 882119) (-547 "INFINITY.spad" 881301 881309 881739 881744) (-546 "INETCLTS.spad" 881278 881286 881291 881296) (-545 "INEP.spad" 879816 879838 881268 881273) (-544 "INDE.spad" 879465 879482 879726 879731) (-543 "INCRMAPS.spad" 878886 878896 879455 879460) (-542 "INBFILE.spad" 877958 877966 878876 878881) (-541 "INBFF.spad" 873752 873763 877948 877953) (-540 "INBCON.spad" 872042 872050 873742 873747) (-539 "INBCON.spad" 870330 870340 872032 872037) (-538 "INAST.spad" 869991 869999 870320 870325) (-537 "IMPTAST.spad" 869699 869707 869981 869986) (-536 "IMATRIX.spad" 868527 868553 869039 869066) (-535 "IMATQF.spad" 867621 867665 868483 868488) (-534 "IMATLIN.spad" 866226 866250 867577 867582) (-533 "ILIST.spad" 864731 864746 865256 865283) (-532 "IIARRAY2.spad" 864002 864040 864221 864248) (-531 "IFF.spad" 863412 863428 863683 863776) (-530 "IFAST.spad" 863026 863034 863402 863407) (-529 "IFARRAY.spad" 860366 860381 862056 862083) (-528 "IFAMON.spad" 860228 860245 860322 860327) (-527 "IEVALAB.spad" 859633 859645 860218 860223) (-526 "IEVALAB.spad" 859036 859050 859623 859628) (-525 "IDPO.spad" 858771 858783 858948 858953) (-524 "IDPOAMS.spad" 858449 858461 858683 858688) (-523 "IDPOAM.spad" 858091 858103 858361 858366) (-522 "IDPC.spad" 856820 856832 858081 858086) (-521 "IDPAM.spad" 856487 856499 856732 856737) (-520 "IDPAG.spad" 856156 856168 856399 856404) (-519 "IDENT.spad" 855806 855814 856146 856151) (-518 "IDECOMP.spad" 853045 853063 855796 855801) (-517 "IDEAL.spad" 847994 848033 852980 852985) (-516 "ICDEN.spad" 847183 847199 847984 847989) (-515 "ICARD.spad" 846374 846382 847173 847178) (-514 "IBPTOOLS.spad" 844981 844998 846364 846369) (-513 "IBITS.spad" 844146 844159 844579 844606) (-512 "IBATOOL.spad" 841123 841142 844136 844141) (-511 "IBACHIN.spad" 839630 839645 841113 841118) (-510 "IARRAY2.spad" 838501 838527 839120 839147) (-509 "IARRAY1.spad" 837393 837408 837531 837558) (-508 "IAN.spad" 835616 835624 837209 837302) (-507 "IALGFACT.spad" 835219 835252 835606 835611) (-506 "HYPCAT.spad" 834643 834651 835209 835214) (-505 "HYPCAT.spad" 834065 834075 834633 834638) (-504 "HOSTNAME.spad" 833873 833881 834055 834060) (-503 "HOMOTOP.spad" 833616 833626 833863 833868) (-502 "HOAGG.spad" 830898 830908 833606 833611) (-501 "HOAGG.spad" 827919 827931 830629 830634) (-500 "HEXADEC.spad" 825924 825932 826289 826382) (-499 "HEUGCD.spad" 824959 824970 825914 825919) (-498 "HELLFDIV.spad" 824549 824573 824949 824954) (-497 "HEAP.spad" 823824 823834 824039 824066) (-496 "HEADAST.spad" 823357 823365 823814 823819) (-495 "HDP.spad" 811167 811183 811544 811643) (-494 "HDMP.spad" 808381 808396 808997 809124) (-493 "HB.spad" 806632 806640 808371 808376) (-492 "HASHTBL.spad" 804660 804691 804871 804898) (-491 "HASAST.spad" 804376 804384 804650 804655) (-490 "HACKPI.spad" 803867 803875 804278 804371) (-489 "GTSET.spad" 802770 802786 803477 803504) (-488 "GSTBL.spad" 800847 800882 801021 801036) (-487 "GSERIES.spad" 798160 798187 798979 799128) (-486 "GROUP.spad" 797433 797441 798140 798155) (-485 "GROUP.spad" 796714 796724 797423 797428) (-484 "GROEBSOL.spad" 795208 795229 796704 796709) (-483 "GRMOD.spad" 793779 793791 795198 795203) (-482 "GRMOD.spad" 792348 792362 793769 793774) (-481 "GRIMAGE.spad" 785237 785245 792338 792343) (-480 "GRDEF.spad" 783616 783624 785227 785232) (-479 "GRAY.spad" 782079 782087 783606 783611) (-478 "GRALG.spad" 781156 781168 782069 782074) (-477 "GRALG.spad" 780231 780245 781146 781151) (-476 "GPOLSET.spad" 779649 779672 779877 779904) (-475 "GOSPER.spad" 778918 778936 779639 779644) (-474 "GMODPOL.spad" 778066 778093 778886 778913) (-473 "GHENSEL.spad" 777149 777163 778056 778061) (-472 "GENUPS.spad" 773442 773455 777139 777144) (-471 "GENUFACT.spad" 773019 773029 773432 773437) (-470 "GENPGCD.spad" 772605 772622 773009 773014) (-469 "GENMFACT.spad" 772057 772076 772595 772600) (-468 "GENEEZ.spad" 770008 770021 772047 772052) (-467 "GDMP.spad" 767064 767081 767838 767965) (-466 "GCNAALG.spad" 760987 761014 766858 766925) (-465 "GCDDOM.spad" 760163 760171 760913 760982) (-464 "GCDDOM.spad" 759401 759411 760153 760158) (-463 "GB.spad" 756927 756965 759357 759362) (-462 "GBINTERN.spad" 752947 752985 756917 756922) (-461 "GBF.spad" 748714 748752 752937 752942) (-460 "GBEUCLID.spad" 746596 746634 748704 748709) (-459 "GAUSSFAC.spad" 745909 745917 746586 746591) (-458 "GALUTIL.spad" 744235 744245 745865 745870) (-457 "GALPOLYU.spad" 742689 742702 744225 744230) (-456 "GALFACTU.spad" 740862 740881 742679 742684) (-455 "GALFACT.spad" 731051 731062 740852 740857) (-454 "FVFUN.spad" 728074 728082 731041 731046) (-453 "FVC.spad" 727126 727134 728064 728069) (-452 "FUNDESC.spad" 726804 726812 727116 727121) (-451 "FUNCTION.spad" 726653 726665 726794 726799) (-450 "FT.spad" 724950 724958 726643 726648) (-449 "FTEM.spad" 724115 724123 724940 724945) (-448 "FSUPFACT.spad" 723015 723034 724051 724056) (-447 "FST.spad" 721101 721109 723005 723010) (-446 "FSRED.spad" 720581 720597 721091 721096) (-445 "FSPRMELT.spad" 719463 719479 720538 720543) (-444 "FSPECF.spad" 717554 717570 719453 719458) (-443 "FS.spad" 711822 711832 717329 717549) (-442 "FS.spad" 705868 705880 711377 711382) (-441 "FSINT.spad" 705528 705544 705858 705863) (-440 "FSERIES.spad" 704719 704731 705348 705447) (-439 "FSCINT.spad" 704036 704052 704709 704714) (-438 "FSAGG.spad" 703153 703163 703992 704031) (-437 "FSAGG.spad" 702232 702244 703073 703078) (-436 "FSAGG2.spad" 700975 700991 702222 702227) (-435 "FS2UPS.spad" 695466 695500 700965 700970) (-434 "FS2.spad" 695113 695129 695456 695461) (-433 "FS2EXPXP.spad" 694238 694261 695103 695108) (-432 "FRUTIL.spad" 693192 693202 694228 694233) (-431 "FR.spad" 686815 686825 692123 692192) (-430 "FRNAALG.spad" 682084 682094 686757 686810) (-429 "FRNAALG.spad" 677365 677377 682040 682045) (-428 "FRNAAF2.spad" 676821 676839 677355 677360) (-427 "FRMOD.spad" 676231 676261 676752 676757) (-426 "FRIDEAL.spad" 675456 675477 676211 676226) (-425 "FRIDEAL2.spad" 675060 675092 675446 675451) (-424 "FRETRCT.spad" 674571 674581 675050 675055) (-423 "FRETRCT.spad" 673948 673960 674429 674434) (-422 "FRAMALG.spad" 672296 672309 673904 673943) (-421 "FRAMALG.spad" 670676 670691 672286 672291) (-420 "FRAC.spad" 667682 667692 668085 668258) (-419 "FRAC2.spad" 667287 667299 667672 667677) (-418 "FR2.spad" 666623 666635 667277 667282) (-417 "FPS.spad" 663438 663446 666513 666618) (-416 "FPS.spad" 660281 660291 663358 663363) (-415 "FPC.spad" 659327 659335 660183 660276) (-414 "FPC.spad" 658459 658469 659317 659322) (-413 "FPATMAB.spad" 658221 658231 658449 658454) (-412 "FPARFRAC.spad" 657071 657088 658211 658216) (-411 "FORTRAN.spad" 655577 655620 657061 657066) (-410 "FORT.spad" 654526 654534 655567 655572) (-409 "FORTFN.spad" 651696 651704 654516 654521) (-408 "FORTCAT.spad" 651380 651388 651686 651691) (-407 "FORMULA.spad" 648854 648862 651370 651375) (-406 "FORMULA1.spad" 648333 648343 648844 648849) (-405 "FORDER.spad" 648024 648048 648323 648328) (-404 "FOP.spad" 647225 647233 648014 648019) (-403 "FNLA.spad" 646649 646671 647193 647220) (-402 "FNCAT.spad" 645244 645252 646639 646644) (-401 "FNAME.spad" 645136 645144 645234 645239) (-400 "FMTC.spad" 644934 644942 645062 645131) (-399 "FMONOID.spad" 644599 644609 644890 644895) (-398 "FMONCAT.spad" 641752 641762 644589 644594) (-397 "FM.spad" 641367 641379 641606 641633) (-396 "FMFUN.spad" 638397 638405 641357 641362) (-395 "FMC.spad" 637449 637457 638387 638392) (-394 "FMCAT.spad" 635117 635135 637417 637444) (-393 "FM1.spad" 634474 634486 635051 635078) (-392 "FLOATRP.spad" 632209 632223 634464 634469) (-391 "FLOAT.spad" 625523 625531 632075 632204) (-390 "FLOATCP.spad" 622954 622968 625513 625518) (-389 "FLINEXP.spad" 622676 622686 622944 622949) (-388 "FLINEXP.spad" 622342 622354 622612 622617) (-387 "FLASORT.spad" 621668 621680 622332 622337) (-386 "FLALG.spad" 619314 619333 621594 621663) (-385 "FLAGG.spad" 616356 616366 619294 619309) (-384 "FLAGG.spad" 613299 613311 616239 616244) (-383 "FLAGG2.spad" 612024 612040 613289 613294) (-382 "FINRALG.spad" 610085 610098 611980 612019) (-381 "FINRALG.spad" 608072 608087 609969 609974) (-380 "FINITE.spad" 607224 607232 608062 608067) (-379 "FINAALG.spad" 596345 596355 607166 607219) (-378 "FINAALG.spad" 585478 585490 596301 596306) (-377 "FILE.spad" 585061 585071 585468 585473) (-376 "FILECAT.spad" 583587 583604 585051 585056) (-375 "FIELD.spad" 582993 583001 583489 583582) (-374 "FIELD.spad" 582485 582495 582983 582988) (-373 "FGROUP.spad" 581132 581142 582465 582480) (-372 "FGLMICPK.spad" 579919 579934 581122 581127) (-371 "FFX.spad" 579294 579309 579635 579728) (-370 "FFSLPE.spad" 578797 578818 579284 579289) (-369 "FFPOLY.spad" 570059 570070 578787 578792) (-368 "FFPOLY2.spad" 569119 569136 570049 570054) (-367 "FFP.spad" 568516 568536 568835 568928) (-366 "FF.spad" 567964 567980 568197 568290) (-365 "FFNBX.spad" 566476 566496 567680 567773) (-364 "FFNBP.spad" 564989 565006 566192 566285) (-363 "FFNB.spad" 563454 563475 564670 564763) (-362 "FFINTBAS.spad" 560968 560987 563444 563449) (-361 "FFIELDC.spad" 558545 558553 560870 560963) (-360 "FFIELDC.spad" 556208 556218 558535 558540) (-359 "FFHOM.spad" 554956 554973 556198 556203) (-358 "FFF.spad" 552391 552402 554946 554951) (-357 "FFCGX.spad" 551238 551258 552107 552200) (-356 "FFCGP.spad" 550127 550147 550954 551047) (-355 "FFCG.spad" 548919 548940 549808 549901) (-354 "FFCAT.spad" 542092 542114 548758 548914) (-353 "FFCAT.spad" 535344 535368 542012 542017) (-352 "FFCAT2.spad" 535091 535131 535334 535339) (-351 "FEXPR.spad" 526808 526854 534847 534886) (-350 "FEVALAB.spad" 526516 526526 526798 526803) (-349 "FEVALAB.spad" 526009 526021 526293 526298) (-348 "FDIV.spad" 525451 525475 525999 526004) (-347 "FDIVCAT.spad" 523515 523539 525441 525446) (-346 "FDIVCAT.spad" 521577 521603 523505 523510) (-345 "FDIV2.spad" 521233 521273 521567 521572) (-344 "FCTRDATA.spad" 520241 520249 521223 521228) (-343 "FCPAK1.spad" 518808 518816 520231 520236) (-342 "FCOMP.spad" 518187 518197 518798 518803) (-341 "FC.spad" 508194 508202 518177 518182) (-340 "FAXF.spad" 501165 501179 508096 508189) (-339 "FAXF.spad" 494188 494204 501121 501126) (-338 "FARRAY.spad" 492185 492195 493218 493245) (-337 "FAMR.spad" 490321 490333 492083 492180) (-336 "FAMR.spad" 488441 488455 490205 490210) (-335 "FAMONOID.spad" 488109 488119 488395 488400) (-334 "FAMONC.spad" 486405 486417 488099 488104) (-333 "FAGROUP.spad" 486029 486039 486301 486328) (-332 "FACUTIL.spad" 484233 484250 486019 486024) (-331 "FACTFUNC.spad" 483427 483437 484223 484228) (-330 "EXPUPXS.spad" 480260 480283 481559 481708) (-329 "EXPRTUBE.spad" 477548 477556 480250 480255) (-328 "EXPRODE.spad" 474708 474724 477538 477543) (-327 "EXPR.spad" 469883 469893 470597 470892) (-326 "EXPR2UPS.spad" 466005 466018 469873 469878) (-325 "EXPR2.spad" 465710 465722 465995 466000) (-324 "EXPEXPAN.spad" 462511 462536 463143 463236) (-323 "EXIT.spad" 462182 462190 462501 462506) (-322 "EXITAST.spad" 461918 461926 462172 462177) (-321 "EVALCYC.spad" 461378 461392 461908 461913) (-320 "EVALAB.spad" 460950 460960 461368 461373) (-319 "EVALAB.spad" 460520 460532 460940 460945) (-318 "EUCDOM.spad" 458094 458102 460446 460515) (-317 "EUCDOM.spad" 455730 455740 458084 458089) (-316 "ESTOOLS.spad" 447576 447584 455720 455725) (-315 "ESTOOLS2.spad" 447179 447193 447566 447571) (-314 "ESTOOLS1.spad" 446864 446875 447169 447174) (-313 "ES.spad" 439679 439687 446854 446859) (-312 "ES.spad" 432400 432410 439577 439582) (-311 "ESCONT.spad" 429193 429201 432390 432395) (-310 "ESCONT1.spad" 428942 428954 429183 429188) (-309 "ES2.spad" 428447 428463 428932 428937) (-308 "ES1.spad" 428017 428033 428437 428442) (-307 "ERROR.spad" 425344 425352 428007 428012) (-306 "EQTBL.spad" 423374 423396 423583 423610) (-305 "EQ.spad" 418179 418189 420966 421078) (-304 "EQ2.spad" 417897 417909 418169 418174) (-303 "EP.spad" 414223 414233 417887 417892) (-302 "ENV.spad" 412901 412909 414213 414218) (-301 "ENTIRER.spad" 412569 412577 412845 412896) (-300 "EMR.spad" 411857 411898 412495 412564) (-299 "ELTAGG.spad" 410111 410130 411847 411852) (-298 "ELTAGG.spad" 408329 408350 410067 410072) (-297 "ELTAB.spad" 407804 407817 408319 408324) (-296 "ELFUTS.spad" 407191 407210 407794 407799) (-295 "ELEMFUN.spad" 406880 406888 407181 407186) (-294 "ELEMFUN.spad" 406567 406577 406870 406875) (-293 "ELAGG.spad" 404538 404548 406547 406562) (-292 "ELAGG.spad" 402446 402458 404457 404462) (-291 "ELABOR.spad" 401792 401800 402436 402441) (-290 "ELABEXPR.spad" 400724 400732 401782 401787) (-289 "EFUPXS.spad" 397500 397530 400680 400685) (-288 "EFULS.spad" 394336 394359 397456 397461) (-287 "EFSTRUC.spad" 392351 392367 394326 394331) (-286 "EF.spad" 387127 387143 392341 392346) (-285 "EAB.spad" 385403 385411 387117 387122) (-284 "E04UCFA.spad" 384939 384947 385393 385398) (-283 "E04NAFA.spad" 384516 384524 384929 384934) (-282 "E04MBFA.spad" 384096 384104 384506 384511) (-281 "E04JAFA.spad" 383632 383640 384086 384091) (-280 "E04GCFA.spad" 383168 383176 383622 383627) (-279 "E04FDFA.spad" 382704 382712 383158 383163) (-278 "E04DGFA.spad" 382240 382248 382694 382699) (-277 "E04AGNT.spad" 378090 378098 382230 382235) (-276 "DVARCAT.spad" 374980 374990 378080 378085) (-275 "DVARCAT.spad" 371868 371880 374970 374975) (-274 "DSMP.spad" 369242 369256 369547 369674) (-273 "DSEXT.spad" 368544 368554 369232 369237) (-272 "DSEXT.spad" 367753 367765 368443 368448) (-271 "DROPT.spad" 361712 361720 367743 367748) (-270 "DROPT1.spad" 361377 361387 361702 361707) (-269 "DROPT0.spad" 356234 356242 361367 361372) (-268 "DRAWPT.spad" 354407 354415 356224 356229) (-267 "DRAW.spad" 347283 347296 354397 354402) (-266 "DRAWHACK.spad" 346591 346601 347273 347278) (-265 "DRAWCX.spad" 344061 344069 346581 346586) (-264 "DRAWCURV.spad" 343608 343623 344051 344056) (-263 "DRAWCFUN.spad" 333140 333148 343598 343603) (-262 "DQAGG.spad" 331318 331328 333108 333135) (-261 "DPOLCAT.spad" 326667 326683 331186 331313) (-260 "DPOLCAT.spad" 322102 322120 326623 326628) (-259 "DPMO.spad" 313862 313878 314000 314213) (-258 "DPMM.spad" 305635 305653 305760 305973) (-257 "DOMTMPLT.spad" 305406 305414 305625 305630) (-256 "DOMCTOR.spad" 305161 305169 305396 305401) (-255 "DOMAIN.spad" 304248 304256 305151 305156) (-254 "DMP.spad" 301508 301523 302078 302205) (-253 "DMEXT.spad" 301375 301385 301476 301503) (-252 "DLP.spad" 300727 300737 301365 301370) (-251 "DLIST.spad" 299153 299163 299757 299784) (-250 "DLAGG.spad" 297570 297580 299143 299148) (-249 "DIVRING.spad" 297112 297120 297514 297565) (-248 "DIVRING.spad" 296698 296708 297102 297107) (-247 "DISPLAY.spad" 294888 294896 296688 296693) (-246 "DIRPROD.spad" 282435 282451 283075 283174) (-245 "DIRPROD2.spad" 281253 281271 282425 282430) (-244 "DIRPCAT.spad" 280446 280462 281149 281248) (-243 "DIRPCAT.spad" 279266 279284 279971 279976) (-242 "DIOSP.spad" 278091 278099 279256 279261) (-241 "DIOPS.spad" 277087 277097 278071 278086) (-240 "DIOPS.spad" 276057 276069 277043 277048) (-239 "DIFRING.spad" 275895 275903 276037 276052) (-238 "DIFFSPC.spad" 275474 275482 275885 275890) (-237 "DIFFSPC.spad" 275051 275061 275464 275469) (-236 "DIFFMOD.spad" 274540 274550 275019 275046) (-235 "DIFFDOM.spad" 273705 273716 274530 274535) (-234 "DIFFDOM.spad" 272868 272881 273695 273700) (-233 "DIFEXT.spad" 272687 272697 272848 272863) (-232 "DIAGG.spad" 272317 272327 272667 272682) (-231 "DIAGG.spad" 271955 271967 272307 272312) (-230 "DHMATRIX.spad" 270150 270160 271295 271322) (-229 "DFSFUN.spad" 263790 263798 270140 270145) (-228 "DFLOAT.spad" 260521 260529 263680 263785) (-227 "DFINTTLS.spad" 258752 258768 260511 260516) (-226 "DERHAM.spad" 256666 256698 258732 258747) (-225 "DEQUEUE.spad" 255873 255883 256156 256183) (-224 "DEGRED.spad" 255490 255504 255863 255868) (-223 "DEFINTRF.spad" 253027 253037 255480 255485) (-222 "DEFINTEF.spad" 251537 251553 253017 253022) (-221 "DEFAST.spad" 250905 250913 251527 251532) (-220 "DECIMAL.spad" 248914 248922 249275 249368) (-219 "DDFACT.spad" 246727 246744 248904 248909) (-218 "DBLRESP.spad" 246327 246351 246717 246722) (-217 "DBASIS.spad" 245953 245968 246317 246322) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file +((-3 NIL 2299799 2299804 2299809 2299814) (-2 NIL 2299779 2299784 2299789 2299794) (-1 NIL 2299759 2299764 2299769 2299774) (0 NIL 2299739 2299744 2299749 2299754) (-1326 "ZMOD.spad" 2299548 2299561 2299677 2299734) (-1325 "ZLINDEP.spad" 2298614 2298625 2299538 2299543) (-1324 "ZDSOLVE.spad" 2288559 2288581 2298604 2298609) (-1323 "YSTREAM.spad" 2288054 2288065 2288549 2288554) (-1322 "YDIAGRAM.spad" 2287688 2287697 2288044 2288049) (-1321 "XRPOLY.spad" 2286908 2286928 2287544 2287613) (-1320 "XPR.spad" 2284703 2284716 2286626 2286725) (-1319 "XPOLY.spad" 2284258 2284269 2284559 2284628) (-1318 "XPOLYC.spad" 2283577 2283593 2284184 2284253) (-1317 "XPBWPOLY.spad" 2282014 2282034 2283357 2283426) (-1316 "XF.spad" 2280477 2280492 2281916 2282009) (-1315 "XF.spad" 2278920 2278937 2280361 2280366) (-1314 "XFALG.spad" 2275968 2275984 2278846 2278915) (-1313 "XEXPPKG.spad" 2275219 2275245 2275958 2275963) (-1312 "XDPOLY.spad" 2274833 2274849 2275075 2275144) (-1311 "XALG.spad" 2274493 2274504 2274789 2274828) (-1310 "WUTSET.spad" 2270296 2270313 2274103 2274130) (-1309 "WP.spad" 2269495 2269539 2270154 2270221) (-1308 "WHILEAST.spad" 2269293 2269302 2269485 2269490) (-1307 "WHEREAST.spad" 2268964 2268973 2269283 2269288) (-1306 "WFFINTBS.spad" 2266627 2266649 2268954 2268959) (-1305 "WEIER.spad" 2264849 2264860 2266617 2266622) (-1304 "VSPACE.spad" 2264522 2264533 2264817 2264844) (-1303 "VSPACE.spad" 2264215 2264228 2264512 2264517) (-1302 "VOID.spad" 2263892 2263901 2264205 2264210) (-1301 "VIEW.spad" 2261572 2261581 2263882 2263887) (-1300 "VIEWDEF.spad" 2256773 2256782 2261562 2261567) (-1299 "VIEW3D.spad" 2240734 2240743 2256763 2256768) (-1298 "VIEW2D.spad" 2228625 2228634 2240724 2240729) (-1297 "VECTOR.spad" 2227146 2227157 2227397 2227424) (-1296 "VECTOR2.spad" 2225785 2225798 2227136 2227141) (-1295 "VECTCAT.spad" 2223689 2223700 2225753 2225780) (-1294 "VECTCAT.spad" 2221400 2221413 2223466 2223471) (-1293 "VARIABLE.spad" 2221180 2221195 2221390 2221395) (-1292 "UTYPE.spad" 2220824 2220833 2221170 2221175) (-1291 "UTSODETL.spad" 2220119 2220143 2220780 2220785) (-1290 "UTSODE.spad" 2218335 2218355 2220109 2220114) (-1289 "UTS.spad" 2213282 2213310 2216802 2216899) (-1288 "UTSCAT.spad" 2210761 2210777 2213180 2213277) (-1287 "UTSCAT.spad" 2207884 2207902 2210305 2210310) (-1286 "UTS2.spad" 2207479 2207514 2207874 2207879) (-1285 "URAGG.spad" 2202152 2202163 2207469 2207474) (-1284 "URAGG.spad" 2196789 2196802 2202108 2202113) (-1283 "UPXSSING.spad" 2194434 2194460 2195870 2196003) (-1282 "UPXS.spad" 2191730 2191758 2192566 2192715) (-1281 "UPXSCONS.spad" 2189489 2189509 2189862 2190011) (-1280 "UPXSCCA.spad" 2188060 2188080 2189335 2189484) (-1279 "UPXSCCA.spad" 2186773 2186795 2188050 2188055) (-1278 "UPXSCAT.spad" 2185362 2185378 2186619 2186768) (-1277 "UPXS2.spad" 2184905 2184958 2185352 2185357) (-1276 "UPSQFREE.spad" 2183319 2183333 2184895 2184900) (-1275 "UPSCAT.spad" 2181106 2181130 2183217 2183314) (-1274 "UPSCAT.spad" 2178599 2178625 2180712 2180717) (-1273 "UPOLYC.spad" 2173639 2173650 2178441 2178594) (-1272 "UPOLYC.spad" 2168571 2168584 2173375 2173380) (-1271 "UPOLYC2.spad" 2168042 2168061 2168561 2168566) (-1270 "UP.spad" 2165148 2165163 2165535 2165688) (-1269 "UPMP.spad" 2164048 2164061 2165138 2165143) (-1268 "UPDIVP.spad" 2163613 2163627 2164038 2164043) (-1267 "UPDECOMP.spad" 2161858 2161872 2163603 2163608) (-1266 "UPCDEN.spad" 2161067 2161083 2161848 2161853) (-1265 "UP2.spad" 2160431 2160452 2161057 2161062) (-1264 "UNISEG.spad" 2159784 2159795 2160350 2160355) (-1263 "UNISEG2.spad" 2159281 2159294 2159740 2159745) (-1262 "UNIFACT.spad" 2158384 2158396 2159271 2159276) (-1261 "ULS.spad" 2148168 2148196 2149113 2149542) (-1260 "ULSCONS.spad" 2139302 2139322 2139672 2139821) (-1259 "ULSCCAT.spad" 2137039 2137059 2139148 2139297) (-1258 "ULSCCAT.spad" 2134884 2134906 2136995 2137000) (-1257 "ULSCAT.spad" 2133116 2133132 2134730 2134879) (-1256 "ULS2.spad" 2132630 2132683 2133106 2133111) (-1255 "UINT8.spad" 2132507 2132516 2132620 2132625) (-1254 "UINT64.spad" 2132383 2132392 2132497 2132502) (-1253 "UINT32.spad" 2132259 2132268 2132373 2132378) (-1252 "UINT16.spad" 2132135 2132144 2132249 2132254) (-1251 "UFD.spad" 2131200 2131209 2132061 2132130) (-1250 "UFD.spad" 2130327 2130338 2131190 2131195) (-1249 "UDVO.spad" 2129208 2129217 2130317 2130322) (-1248 "UDPO.spad" 2126701 2126712 2129164 2129169) (-1247 "TYPE.spad" 2126633 2126642 2126691 2126696) (-1246 "TYPEAST.spad" 2126552 2126561 2126623 2126628) (-1245 "TWOFACT.spad" 2125204 2125219 2126542 2126547) (-1244 "TUPLE.spad" 2124690 2124701 2125103 2125108) (-1243 "TUBETOOL.spad" 2121557 2121566 2124680 2124685) (-1242 "TUBE.spad" 2120204 2120221 2121547 2121552) (-1241 "TS.spad" 2118803 2118819 2119769 2119866) (-1240 "TSETCAT.spad" 2105930 2105947 2118771 2118798) (-1239 "TSETCAT.spad" 2093043 2093062 2105886 2105891) (-1238 "TRMANIP.spad" 2087409 2087426 2092749 2092754) (-1237 "TRIMAT.spad" 2086372 2086397 2087399 2087404) (-1236 "TRIGMNIP.spad" 2084899 2084916 2086362 2086367) (-1235 "TRIGCAT.spad" 2084411 2084420 2084889 2084894) (-1234 "TRIGCAT.spad" 2083921 2083932 2084401 2084406) (-1233 "TREE.spad" 2082379 2082390 2083411 2083438) (-1232 "TRANFUN.spad" 2082218 2082227 2082369 2082374) (-1231 "TRANFUN.spad" 2082055 2082066 2082208 2082213) (-1230 "TOPSP.spad" 2081729 2081738 2082045 2082050) (-1229 "TOOLSIGN.spad" 2081392 2081403 2081719 2081724) (-1228 "TEXTFILE.spad" 2079953 2079962 2081382 2081387) (-1227 "TEX.spad" 2077099 2077108 2079943 2079948) (-1226 "TEX1.spad" 2076655 2076666 2077089 2077094) (-1225 "TEMUTL.spad" 2076210 2076219 2076645 2076650) (-1224 "TBCMPPK.spad" 2074303 2074326 2076200 2076205) (-1223 "TBAGG.spad" 2073353 2073376 2074283 2074298) (-1222 "TBAGG.spad" 2072411 2072436 2073343 2073348) (-1221 "TANEXP.spad" 2071819 2071830 2072401 2072406) (-1220 "TALGOP.spad" 2071543 2071554 2071809 2071814) (-1219 "TABLE.spad" 2069512 2069535 2069782 2069809) (-1218 "TABLEAU.spad" 2068993 2069004 2069502 2069507) (-1217 "TABLBUMP.spad" 2065796 2065807 2068983 2068988) (-1216 "SYSTEM.spad" 2065024 2065033 2065786 2065791) (-1215 "SYSSOLP.spad" 2062507 2062518 2065014 2065019) (-1214 "SYSPTR.spad" 2062406 2062415 2062497 2062502) (-1213 "SYSNNI.spad" 2061597 2061608 2062396 2062401) (-1212 "SYSINT.spad" 2061001 2061012 2061587 2061592) (-1211 "SYNTAX.spad" 2057207 2057216 2060991 2060996) (-1210 "SYMTAB.spad" 2055275 2055284 2057197 2057202) (-1209 "SYMS.spad" 2051298 2051307 2055265 2055270) (-1208 "SYMPOLY.spad" 2050304 2050315 2050386 2050513) (-1207 "SYMFUNC.spad" 2049805 2049816 2050294 2050299) (-1206 "SYMBOL.spad" 2047308 2047317 2049795 2049800) (-1205 "SWITCH.spad" 2044079 2044088 2047298 2047303) (-1204 "SUTS.spad" 2041127 2041155 2042546 2042643) (-1203 "SUPXS.spad" 2038410 2038438 2039259 2039408) (-1202 "SUP.spad" 2035130 2035141 2035903 2036056) (-1201 "SUPFRACF.spad" 2034235 2034253 2035120 2035125) (-1200 "SUP2.spad" 2033627 2033640 2034225 2034230) (-1199 "SUMRF.spad" 2032601 2032612 2033617 2033622) (-1198 "SUMFS.spad" 2032238 2032255 2032591 2032596) (-1197 "SULS.spad" 2022009 2022037 2022967 2023396) (-1196 "SUCHTAST.spad" 2021778 2021787 2021999 2022004) (-1195 "SUCH.spad" 2021460 2021475 2021768 2021773) (-1194 "SUBSPACE.spad" 2013575 2013590 2021450 2021455) (-1193 "SUBRESP.spad" 2012745 2012759 2013531 2013536) (-1192 "STTF.spad" 2008844 2008860 2012735 2012740) (-1191 "STTFNC.spad" 2005312 2005328 2008834 2008839) (-1190 "STTAYLOR.spad" 1997947 1997958 2005193 2005198) (-1189 "STRTBL.spad" 1995998 1996015 1996147 1996174) (-1188 "STRING.spad" 1994785 1994794 1995006 1995033) (-1187 "STREAM.spad" 1991586 1991597 1994193 1994208) (-1186 "STREAM3.spad" 1991159 1991174 1991576 1991581) (-1185 "STREAM2.spad" 1990287 1990300 1991149 1991154) (-1184 "STREAM1.spad" 1989993 1990004 1990277 1990282) (-1183 "STINPROD.spad" 1988929 1988945 1989983 1989988) (-1182 "STEP.spad" 1988130 1988139 1988919 1988924) (-1181 "STEPAST.spad" 1987364 1987373 1988120 1988125) (-1180 "STBL.spad" 1985448 1985476 1985615 1985630) (-1179 "STAGG.spad" 1984523 1984534 1985438 1985443) (-1178 "STAGG.spad" 1983596 1983609 1984513 1984518) (-1177 "STACK.spad" 1982836 1982847 1983086 1983113) (-1176 "SREGSET.spad" 1980504 1980521 1982446 1982473) (-1175 "SRDCMPK.spad" 1979065 1979085 1980494 1980499) (-1174 "SRAGG.spad" 1974208 1974217 1979033 1979060) (-1173 "SRAGG.spad" 1969371 1969382 1974198 1974203) (-1172 "SQMATRIX.spad" 1966914 1966932 1967830 1967917) (-1171 "SPLTREE.spad" 1961310 1961323 1966194 1966221) (-1170 "SPLNODE.spad" 1957898 1957911 1961300 1961305) (-1169 "SPFCAT.spad" 1956707 1956716 1957888 1957893) (-1168 "SPECOUT.spad" 1955259 1955268 1956697 1956702) (-1167 "SPADXPT.spad" 1946854 1946863 1955249 1955254) (-1166 "spad-parser.spad" 1946319 1946328 1946844 1946849) (-1165 "SPADAST.spad" 1946020 1946029 1946309 1946314) (-1164 "SPACEC.spad" 1930219 1930230 1946010 1946015) (-1163 "SPACE3.spad" 1929995 1930006 1930209 1930214) (-1162 "SORTPAK.spad" 1929544 1929557 1929951 1929956) (-1161 "SOLVETRA.spad" 1927307 1927318 1929534 1929539) (-1160 "SOLVESER.spad" 1925835 1925846 1927297 1927302) (-1159 "SOLVERAD.spad" 1921861 1921872 1925825 1925830) (-1158 "SOLVEFOR.spad" 1920323 1920341 1921851 1921856) (-1157 "SNTSCAT.spad" 1919923 1919940 1920291 1920318) (-1156 "SMTS.spad" 1918195 1918221 1919488 1919585) (-1155 "SMP.spad" 1915670 1915690 1916060 1916187) (-1154 "SMITH.spad" 1914515 1914540 1915660 1915665) (-1153 "SMATCAT.spad" 1912625 1912655 1914459 1914510) (-1152 "SMATCAT.spad" 1910667 1910699 1912503 1912508) (-1151 "SKAGG.spad" 1909630 1909641 1910635 1910662) (-1150 "SINT.spad" 1908570 1908579 1909496 1909625) (-1149 "SIMPAN.spad" 1908298 1908307 1908560 1908565) (-1148 "SIG.spad" 1907628 1907637 1908288 1908293) (-1147 "SIGNRF.spad" 1906746 1906757 1907618 1907623) (-1146 "SIGNEF.spad" 1906025 1906042 1906736 1906741) (-1145 "SIGAST.spad" 1905410 1905419 1906015 1906020) (-1144 "SHP.spad" 1903338 1903353 1905366 1905371) (-1143 "SHDP.spad" 1891016 1891043 1891525 1891624) (-1142 "SGROUP.spad" 1890624 1890633 1891006 1891011) (-1141 "SGROUP.spad" 1890230 1890241 1890614 1890619) (-1140 "SGCF.spad" 1883369 1883378 1890220 1890225) (-1139 "SFRTCAT.spad" 1882299 1882316 1883337 1883364) (-1138 "SFRGCD.spad" 1881362 1881382 1882289 1882294) (-1137 "SFQCMPK.spad" 1875999 1876019 1881352 1881357) (-1136 "SFORT.spad" 1875438 1875452 1875989 1875994) (-1135 "SEXOF.spad" 1875281 1875321 1875428 1875433) (-1134 "SEX.spad" 1875173 1875182 1875271 1875276) (-1133 "SEXCAT.spad" 1872945 1872985 1875163 1875168) (-1132 "SET.spad" 1871233 1871244 1872330 1872369) (-1131 "SETMN.spad" 1869683 1869700 1871223 1871228) (-1130 "SETCAT.spad" 1869168 1869177 1869673 1869678) (-1129 "SETCAT.spad" 1868651 1868662 1869158 1869163) (-1128 "SETAGG.spad" 1865200 1865211 1868631 1868646) (-1127 "SETAGG.spad" 1861757 1861770 1865190 1865195) (-1126 "SEQAST.spad" 1861460 1861469 1861747 1861752) (-1125 "SEGXCAT.spad" 1860616 1860629 1861450 1861455) (-1124 "SEG.spad" 1860429 1860440 1860535 1860540) (-1123 "SEGCAT.spad" 1859354 1859365 1860419 1860424) (-1122 "SEGBIND.spad" 1859112 1859123 1859301 1859306) (-1121 "SEGBIND2.spad" 1858810 1858823 1859102 1859107) (-1120 "SEGAST.spad" 1858524 1858533 1858800 1858805) (-1119 "SEG2.spad" 1857959 1857972 1858480 1858485) (-1118 "SDVAR.spad" 1857235 1857246 1857949 1857954) (-1117 "SDPOL.spad" 1854568 1854579 1854859 1854986) (-1116 "SCPKG.spad" 1852657 1852668 1854558 1854563) (-1115 "SCOPE.spad" 1851810 1851819 1852647 1852652) (-1114 "SCACHE.spad" 1850506 1850517 1851800 1851805) (-1113 "SASTCAT.spad" 1850415 1850424 1850496 1850501) (-1112 "SAOS.spad" 1850287 1850296 1850405 1850410) (-1111 "SAERFFC.spad" 1850000 1850020 1850277 1850282) (-1110 "SAE.spad" 1847470 1847486 1848081 1848216) (-1109 "SAEFACT.spad" 1847171 1847191 1847460 1847465) (-1108 "RURPK.spad" 1844830 1844846 1847161 1847166) (-1107 "RULESET.spad" 1844283 1844307 1844820 1844825) (-1106 "RULE.spad" 1842523 1842547 1844273 1844278) (-1105 "RULECOLD.spad" 1842375 1842388 1842513 1842518) (-1104 "RTVALUE.spad" 1842110 1842119 1842365 1842370) (-1103 "RSTRCAST.spad" 1841827 1841836 1842100 1842105) (-1102 "RSETGCD.spad" 1838205 1838225 1841817 1841822) (-1101 "RSETCAT.spad" 1828141 1828158 1838173 1838200) (-1100 "RSETCAT.spad" 1818097 1818116 1828131 1828136) (-1099 "RSDCMPK.spad" 1816549 1816569 1818087 1818092) (-1098 "RRCC.spad" 1814933 1814963 1816539 1816544) (-1097 "RRCC.spad" 1813315 1813347 1814923 1814928) (-1096 "RPTAST.spad" 1813017 1813026 1813305 1813310) (-1095 "RPOLCAT.spad" 1792377 1792392 1812885 1813012) (-1094 "RPOLCAT.spad" 1771450 1771467 1791960 1791965) (-1093 "ROUTINE.spad" 1766871 1766880 1769635 1769662) (-1092 "ROMAN.spad" 1766199 1766208 1766737 1766866) (-1091 "ROIRC.spad" 1765279 1765311 1766189 1766194) (-1090 "RNS.spad" 1764182 1764191 1765181 1765274) (-1089 "RNS.spad" 1763171 1763182 1764172 1764177) (-1088 "RNG.spad" 1762906 1762915 1763161 1763166) (-1087 "RNGBIND.spad" 1762066 1762080 1762861 1762866) (-1086 "RMODULE.spad" 1761831 1761842 1762056 1762061) (-1085 "RMCAT2.spad" 1761251 1761308 1761821 1761826) (-1084 "RMATRIX.spad" 1760039 1760058 1760382 1760421) (-1083 "RMATCAT.spad" 1755618 1755649 1759995 1760034) (-1082 "RMATCAT.spad" 1751087 1751120 1755466 1755471) (-1081 "RLINSET.spad" 1750791 1750802 1751077 1751082) (-1080 "RINTERP.spad" 1750679 1750699 1750781 1750786) (-1079 "RING.spad" 1750149 1750158 1750659 1750674) (-1078 "RING.spad" 1749627 1749638 1750139 1750144) (-1077 "RIDIST.spad" 1749019 1749028 1749617 1749622) (-1076 "RGCHAIN.spad" 1747547 1747563 1748449 1748476) (-1075 "RGBCSPC.spad" 1747328 1747340 1747537 1747542) (-1074 "RGBCMDL.spad" 1746858 1746870 1747318 1747323) (-1073 "RF.spad" 1744500 1744511 1746848 1746853) (-1072 "RFFACTOR.spad" 1743962 1743973 1744490 1744495) (-1071 "RFFACT.spad" 1743697 1743709 1743952 1743957) (-1070 "RFDIST.spad" 1742693 1742702 1743687 1743692) (-1069 "RETSOL.spad" 1742112 1742125 1742683 1742688) (-1068 "RETRACT.spad" 1741540 1741551 1742102 1742107) (-1067 "RETRACT.spad" 1740966 1740979 1741530 1741535) (-1066 "RETAST.spad" 1740778 1740787 1740956 1740961) (-1065 "RESULT.spad" 1738376 1738385 1738963 1738990) (-1064 "RESRING.spad" 1737723 1737770 1738314 1738371) (-1063 "RESLATC.spad" 1737047 1737058 1737713 1737718) (-1062 "REPSQ.spad" 1736778 1736789 1737037 1737042) (-1061 "REP.spad" 1734332 1734341 1736768 1736773) (-1060 "REPDB.spad" 1734039 1734050 1734322 1734327) (-1059 "REP2.spad" 1723697 1723708 1733881 1733886) (-1058 "REP1.spad" 1717893 1717904 1723647 1723652) (-1057 "REGSET.spad" 1715654 1715671 1717503 1717530) (-1056 "REF.spad" 1714989 1715000 1715609 1715614) (-1055 "REDORDER.spad" 1714195 1714212 1714979 1714984) (-1054 "RECLOS.spad" 1712978 1712998 1713682 1713775) (-1053 "REALSOLV.spad" 1712118 1712127 1712968 1712973) (-1052 "REAL.spad" 1711990 1711999 1712108 1712113) (-1051 "REAL0Q.spad" 1709288 1709303 1711980 1711985) (-1050 "REAL0.spad" 1706132 1706147 1709278 1709283) (-1049 "RDUCEAST.spad" 1705853 1705862 1706122 1706127) (-1048 "RDIV.spad" 1705508 1705533 1705843 1705848) (-1047 "RDIST.spad" 1705075 1705086 1705498 1705503) (-1046 "RDETRS.spad" 1703939 1703957 1705065 1705070) (-1045 "RDETR.spad" 1702078 1702096 1703929 1703934) (-1044 "RDEEFS.spad" 1701177 1701194 1702068 1702073) (-1043 "RDEEF.spad" 1700187 1700204 1701167 1701172) (-1042 "RCFIELD.spad" 1697373 1697382 1700089 1700182) (-1041 "RCFIELD.spad" 1694645 1694656 1697363 1697368) (-1040 "RCAGG.spad" 1692573 1692584 1694635 1694640) (-1039 "RCAGG.spad" 1690428 1690441 1692492 1692497) (-1038 "RATRET.spad" 1689788 1689799 1690418 1690423) (-1037 "RATFACT.spad" 1689480 1689492 1689778 1689783) (-1036 "RANDSRC.spad" 1688799 1688808 1689470 1689475) (-1035 "RADUTIL.spad" 1688555 1688564 1688789 1688794) (-1034 "RADIX.spad" 1685379 1685393 1686925 1687018) (-1033 "RADFF.spad" 1683118 1683155 1683237 1683393) (-1032 "RADCAT.spad" 1682713 1682722 1683108 1683113) (-1031 "RADCAT.spad" 1682306 1682317 1682703 1682708) (-1030 "QUEUE.spad" 1681537 1681548 1681796 1681823) (-1029 "QUAT.spad" 1680025 1680036 1680368 1680433) (-1028 "QUATCT2.spad" 1679645 1679664 1680015 1680020) (-1027 "QUATCAT.spad" 1677815 1677826 1679575 1679640) (-1026 "QUATCAT.spad" 1675736 1675749 1677498 1677503) (-1025 "QUAGG.spad" 1674563 1674574 1675704 1675731) (-1024 "QQUTAST.spad" 1674331 1674340 1674553 1674558) (-1023 "QFORM.spad" 1673949 1673964 1674321 1674326) (-1022 "QFCAT.spad" 1672651 1672662 1673851 1673944) (-1021 "QFCAT.spad" 1670944 1670957 1672146 1672151) (-1020 "QFCAT2.spad" 1670636 1670653 1670934 1670939) (-1019 "QEQUAT.spad" 1670194 1670203 1670626 1670631) (-1018 "QCMPACK.spad" 1664940 1664960 1670184 1670189) (-1017 "QALGSET.spad" 1661018 1661051 1664854 1664859) (-1016 "QALGSET2.spad" 1659013 1659032 1661008 1661013) (-1015 "PWFFINTB.spad" 1656428 1656450 1659003 1659008) (-1014 "PUSHVAR.spad" 1655766 1655786 1656418 1656423) (-1013 "PTRANFN.spad" 1651893 1651904 1655756 1655761) (-1012 "PTPACK.spad" 1648980 1648991 1651883 1651888) (-1011 "PTFUNC2.spad" 1648802 1648817 1648970 1648975) (-1010 "PTCAT.spad" 1648056 1648067 1648770 1648797) (-1009 "PSQFR.spad" 1647362 1647387 1648046 1648051) (-1008 "PSEUDLIN.spad" 1646247 1646258 1647352 1647357) (-1007 "PSETPK.spad" 1631679 1631696 1646125 1646130) (-1006 "PSETCAT.spad" 1625598 1625622 1631659 1631674) (-1005 "PSETCAT.spad" 1619491 1619517 1625554 1625559) (-1004 "PSCURVE.spad" 1618473 1618482 1619481 1619486) (-1003 "PSCAT.spad" 1617255 1617285 1618371 1618468) (-1002 "PSCAT.spad" 1616127 1616159 1617245 1617250) (-1001 "PRTITION.spad" 1614824 1614833 1616117 1616122) (-1000 "PRTDAST.spad" 1614542 1614551 1614814 1614819) (-999 "PRS.spad" 1604104 1604121 1614498 1614503) (-998 "PRQAGG.spad" 1603539 1603549 1604072 1604099) (-997 "PROPLOG.spad" 1603111 1603119 1603529 1603534) (-996 "PROPFUN2.spad" 1602734 1602747 1603101 1603106) (-995 "PROPFUN1.spad" 1602132 1602143 1602724 1602729) (-994 "PROPFRML.spad" 1600700 1600711 1602122 1602127) (-993 "PROPERTY.spad" 1600188 1600196 1600690 1600695) (-992 "PRODUCT.spad" 1597870 1597882 1598154 1598209) (-991 "PR.spad" 1596262 1596274 1596961 1597088) (-990 "PRINT.spad" 1596014 1596022 1596252 1596257) (-989 "PRIMES.spad" 1594267 1594277 1596004 1596009) (-988 "PRIMELT.spad" 1592348 1592362 1594257 1594262) (-987 "PRIMCAT.spad" 1591975 1591983 1592338 1592343) (-986 "PRIMARR.spad" 1590827 1590837 1591005 1591032) (-985 "PRIMARR2.spad" 1589594 1589606 1590817 1590822) (-984 "PREASSOC.spad" 1588976 1588988 1589584 1589589) (-983 "PPCURVE.spad" 1588113 1588121 1588966 1588971) (-982 "PORTNUM.spad" 1587888 1587896 1588103 1588108) (-981 "POLYROOT.spad" 1586737 1586759 1587844 1587849) (-980 "POLY.spad" 1584072 1584082 1584587 1584714) (-979 "POLYLIFT.spad" 1583337 1583360 1584062 1584067) (-978 "POLYCATQ.spad" 1581455 1581477 1583327 1583332) (-977 "POLYCAT.spad" 1574925 1574946 1581323 1581450) (-976 "POLYCAT.spad" 1567733 1567756 1574133 1574138) (-975 "POLY2UP.spad" 1567185 1567199 1567723 1567728) (-974 "POLY2.spad" 1566782 1566794 1567175 1567180) (-973 "POLUTIL.spad" 1565723 1565752 1566738 1566743) (-972 "POLTOPOL.spad" 1564471 1564486 1565713 1565718) (-971 "POINT.spad" 1563156 1563166 1563243 1563270) (-970 "PNTHEORY.spad" 1559858 1559866 1563146 1563151) (-969 "PMTOOLS.spad" 1558633 1558647 1559848 1559853) (-968 "PMSYM.spad" 1558182 1558192 1558623 1558628) (-967 "PMQFCAT.spad" 1557773 1557787 1558172 1558177) (-966 "PMPRED.spad" 1557252 1557266 1557763 1557768) (-965 "PMPREDFS.spad" 1556706 1556728 1557242 1557247) (-964 "PMPLCAT.spad" 1555786 1555804 1556638 1556643) (-963 "PMLSAGG.spad" 1555371 1555385 1555776 1555781) (-962 "PMKERNEL.spad" 1554950 1554962 1555361 1555366) (-961 "PMINS.spad" 1554530 1554540 1554940 1554945) (-960 "PMFS.spad" 1554107 1554125 1554520 1554525) (-959 "PMDOWN.spad" 1553397 1553411 1554097 1554102) (-958 "PMASS.spad" 1552407 1552415 1553387 1553392) (-957 "PMASSFS.spad" 1551374 1551390 1552397 1552402) (-956 "PLOTTOOL.spad" 1551154 1551162 1551364 1551369) (-955 "PLOT.spad" 1546077 1546085 1551144 1551149) (-954 "PLOT3D.spad" 1542541 1542549 1546067 1546072) (-953 "PLOT1.spad" 1541698 1541708 1542531 1542536) (-952 "PLEQN.spad" 1528988 1529015 1541688 1541693) (-951 "PINTERP.spad" 1528610 1528629 1528978 1528983) (-950 "PINTERPA.spad" 1528394 1528410 1528600 1528605) (-949 "PI.spad" 1528003 1528011 1528368 1528389) (-948 "PID.spad" 1526973 1526981 1527929 1527998) (-947 "PICOERCE.spad" 1526630 1526640 1526963 1526968) (-946 "PGROEB.spad" 1525231 1525245 1526620 1526625) (-945 "PGE.spad" 1516848 1516856 1525221 1525226) (-944 "PGCD.spad" 1515738 1515755 1516838 1516843) (-943 "PFRPAC.spad" 1514887 1514897 1515728 1515733) (-942 "PFR.spad" 1511550 1511560 1514789 1514882) (-941 "PFOTOOLS.spad" 1510808 1510824 1511540 1511545) (-940 "PFOQ.spad" 1510178 1510196 1510798 1510803) (-939 "PFO.spad" 1509597 1509624 1510168 1510173) (-938 "PF.spad" 1509171 1509183 1509402 1509495) (-937 "PFECAT.spad" 1506853 1506861 1509097 1509166) (-936 "PFECAT.spad" 1504563 1504573 1506809 1506814) (-935 "PFBRU.spad" 1502451 1502463 1504553 1504558) (-934 "PFBR.spad" 1500011 1500034 1502441 1502446) (-933 "PERM.spad" 1495818 1495828 1499841 1499856) (-932 "PERMGRP.spad" 1490588 1490598 1495808 1495813) (-931 "PERMCAT.spad" 1489249 1489259 1490568 1490583) (-930 "PERMAN.spad" 1487781 1487795 1489239 1489244) (-929 "PENDTREE.spad" 1487005 1487015 1487293 1487298) (-928 "PDSPC.spad" 1485818 1485828 1486995 1487000) (-927 "PDSPC.spad" 1484629 1484641 1485808 1485813) (-926 "PDRING.spad" 1484471 1484481 1484609 1484624) (-925 "PDMOD.spad" 1484287 1484299 1484439 1484466) (-924 "PDEPROB.spad" 1483302 1483310 1484277 1484282) (-923 "PDEPACK.spad" 1477342 1477350 1483292 1483297) (-922 "PDECOMP.spad" 1476812 1476829 1477332 1477337) (-921 "PDECAT.spad" 1475168 1475176 1476802 1476807) (-920 "PDDOM.spad" 1474606 1474619 1475158 1475163) (-919 "PDDOM.spad" 1474042 1474057 1474596 1474601) (-918 "PCOMP.spad" 1473895 1473908 1474032 1474037) (-917 "PBWLB.spad" 1472483 1472500 1473885 1473890) (-916 "PATTERN.spad" 1467022 1467032 1472473 1472478) (-915 "PATTERN2.spad" 1466760 1466772 1467012 1467017) (-914 "PATTERN1.spad" 1465096 1465112 1466750 1466755) (-913 "PATRES.spad" 1462671 1462683 1465086 1465091) (-912 "PATRES2.spad" 1462343 1462357 1462661 1462666) (-911 "PATMATCH.spad" 1460540 1460571 1462051 1462056) (-910 "PATMAB.spad" 1459969 1459979 1460530 1460535) (-909 "PATLRES.spad" 1459055 1459069 1459959 1459964) (-908 "PATAB.spad" 1458819 1458829 1459045 1459050) (-907 "PARTPERM.spad" 1456827 1456835 1458809 1458814) (-906 "PARSURF.spad" 1456261 1456289 1456817 1456822) (-905 "PARSU2.spad" 1456058 1456074 1456251 1456256) (-904 "script-parser.spad" 1455578 1455586 1456048 1456053) (-903 "PARSCURV.spad" 1455012 1455040 1455568 1455573) (-902 "PARSC2.spad" 1454803 1454819 1455002 1455007) (-901 "PARPCURV.spad" 1454265 1454293 1454793 1454798) (-900 "PARPC2.spad" 1454056 1454072 1454255 1454260) (-899 "PARAMAST.spad" 1453184 1453192 1454046 1454051) (-898 "PAN2EXPR.spad" 1452596 1452604 1453174 1453179) (-897 "PALETTE.spad" 1451566 1451574 1452586 1452591) (-896 "PAIR.spad" 1450553 1450566 1451154 1451159) (-895 "PADICRC.spad" 1447794 1447812 1448965 1449058) (-894 "PADICRAT.spad" 1445702 1445714 1445923 1446016) (-893 "PADIC.spad" 1445397 1445409 1445628 1445697) (-892 "PADICCT.spad" 1443946 1443958 1445323 1445392) (-891 "PADEPAC.spad" 1442635 1442654 1443936 1443941) (-890 "PADE.spad" 1441387 1441403 1442625 1442630) (-889 "OWP.spad" 1440627 1440657 1441245 1441312) (-888 "OVERSET.spad" 1440200 1440208 1440617 1440622) (-887 "OVAR.spad" 1439981 1440004 1440190 1440195) (-886 "OUT.spad" 1439067 1439075 1439971 1439976) (-885 "OUTFORM.spad" 1428459 1428467 1439057 1439062) (-884 "OUTBFILE.spad" 1427877 1427885 1428449 1428454) (-883 "OUTBCON.spad" 1426883 1426891 1427867 1427872) (-882 "OUTBCON.spad" 1425887 1425897 1426873 1426878) (-881 "OSI.spad" 1425362 1425370 1425877 1425882) (-880 "OSGROUP.spad" 1425280 1425288 1425352 1425357) (-879 "ORTHPOL.spad" 1423765 1423775 1425197 1425202) (-878 "OREUP.spad" 1423218 1423246 1423445 1423484) (-877 "ORESUP.spad" 1422519 1422543 1422898 1422937) (-876 "OREPCTO.spad" 1420376 1420388 1422439 1422444) (-875 "OREPCAT.spad" 1414523 1414533 1420332 1420371) (-874 "OREPCAT.spad" 1408560 1408572 1414371 1414376) (-873 "ORDTYPE.spad" 1407797 1407805 1408550 1408555) (-872 "ORDTYPE.spad" 1407032 1407042 1407787 1407792) (-871 "ORDSTRCT.spad" 1406805 1406820 1406968 1406973) (-870 "ORDSET.spad" 1406505 1406513 1406795 1406800) (-869 "ORDRING.spad" 1405895 1405903 1406485 1406500) (-868 "ORDRING.spad" 1405293 1405303 1405885 1405890) (-867 "ORDMON.spad" 1405148 1405156 1405283 1405288) (-866 "ORDFUNS.spad" 1404280 1404296 1405138 1405143) (-865 "ORDFIN.spad" 1404100 1404108 1404270 1404275) (-864 "ORDCOMP.spad" 1402565 1402575 1403647 1403676) (-863 "ORDCOMP2.spad" 1401858 1401870 1402555 1402560) (-862 "OPTPROB.spad" 1400496 1400504 1401848 1401853) (-861 "OPTPACK.spad" 1392905 1392913 1400486 1400491) (-860 "OPTCAT.spad" 1390584 1390592 1392895 1392900) (-859 "OPSIG.spad" 1390238 1390246 1390574 1390579) (-858 "OPQUERY.spad" 1389787 1389795 1390228 1390233) (-857 "OP.spad" 1389529 1389539 1389609 1389676) (-856 "OPERCAT.spad" 1388995 1389005 1389519 1389524) (-855 "OPERCAT.spad" 1388459 1388471 1388985 1388990) (-854 "ONECOMP.spad" 1387204 1387214 1388006 1388035) (-853 "ONECOMP2.spad" 1386628 1386640 1387194 1387199) (-852 "OMSERVER.spad" 1385634 1385642 1386618 1386623) (-851 "OMSAGG.spad" 1385422 1385432 1385590 1385629) (-850 "OMPKG.spad" 1384038 1384046 1385412 1385417) (-849 "OM.spad" 1383011 1383019 1384028 1384033) (-848 "OMLO.spad" 1382436 1382448 1382897 1382936) (-847 "OMEXPR.spad" 1382270 1382280 1382426 1382431) (-846 "OMERR.spad" 1381815 1381823 1382260 1382265) (-845 "OMERRK.spad" 1380849 1380857 1381805 1381810) (-844 "OMENC.spad" 1380193 1380201 1380839 1380844) (-843 "OMDEV.spad" 1374502 1374510 1380183 1380188) (-842 "OMCONN.spad" 1373911 1373919 1374492 1374497) (-841 "OINTDOM.spad" 1373674 1373682 1373837 1373906) (-840 "OFMONOID.spad" 1371797 1371807 1373630 1373635) (-839 "ODVAR.spad" 1371058 1371068 1371787 1371792) (-838 "ODR.spad" 1370702 1370728 1370870 1371019) (-837 "ODPOL.spad" 1367991 1368001 1368331 1368458) (-836 "ODP.spad" 1355805 1355825 1356178 1356277) (-835 "ODETOOLS.spad" 1354454 1354473 1355795 1355800) (-834 "ODESYS.spad" 1352148 1352165 1354444 1354449) (-833 "ODERTRIC.spad" 1348157 1348174 1352105 1352110) (-832 "ODERED.spad" 1347556 1347580 1348147 1348152) (-831 "ODERAT.spad" 1345171 1345188 1347546 1347551) (-830 "ODEPRRIC.spad" 1342208 1342230 1345161 1345166) (-829 "ODEPROB.spad" 1341465 1341473 1342198 1342203) (-828 "ODEPRIM.spad" 1338799 1338821 1341455 1341460) (-827 "ODEPAL.spad" 1338185 1338209 1338789 1338794) (-826 "ODEPACK.spad" 1324851 1324859 1338175 1338180) (-825 "ODEINT.spad" 1324286 1324302 1324841 1324846) (-824 "ODEIFTBL.spad" 1321681 1321689 1324276 1324281) (-823 "ODEEF.spad" 1317172 1317188 1321671 1321676) (-822 "ODECONST.spad" 1316709 1316727 1317162 1317167) (-821 "ODECAT.spad" 1315307 1315315 1316699 1316704) (-820 "OCT.spad" 1313443 1313453 1314157 1314196) (-819 "OCTCT2.spad" 1313089 1313110 1313433 1313438) (-818 "OC.spad" 1310885 1310895 1313045 1313084) (-817 "OC.spad" 1308406 1308418 1310568 1310573) (-816 "OCAMON.spad" 1308254 1308262 1308396 1308401) (-815 "OASGP.spad" 1308069 1308077 1308244 1308249) (-814 "OAMONS.spad" 1307591 1307599 1308059 1308064) (-813 "OAMON.spad" 1307452 1307460 1307581 1307586) (-812 "OAGROUP.spad" 1307314 1307322 1307442 1307447) (-811 "NUMTUBE.spad" 1306905 1306921 1307304 1307309) (-810 "NUMQUAD.spad" 1294881 1294889 1306895 1306900) (-809 "NUMODE.spad" 1286235 1286243 1294871 1294876) (-808 "NUMINT.spad" 1283801 1283809 1286225 1286230) (-807 "NUMFMT.spad" 1282641 1282649 1283791 1283796) (-806 "NUMERIC.spad" 1274755 1274765 1282446 1282451) (-805 "NTSCAT.spad" 1273263 1273279 1274723 1274750) (-804 "NTPOLFN.spad" 1272814 1272824 1273180 1273185) (-803 "NSUP.spad" 1265767 1265777 1270307 1270460) (-802 "NSUP2.spad" 1265159 1265171 1265757 1265762) (-801 "NSMP.spad" 1261389 1261408 1261697 1261824) (-800 "NREP.spad" 1259767 1259781 1261379 1261384) (-799 "NPCOEF.spad" 1259013 1259033 1259757 1259762) (-798 "NORMRETR.spad" 1258611 1258650 1259003 1259008) (-797 "NORMPK.spad" 1256513 1256532 1258601 1258606) (-796 "NORMMA.spad" 1256201 1256227 1256503 1256508) (-795 "NONE.spad" 1255942 1255950 1256191 1256196) (-794 "NONE1.spad" 1255618 1255628 1255932 1255937) (-793 "NODE1.spad" 1255105 1255121 1255608 1255613) (-792 "NNI.spad" 1254000 1254008 1255079 1255100) (-791 "NLINSOL.spad" 1252626 1252636 1253990 1253995) (-790 "NIPROB.spad" 1251167 1251175 1252616 1252621) (-789 "NFINTBAS.spad" 1248727 1248744 1251157 1251162) (-788 "NETCLT.spad" 1248701 1248712 1248717 1248722) (-787 "NCODIV.spad" 1246917 1246933 1248691 1248696) (-786 "NCNTFRAC.spad" 1246559 1246573 1246907 1246912) (-785 "NCEP.spad" 1244725 1244739 1246549 1246554) (-784 "NASRING.spad" 1244321 1244329 1244715 1244720) (-783 "NASRING.spad" 1243915 1243925 1244311 1244316) (-782 "NARNG.spad" 1243267 1243275 1243905 1243910) (-781 "NARNG.spad" 1242617 1242627 1243257 1243262) (-780 "NAGSP.spad" 1241694 1241702 1242607 1242612) (-779 "NAGS.spad" 1231355 1231363 1241684 1241689) (-778 "NAGF07.spad" 1229786 1229794 1231345 1231350) (-777 "NAGF04.spad" 1224188 1224196 1229776 1229781) (-776 "NAGF02.spad" 1218257 1218265 1224178 1224183) (-775 "NAGF01.spad" 1214018 1214026 1218247 1218252) (-774 "NAGE04.spad" 1207718 1207726 1214008 1214013) (-773 "NAGE02.spad" 1198378 1198386 1207708 1207713) (-772 "NAGE01.spad" 1194380 1194388 1198368 1198373) (-771 "NAGD03.spad" 1192384 1192392 1194370 1194375) (-770 "NAGD02.spad" 1185131 1185139 1192374 1192379) (-769 "NAGD01.spad" 1179424 1179432 1185121 1185126) (-768 "NAGC06.spad" 1175299 1175307 1179414 1179419) (-767 "NAGC05.spad" 1173800 1173808 1175289 1175294) (-766 "NAGC02.spad" 1173067 1173075 1173790 1173795) (-765 "NAALG.spad" 1172608 1172618 1173035 1173062) (-764 "NAALG.spad" 1172169 1172181 1172598 1172603) (-763 "MULTSQFR.spad" 1169127 1169144 1172159 1172164) (-762 "MULTFACT.spad" 1168510 1168527 1169117 1169122) (-761 "MTSCAT.spad" 1166604 1166625 1168408 1168505) (-760 "MTHING.spad" 1166263 1166273 1166594 1166599) (-759 "MSYSCMD.spad" 1165697 1165705 1166253 1166258) (-758 "MSET.spad" 1163619 1163629 1165367 1165406) (-757 "MSETAGG.spad" 1163464 1163474 1163587 1163614) (-756 "MRING.spad" 1160441 1160453 1163172 1163239) (-755 "MRF2.spad" 1160011 1160025 1160431 1160436) (-754 "MRATFAC.spad" 1159557 1159574 1160001 1160006) (-753 "MPRFF.spad" 1157597 1157616 1159547 1159552) (-752 "MPOLY.spad" 1155068 1155083 1155427 1155554) (-751 "MPCPF.spad" 1154332 1154351 1155058 1155063) (-750 "MPC3.spad" 1154149 1154189 1154322 1154327) (-749 "MPC2.spad" 1153795 1153828 1154139 1154144) (-748 "MONOTOOL.spad" 1152146 1152163 1153785 1153790) (-747 "MONOID.spad" 1151465 1151473 1152136 1152141) (-746 "MONOID.spad" 1150782 1150792 1151455 1151460) (-745 "MONOGEN.spad" 1149530 1149543 1150642 1150777) (-744 "MONOGEN.spad" 1148300 1148315 1149414 1149419) (-743 "MONADWU.spad" 1146330 1146338 1148290 1148295) (-742 "MONADWU.spad" 1144358 1144368 1146320 1146325) (-741 "MONAD.spad" 1143518 1143526 1144348 1144353) (-740 "MONAD.spad" 1142676 1142686 1143508 1143513) (-739 "MOEBIUS.spad" 1141412 1141426 1142656 1142671) (-738 "MODULE.spad" 1141282 1141292 1141380 1141407) (-737 "MODULE.spad" 1141172 1141184 1141272 1141277) (-736 "MODRING.spad" 1140507 1140546 1141152 1141167) (-735 "MODOP.spad" 1139172 1139184 1140329 1140396) (-734 "MODMONOM.spad" 1138903 1138921 1139162 1139167) (-733 "MODMON.spad" 1135605 1135621 1136324 1136477) (-732 "MODFIELD.spad" 1134967 1135006 1135507 1135600) (-731 "MMLFORM.spad" 1133827 1133835 1134957 1134962) (-730 "MMAP.spad" 1133569 1133603 1133817 1133822) (-729 "MLO.spad" 1132028 1132038 1133525 1133564) (-728 "MLIFT.spad" 1130640 1130657 1132018 1132023) (-727 "MKUCFUNC.spad" 1130175 1130193 1130630 1130635) (-726 "MKRECORD.spad" 1129779 1129792 1130165 1130170) (-725 "MKFUNC.spad" 1129186 1129196 1129769 1129774) (-724 "MKFLCFN.spad" 1128154 1128164 1129176 1129181) (-723 "MKBCFUNC.spad" 1127649 1127667 1128144 1128149) (-722 "MINT.spad" 1127088 1127096 1127551 1127644) (-721 "MHROWRED.spad" 1125599 1125609 1127078 1127083) (-720 "MFLOAT.spad" 1124119 1124127 1125489 1125594) (-719 "MFINFACT.spad" 1123519 1123541 1124109 1124114) (-718 "MESH.spad" 1121301 1121309 1123509 1123514) (-717 "MDDFACT.spad" 1119512 1119522 1121291 1121296) (-716 "MDAGG.spad" 1118803 1118813 1119492 1119507) (-715 "MCMPLX.spad" 1114234 1114242 1114848 1115049) (-714 "MCDEN.spad" 1113444 1113456 1114224 1114229) (-713 "MCALCFN.spad" 1110566 1110592 1113434 1113439) (-712 "MAYBE.spad" 1109850 1109861 1110556 1110561) (-711 "MATSTOR.spad" 1107158 1107168 1109840 1109845) (-710 "MATRIX.spad" 1105745 1105755 1106229 1106256) (-709 "MATLIN.spad" 1103089 1103113 1105629 1105634) (-708 "MATCAT.spad" 1094611 1094633 1103057 1103084) (-707 "MATCAT.spad" 1086005 1086029 1094453 1094458) (-706 "MATCAT2.spad" 1085287 1085335 1085995 1086000) (-705 "MAPPKG3.spad" 1084202 1084216 1085277 1085282) (-704 "MAPPKG2.spad" 1083540 1083552 1084192 1084197) (-703 "MAPPKG1.spad" 1082368 1082378 1083530 1083535) (-702 "MAPPAST.spad" 1081683 1081691 1082358 1082363) (-701 "MAPHACK3.spad" 1081495 1081509 1081673 1081678) (-700 "MAPHACK2.spad" 1081264 1081276 1081485 1081490) (-699 "MAPHACK1.spad" 1080908 1080918 1081254 1081259) (-698 "MAGMA.spad" 1078698 1078715 1080898 1080903) (-697 "MACROAST.spad" 1078277 1078285 1078688 1078693) (-696 "M3D.spad" 1075880 1075890 1077538 1077543) (-695 "LZSTAGG.spad" 1073118 1073128 1075870 1075875) (-694 "LZSTAGG.spad" 1070354 1070366 1073108 1073113) (-693 "LWORD.spad" 1067059 1067076 1070344 1070349) (-692 "LSTAST.spad" 1066843 1066851 1067049 1067054) (-691 "LSQM.spad" 1065000 1065014 1065394 1065445) (-690 "LSPP.spad" 1064535 1064552 1064990 1064995) (-689 "LSMP.spad" 1063385 1063413 1064525 1064530) (-688 "LSMP1.spad" 1061203 1061217 1063375 1063380) (-687 "LSAGG.spad" 1060872 1060882 1061171 1061198) (-686 "LSAGG.spad" 1060561 1060573 1060862 1060867) (-685 "LPOLY.spad" 1059515 1059534 1060417 1060486) (-684 "LPEFRAC.spad" 1058786 1058796 1059505 1059510) (-683 "LO.spad" 1058187 1058201 1058720 1058747) (-682 "LOGIC.spad" 1057789 1057797 1058177 1058182) (-681 "LOGIC.spad" 1057389 1057399 1057779 1057784) (-680 "LODOOPS.spad" 1056319 1056331 1057379 1057384) (-679 "LODO.spad" 1055703 1055719 1055999 1056038) (-678 "LODOF.spad" 1054749 1054766 1055660 1055665) (-677 "LODOCAT.spad" 1053415 1053425 1054705 1054744) (-676 "LODOCAT.spad" 1052079 1052091 1053371 1053376) (-675 "LODO2.spad" 1051352 1051364 1051759 1051798) (-674 "LODO1.spad" 1050752 1050762 1051032 1051071) (-673 "LODEEF.spad" 1049554 1049572 1050742 1050747) (-672 "LNAGG.spad" 1045701 1045711 1049544 1049549) (-671 "LNAGG.spad" 1041812 1041824 1045657 1045662) (-670 "LMOPS.spad" 1038580 1038597 1041802 1041807) (-669 "LMODULE.spad" 1038348 1038358 1038570 1038575) (-668 "LMDICT.spad" 1037518 1037528 1037782 1037809) (-667 "LLINSET.spad" 1037225 1037235 1037508 1037513) (-666 "LITERAL.spad" 1037131 1037142 1037215 1037220) (-665 "LIST.spad" 1034713 1034723 1036125 1036152) (-664 "LIST3.spad" 1034024 1034038 1034703 1034708) (-663 "LIST2.spad" 1032726 1032738 1034014 1034019) (-662 "LIST2MAP.spad" 1029629 1029641 1032716 1032721) (-661 "LINSET.spad" 1029408 1029418 1029619 1029624) (-660 "LINFORM.spad" 1028871 1028883 1029376 1029403) (-659 "LINEXP.spad" 1027614 1027624 1028861 1028866) (-658 "LINELT.spad" 1026985 1026997 1027497 1027524) (-657 "LINDEP.spad" 1025794 1025806 1026897 1026902) (-656 "LINBASIS.spad" 1025430 1025445 1025784 1025789) (-655 "LIMITRF.spad" 1023358 1023368 1025420 1025425) (-654 "LIMITPS.spad" 1022261 1022274 1023348 1023353) (-653 "LIE.spad" 1020277 1020289 1021551 1021696) (-652 "LIECAT.spad" 1019753 1019763 1020203 1020272) (-651 "LIECAT.spad" 1019257 1019269 1019709 1019714) (-650 "LIB.spad" 1017008 1017016 1017454 1017469) (-649 "LGROBP.spad" 1014361 1014380 1016998 1017003) (-648 "LF.spad" 1013316 1013332 1014351 1014356) (-647 "LFCAT.spad" 1012375 1012383 1013306 1013311) (-646 "LEXTRIPK.spad" 1007878 1007893 1012365 1012370) (-645 "LEXP.spad" 1005881 1005908 1007858 1007873) (-644 "LETAST.spad" 1005580 1005588 1005871 1005876) (-643 "LEADCDET.spad" 1003978 1003995 1005570 1005575) (-642 "LAZM3PK.spad" 1002682 1002704 1003968 1003973) (-641 "LAUPOL.spad" 1001282 1001295 1002182 1002251) (-640 "LAPLACE.spad" 1000865 1000881 1001272 1001277) (-639 "LA.spad" 1000305 1000319 1000787 1000826) (-638 "LALG.spad" 1000081 1000091 1000285 1000300) (-637 "LALG.spad" 999865 999877 1000071 1000076) (-636 "KVTFROM.spad" 999600 999610 999855 999860) (-635 "KTVLOGIC.spad" 999112 999120 999590 999595) (-634 "KRCFROM.spad" 998850 998860 999102 999107) (-633 "KOVACIC.spad" 997573 997590 998840 998845) (-632 "KONVERT.spad" 997295 997305 997563 997568) (-631 "KOERCE.spad" 997032 997042 997285 997290) (-630 "KERNEL.spad" 995687 995697 996816 996821) (-629 "KERNEL2.spad" 995390 995402 995677 995682) (-628 "KDAGG.spad" 994499 994521 995370 995385) (-627 "KDAGG.spad" 993616 993640 994489 994494) (-626 "KAFILE.spad" 992470 992486 992705 992732) (-625 "JVMOP.spad" 992375 992383 992460 992465) (-624 "JVMMDACC.spad" 991413 991421 992365 992370) (-623 "JVMFDACC.spad" 990721 990729 991403 991408) (-622 "JVMCSTTG.spad" 989450 989458 990711 990716) (-621 "JVMCFACC.spad" 988880 988888 989440 989445) (-620 "JVMBCODE.spad" 988783 988791 988870 988875) (-619 "JORDAN.spad" 986612 986624 988073 988218) (-618 "JOINAST.spad" 986306 986314 986602 986607) (-617 "IXAGG.spad" 984439 984463 986296 986301) (-616 "IXAGG.spad" 982427 982453 984286 984291) (-615 "IVECTOR.spad" 981044 981059 981199 981226) (-614 "ITUPLE.spad" 980205 980215 981034 981039) (-613 "ITRIGMNP.spad" 979044 979063 980195 980200) (-612 "ITFUN3.spad" 978550 978564 979034 979039) (-611 "ITFUN2.spad" 978294 978306 978540 978545) (-610 "ITFORM.spad" 977649 977657 978284 978289) (-609 "ITAYLOR.spad" 975643 975658 977513 977610) (-608 "ISUPS.spad" 968080 968095 974617 974714) (-607 "ISUMP.spad" 967581 967597 968070 968075) (-606 "ISTRING.spad" 966508 966521 966589 966616) (-605 "ISAST.spad" 966227 966235 966498 966503) (-604 "IRURPK.spad" 964944 964963 966217 966222) (-603 "IRSN.spad" 962916 962924 964934 964939) (-602 "IRRF2F.spad" 961401 961411 962872 962877) (-601 "IRREDFFX.spad" 961002 961013 961391 961396) (-600 "IROOT.spad" 959341 959351 960992 960997) (-599 "IR.spad" 957142 957156 959196 959223) (-598 "IRFORM.spad" 956466 956474 957132 957137) (-597 "IR2.spad" 955494 955510 956456 956461) (-596 "IR2F.spad" 954700 954716 955484 955489) (-595 "IPRNTPK.spad" 954460 954468 954690 954695) (-594 "IPF.spad" 954025 954037 954265 954358) (-593 "IPADIC.spad" 953786 953812 953951 954020) (-592 "IP4ADDR.spad" 953343 953351 953776 953781) (-591 "IOMODE.spad" 952865 952873 953333 953338) (-590 "IOBFILE.spad" 952226 952234 952855 952860) (-589 "IOBCON.spad" 952091 952099 952216 952221) (-588 "INVLAPLA.spad" 951740 951756 952081 952086) (-587 "INTTR.spad" 945122 945139 951730 951735) (-586 "INTTOOLS.spad" 942877 942893 944696 944701) (-585 "INTSLPE.spad" 942197 942205 942867 942872) (-584 "INTRVL.spad" 941763 941773 942111 942192) (-583 "INTRF.spad" 940187 940201 941753 941758) (-582 "INTRET.spad" 939619 939629 940177 940182) (-581 "INTRAT.spad" 938346 938363 939609 939614) (-580 "INTPM.spad" 936731 936747 937989 937994) (-579 "INTPAF.spad" 934595 934613 936663 936668) (-578 "INTPACK.spad" 924969 924977 934585 934590) (-577 "INT.spad" 924417 924425 924823 924964) (-576 "INTHERTR.spad" 923691 923708 924407 924412) (-575 "INTHERAL.spad" 923361 923385 923681 923686) (-574 "INTHEORY.spad" 919800 919808 923351 923356) (-573 "INTG0.spad" 913533 913551 919732 919737) (-572 "INTFTBL.spad" 907562 907570 913523 913528) (-571 "INTFACT.spad" 906621 906631 907552 907557) (-570 "INTEF.spad" 905006 905022 906611 906616) (-569 "INTDOM.spad" 903629 903637 904932 905001) (-568 "INTDOM.spad" 902314 902324 903619 903624) (-567 "INTCAT.spad" 900573 900583 902228 902309) (-566 "INTBIT.spad" 900080 900088 900563 900568) (-565 "INTALG.spad" 899268 899295 900070 900075) (-564 "INTAF.spad" 898768 898784 899258 899263) (-563 "INTABL.spad" 896844 896875 897007 897034) (-562 "INT8.spad" 896724 896732 896834 896839) (-561 "INT64.spad" 896603 896611 896714 896719) (-560 "INT32.spad" 896482 896490 896593 896598) (-559 "INT16.spad" 896361 896369 896472 896477) (-558 "INS.spad" 893864 893872 896263 896356) (-557 "INS.spad" 891453 891463 893854 893859) (-556 "INPSIGN.spad" 890901 890914 891443 891448) (-555 "INPRODPF.spad" 889997 890016 890891 890896) (-554 "INPRODFF.spad" 889085 889109 889987 889992) (-553 "INNMFACT.spad" 888060 888077 889075 889080) (-552 "INMODGCD.spad" 887548 887578 888050 888055) (-551 "INFSP.spad" 885845 885867 887538 887543) (-550 "INFPROD0.spad" 884925 884944 885835 885840) (-549 "INFORM.spad" 882124 882132 884915 884920) (-548 "INFORM1.spad" 881749 881759 882114 882119) (-547 "INFINITY.spad" 881301 881309 881739 881744) (-546 "INETCLTS.spad" 881278 881286 881291 881296) (-545 "INEP.spad" 879816 879838 881268 881273) (-544 "INDE.spad" 879465 879482 879726 879731) (-543 "INCRMAPS.spad" 878886 878896 879455 879460) (-542 "INBFILE.spad" 877958 877966 878876 878881) (-541 "INBFF.spad" 873752 873763 877948 877953) (-540 "INBCON.spad" 872042 872050 873742 873747) (-539 "INBCON.spad" 870330 870340 872032 872037) (-538 "INAST.spad" 869991 869999 870320 870325) (-537 "IMPTAST.spad" 869699 869707 869981 869986) (-536 "IMATRIX.spad" 868527 868553 869039 869066) (-535 "IMATQF.spad" 867621 867665 868483 868488) (-534 "IMATLIN.spad" 866226 866250 867577 867582) (-533 "ILIST.spad" 864731 864746 865256 865283) (-532 "IIARRAY2.spad" 864002 864040 864221 864248) (-531 "IFF.spad" 863412 863428 863683 863776) (-530 "IFAST.spad" 863026 863034 863402 863407) (-529 "IFARRAY.spad" 860366 860381 862056 862083) (-528 "IFAMON.spad" 860228 860245 860322 860327) (-527 "IEVALAB.spad" 859633 859645 860218 860223) (-526 "IEVALAB.spad" 859036 859050 859623 859628) (-525 "IDPO.spad" 858771 858783 858948 858953) (-524 "IDPOAMS.spad" 858449 858461 858683 858688) (-523 "IDPOAM.spad" 858091 858103 858361 858366) (-522 "IDPC.spad" 856820 856832 858081 858086) (-521 "IDPAM.spad" 856487 856499 856732 856737) (-520 "IDPAG.spad" 856156 856168 856399 856404) (-519 "IDENT.spad" 855806 855814 856146 856151) (-518 "IDECOMP.spad" 853045 853063 855796 855801) (-517 "IDEAL.spad" 847994 848033 852980 852985) (-516 "ICDEN.spad" 847183 847199 847984 847989) (-515 "ICARD.spad" 846374 846382 847173 847178) (-514 "IBPTOOLS.spad" 844981 844998 846364 846369) (-513 "IBITS.spad" 844146 844159 844579 844606) (-512 "IBATOOL.spad" 841123 841142 844136 844141) (-511 "IBACHIN.spad" 839630 839645 841113 841118) (-510 "IARRAY2.spad" 838501 838527 839120 839147) (-509 "IARRAY1.spad" 837393 837408 837531 837558) (-508 "IAN.spad" 835616 835624 837209 837302) (-507 "IALGFACT.spad" 835219 835252 835606 835611) (-506 "HYPCAT.spad" 834643 834651 835209 835214) (-505 "HYPCAT.spad" 834065 834075 834633 834638) (-504 "HOSTNAME.spad" 833873 833881 834055 834060) (-503 "HOMOTOP.spad" 833616 833626 833863 833868) (-502 "HOAGG.spad" 830898 830908 833606 833611) (-501 "HOAGG.spad" 827919 827931 830629 830634) (-500 "HEXADEC.spad" 825924 825932 826289 826382) (-499 "HEUGCD.spad" 824959 824970 825914 825919) (-498 "HELLFDIV.spad" 824549 824573 824949 824954) (-497 "HEAP.spad" 823824 823834 824039 824066) (-496 "HEADAST.spad" 823357 823365 823814 823819) (-495 "HDP.spad" 811167 811183 811544 811643) (-494 "HDMP.spad" 808381 808396 808997 809124) (-493 "HB.spad" 806632 806640 808371 808376) (-492 "HASHTBL.spad" 804660 804691 804871 804898) (-491 "HASAST.spad" 804376 804384 804650 804655) (-490 "HACKPI.spad" 803867 803875 804278 804371) (-489 "GTSET.spad" 802770 802786 803477 803504) (-488 "GSTBL.spad" 800847 800882 801021 801036) (-487 "GSERIES.spad" 798160 798187 798979 799128) (-486 "GROUP.spad" 797433 797441 798140 798155) (-485 "GROUP.spad" 796714 796724 797423 797428) (-484 "GROEBSOL.spad" 795208 795229 796704 796709) (-483 "GRMOD.spad" 793779 793791 795198 795203) (-482 "GRMOD.spad" 792348 792362 793769 793774) (-481 "GRIMAGE.spad" 785237 785245 792338 792343) (-480 "GRDEF.spad" 783616 783624 785227 785232) (-479 "GRAY.spad" 782079 782087 783606 783611) (-478 "GRALG.spad" 781156 781168 782069 782074) (-477 "GRALG.spad" 780231 780245 781146 781151) (-476 "GPOLSET.spad" 779649 779672 779877 779904) (-475 "GOSPER.spad" 778918 778936 779639 779644) (-474 "GMODPOL.spad" 778066 778093 778886 778913) (-473 "GHENSEL.spad" 777149 777163 778056 778061) (-472 "GENUPS.spad" 773442 773455 777139 777144) (-471 "GENUFACT.spad" 773019 773029 773432 773437) (-470 "GENPGCD.spad" 772605 772622 773009 773014) (-469 "GENMFACT.spad" 772057 772076 772595 772600) (-468 "GENEEZ.spad" 770008 770021 772047 772052) (-467 "GDMP.spad" 767064 767081 767838 767965) (-466 "GCNAALG.spad" 760987 761014 766858 766925) (-465 "GCDDOM.spad" 760163 760171 760913 760982) (-464 "GCDDOM.spad" 759401 759411 760153 760158) (-463 "GB.spad" 756927 756965 759357 759362) (-462 "GBINTERN.spad" 752947 752985 756917 756922) (-461 "GBF.spad" 748714 748752 752937 752942) (-460 "GBEUCLID.spad" 746596 746634 748704 748709) (-459 "GAUSSFAC.spad" 745909 745917 746586 746591) (-458 "GALUTIL.spad" 744235 744245 745865 745870) (-457 "GALPOLYU.spad" 742689 742702 744225 744230) (-456 "GALFACTU.spad" 740862 740881 742679 742684) (-455 "GALFACT.spad" 731051 731062 740852 740857) (-454 "FVFUN.spad" 728074 728082 731041 731046) (-453 "FVC.spad" 727126 727134 728064 728069) (-452 "FUNDESC.spad" 726804 726812 727116 727121) (-451 "FUNCTION.spad" 726653 726665 726794 726799) (-450 "FT.spad" 724950 724958 726643 726648) (-449 "FTEM.spad" 724115 724123 724940 724945) (-448 "FSUPFACT.spad" 723015 723034 724051 724056) (-447 "FST.spad" 721101 721109 723005 723010) (-446 "FSRED.spad" 720581 720597 721091 721096) (-445 "FSPRMELT.spad" 719463 719479 720538 720543) (-444 "FSPECF.spad" 717554 717570 719453 719458) (-443 "FS.spad" 711822 711832 717329 717549) (-442 "FS.spad" 705868 705880 711377 711382) (-441 "FSINT.spad" 705528 705544 705858 705863) (-440 "FSERIES.spad" 704719 704731 705348 705447) (-439 "FSCINT.spad" 704036 704052 704709 704714) (-438 "FSAGG.spad" 703153 703163 703992 704031) (-437 "FSAGG.spad" 702232 702244 703073 703078) (-436 "FSAGG2.spad" 700975 700991 702222 702227) (-435 "FS2UPS.spad" 695466 695500 700965 700970) (-434 "FS2.spad" 695113 695129 695456 695461) (-433 "FS2EXPXP.spad" 694238 694261 695103 695108) (-432 "FRUTIL.spad" 693192 693202 694228 694233) (-431 "FR.spad" 686815 686825 692123 692192) (-430 "FRNAALG.spad" 682084 682094 686757 686810) (-429 "FRNAALG.spad" 677365 677377 682040 682045) (-428 "FRNAAF2.spad" 676821 676839 677355 677360) (-427 "FRMOD.spad" 676231 676261 676752 676757) (-426 "FRIDEAL.spad" 675456 675477 676211 676226) (-425 "FRIDEAL2.spad" 675060 675092 675446 675451) (-424 "FRETRCT.spad" 674571 674581 675050 675055) (-423 "FRETRCT.spad" 673948 673960 674429 674434) (-422 "FRAMALG.spad" 672296 672309 673904 673943) (-421 "FRAMALG.spad" 670676 670691 672286 672291) (-420 "FRAC.spad" 667682 667692 668085 668258) (-419 "FRAC2.spad" 667287 667299 667672 667677) (-418 "FR2.spad" 666623 666635 667277 667282) (-417 "FPS.spad" 663438 663446 666513 666618) (-416 "FPS.spad" 660281 660291 663358 663363) (-415 "FPC.spad" 659327 659335 660183 660276) (-414 "FPC.spad" 658459 658469 659317 659322) (-413 "FPATMAB.spad" 658221 658231 658449 658454) (-412 "FPARFRAC.spad" 657071 657088 658211 658216) (-411 "FORTRAN.spad" 655577 655620 657061 657066) (-410 "FORT.spad" 654526 654534 655567 655572) (-409 "FORTFN.spad" 651696 651704 654516 654521) (-408 "FORTCAT.spad" 651380 651388 651686 651691) (-407 "FORMULA.spad" 648854 648862 651370 651375) (-406 "FORMULA1.spad" 648333 648343 648844 648849) (-405 "FORDER.spad" 648024 648048 648323 648328) (-404 "FOP.spad" 647225 647233 648014 648019) (-403 "FNLA.spad" 646649 646671 647193 647220) (-402 "FNCAT.spad" 645244 645252 646639 646644) (-401 "FNAME.spad" 645136 645144 645234 645239) (-400 "FMTC.spad" 644934 644942 645062 645131) (-399 "FMONOID.spad" 644599 644609 644890 644895) (-398 "FMONCAT.spad" 641752 641762 644589 644594) (-397 "FM.spad" 641367 641379 641606 641633) (-396 "FMFUN.spad" 638397 638405 641357 641362) (-395 "FMC.spad" 637449 637457 638387 638392) (-394 "FMCAT.spad" 635117 635135 637417 637444) (-393 "FM1.spad" 634474 634486 635051 635078) (-392 "FLOATRP.spad" 632209 632223 634464 634469) (-391 "FLOAT.spad" 625523 625531 632075 632204) (-390 "FLOATCP.spad" 622954 622968 625513 625518) (-389 "FLINEXP.spad" 622676 622686 622944 622949) (-388 "FLINEXP.spad" 622342 622354 622612 622617) (-387 "FLASORT.spad" 621668 621680 622332 622337) (-386 "FLALG.spad" 619314 619333 621594 621663) (-385 "FLAGG.spad" 616356 616366 619294 619309) (-384 "FLAGG.spad" 613299 613311 616239 616244) (-383 "FLAGG2.spad" 612024 612040 613289 613294) (-382 "FINRALG.spad" 610085 610098 611980 612019) (-381 "FINRALG.spad" 608072 608087 609969 609974) (-380 "FINITE.spad" 607224 607232 608062 608067) (-379 "FINAALG.spad" 596345 596355 607166 607219) (-378 "FINAALG.spad" 585478 585490 596301 596306) (-377 "FILE.spad" 585061 585071 585468 585473) (-376 "FILECAT.spad" 583587 583604 585051 585056) (-375 "FIELD.spad" 582993 583001 583489 583582) (-374 "FIELD.spad" 582485 582495 582983 582988) (-373 "FGROUP.spad" 581132 581142 582465 582480) (-372 "FGLMICPK.spad" 579919 579934 581122 581127) (-371 "FFX.spad" 579294 579309 579635 579728) (-370 "FFSLPE.spad" 578797 578818 579284 579289) (-369 "FFPOLY.spad" 570059 570070 578787 578792) (-368 "FFPOLY2.spad" 569119 569136 570049 570054) (-367 "FFP.spad" 568516 568536 568835 568928) (-366 "FF.spad" 567964 567980 568197 568290) (-365 "FFNBX.spad" 566476 566496 567680 567773) (-364 "FFNBP.spad" 564989 565006 566192 566285) (-363 "FFNB.spad" 563454 563475 564670 564763) (-362 "FFINTBAS.spad" 560968 560987 563444 563449) (-361 "FFIELDC.spad" 558545 558553 560870 560963) (-360 "FFIELDC.spad" 556208 556218 558535 558540) (-359 "FFHOM.spad" 554956 554973 556198 556203) (-358 "FFF.spad" 552391 552402 554946 554951) (-357 "FFCGX.spad" 551238 551258 552107 552200) (-356 "FFCGP.spad" 550127 550147 550954 551047) (-355 "FFCG.spad" 548919 548940 549808 549901) (-354 "FFCAT.spad" 542092 542114 548758 548914) (-353 "FFCAT.spad" 535344 535368 542012 542017) (-352 "FFCAT2.spad" 535091 535131 535334 535339) (-351 "FEXPR.spad" 526808 526854 534847 534886) (-350 "FEVALAB.spad" 526516 526526 526798 526803) (-349 "FEVALAB.spad" 526009 526021 526293 526298) (-348 "FDIV.spad" 525451 525475 525999 526004) (-347 "FDIVCAT.spad" 523515 523539 525441 525446) (-346 "FDIVCAT.spad" 521577 521603 523505 523510) (-345 "FDIV2.spad" 521233 521273 521567 521572) (-344 "FCTRDATA.spad" 520241 520249 521223 521228) (-343 "FCPAK1.spad" 518808 518816 520231 520236) (-342 "FCOMP.spad" 518187 518197 518798 518803) (-341 "FC.spad" 508194 508202 518177 518182) (-340 "FAXF.spad" 501165 501179 508096 508189) (-339 "FAXF.spad" 494188 494204 501121 501126) (-338 "FARRAY.spad" 492185 492195 493218 493245) (-337 "FAMR.spad" 490321 490333 492083 492180) (-336 "FAMR.spad" 488441 488455 490205 490210) (-335 "FAMONOID.spad" 488109 488119 488395 488400) (-334 "FAMONC.spad" 486405 486417 488099 488104) (-333 "FAGROUP.spad" 486029 486039 486301 486328) (-332 "FACUTIL.spad" 484233 484250 486019 486024) (-331 "FACTFUNC.spad" 483427 483437 484223 484228) (-330 "EXPUPXS.spad" 480260 480283 481559 481708) (-329 "EXPRTUBE.spad" 477548 477556 480250 480255) (-328 "EXPRODE.spad" 474708 474724 477538 477543) (-327 "EXPR.spad" 469883 469893 470597 470892) (-326 "EXPR2UPS.spad" 466005 466018 469873 469878) (-325 "EXPR2.spad" 465710 465722 465995 466000) (-324 "EXPEXPAN.spad" 462511 462536 463143 463236) (-323 "EXIT.spad" 462182 462190 462501 462506) (-322 "EXITAST.spad" 461918 461926 462172 462177) (-321 "EVALCYC.spad" 461378 461392 461908 461913) (-320 "EVALAB.spad" 460950 460960 461368 461373) (-319 "EVALAB.spad" 460520 460532 460940 460945) (-318 "EUCDOM.spad" 458094 458102 460446 460515) (-317 "EUCDOM.spad" 455730 455740 458084 458089) (-316 "ESTOOLS.spad" 447576 447584 455720 455725) (-315 "ESTOOLS2.spad" 447179 447193 447566 447571) (-314 "ESTOOLS1.spad" 446864 446875 447169 447174) (-313 "ES.spad" 439679 439687 446854 446859) (-312 "ES.spad" 432400 432410 439577 439582) (-311 "ESCONT.spad" 429193 429201 432390 432395) (-310 "ESCONT1.spad" 428942 428954 429183 429188) (-309 "ES2.spad" 428447 428463 428932 428937) (-308 "ES1.spad" 428017 428033 428437 428442) (-307 "ERROR.spad" 425344 425352 428007 428012) (-306 "EQTBL.spad" 423374 423396 423583 423610) (-305 "EQ.spad" 418179 418189 420966 421078) (-304 "EQ2.spad" 417897 417909 418169 418174) (-303 "EP.spad" 414223 414233 417887 417892) (-302 "ENV.spad" 412901 412909 414213 414218) (-301 "ENTIRER.spad" 412569 412577 412845 412896) (-300 "EMR.spad" 411857 411898 412495 412564) (-299 "ELTAGG.spad" 410111 410130 411847 411852) (-298 "ELTAGG.spad" 408329 408350 410067 410072) (-297 "ELTAB.spad" 407804 407817 408319 408324) (-296 "ELFUTS.spad" 407191 407210 407794 407799) (-295 "ELEMFUN.spad" 406880 406888 407181 407186) (-294 "ELEMFUN.spad" 406567 406577 406870 406875) (-293 "ELAGG.spad" 404538 404548 406547 406562) (-292 "ELAGG.spad" 402446 402458 404457 404462) (-291 "ELABOR.spad" 401792 401800 402436 402441) (-290 "ELABEXPR.spad" 400724 400732 401782 401787) (-289 "EFUPXS.spad" 397500 397530 400680 400685) (-288 "EFULS.spad" 394336 394359 397456 397461) (-287 "EFSTRUC.spad" 392351 392367 394326 394331) (-286 "EF.spad" 387127 387143 392341 392346) (-285 "EAB.spad" 385403 385411 387117 387122) (-284 "E04UCFA.spad" 384939 384947 385393 385398) (-283 "E04NAFA.spad" 384516 384524 384929 384934) (-282 "E04MBFA.spad" 384096 384104 384506 384511) (-281 "E04JAFA.spad" 383632 383640 384086 384091) (-280 "E04GCFA.spad" 383168 383176 383622 383627) (-279 "E04FDFA.spad" 382704 382712 383158 383163) (-278 "E04DGFA.spad" 382240 382248 382694 382699) (-277 "E04AGNT.spad" 378090 378098 382230 382235) (-276 "DVARCAT.spad" 374980 374990 378080 378085) (-275 "DVARCAT.spad" 371868 371880 374970 374975) (-274 "DSMP.spad" 369242 369256 369547 369674) (-273 "DSEXT.spad" 368544 368554 369232 369237) (-272 "DSEXT.spad" 367753 367765 368443 368448) (-271 "DROPT.spad" 361712 361720 367743 367748) (-270 "DROPT1.spad" 361377 361387 361702 361707) (-269 "DROPT0.spad" 356234 356242 361367 361372) (-268 "DRAWPT.spad" 354407 354415 356224 356229) (-267 "DRAW.spad" 347283 347296 354397 354402) (-266 "DRAWHACK.spad" 346591 346601 347273 347278) (-265 "DRAWCX.spad" 344061 344069 346581 346586) (-264 "DRAWCURV.spad" 343608 343623 344051 344056) (-263 "DRAWCFUN.spad" 333140 333148 343598 343603) (-262 "DQAGG.spad" 331318 331328 333108 333135) (-261 "DPOLCAT.spad" 326667 326683 331186 331313) (-260 "DPOLCAT.spad" 322102 322120 326623 326628) (-259 "DPMO.spad" 313862 313878 314000 314213) (-258 "DPMM.spad" 305635 305653 305760 305973) (-257 "DOMTMPLT.spad" 305406 305414 305625 305630) (-256 "DOMCTOR.spad" 305161 305169 305396 305401) (-255 "DOMAIN.spad" 304248 304256 305151 305156) (-254 "DMP.spad" 301508 301523 302078 302205) (-253 "DMEXT.spad" 301375 301385 301476 301503) (-252 "DLP.spad" 300727 300737 301365 301370) (-251 "DLIST.spad" 299153 299163 299757 299784) (-250 "DLAGG.spad" 297570 297580 299143 299148) (-249 "DIVRING.spad" 297112 297120 297514 297565) (-248 "DIVRING.spad" 296698 296708 297102 297107) (-247 "DISPLAY.spad" 294888 294896 296688 296693) (-246 "DIRPROD.spad" 282435 282451 283075 283174) (-245 "DIRPROD2.spad" 281253 281271 282425 282430) (-244 "DIRPCAT.spad" 280446 280462 281149 281248) (-243 "DIRPCAT.spad" 279266 279284 279971 279976) (-242 "DIOSP.spad" 278091 278099 279256 279261) (-241 "DIOPS.spad" 277087 277097 278071 278086) (-240 "DIOPS.spad" 276057 276069 277043 277048) (-239 "DIFRING.spad" 275895 275903 276037 276052) (-238 "DIFFSPC.spad" 275474 275482 275885 275890) (-237 "DIFFSPC.spad" 275051 275061 275464 275469) (-236 "DIFFMOD.spad" 274540 274550 275019 275046) (-235 "DIFFDOM.spad" 273705 273716 274530 274535) (-234 "DIFFDOM.spad" 272868 272881 273695 273700) (-233 "DIFEXT.spad" 272687 272697 272848 272863) (-232 "DIAGG.spad" 272317 272327 272667 272682) (-231 "DIAGG.spad" 271955 271967 272307 272312) (-230 "DHMATRIX.spad" 270150 270160 271295 271322) (-229 "DFSFUN.spad" 263790 263798 270140 270145) (-228 "DFLOAT.spad" 260521 260529 263680 263785) (-227 "DFINTTLS.spad" 258752 258768 260511 260516) (-226 "DERHAM.spad" 256666 256698 258732 258747) (-225 "DEQUEUE.spad" 255873 255883 256156 256183) (-224 "DEGRED.spad" 255490 255504 255863 255868) (-223 "DEFINTRF.spad" 253027 253037 255480 255485) (-222 "DEFINTEF.spad" 251537 251553 253017 253022) (-221 "DEFAST.spad" 250905 250913 251527 251532) (-220 "DECIMAL.spad" 248914 248922 249275 249368) (-219 "DDFACT.spad" 246727 246744 248904 248909) (-218 "DBLRESP.spad" 246327 246351 246717 246722) (-217 "DBASIS.spad" 245953 245968 246317 246322) (-216 "DBASE.spad" 244617 244627 245943 245948) (-215 "DATAARY.spad" 244079 244092 244607 244612) (-214 "D03FAFA.spad" 243907 243915 244069 244074) (-213 "D03EEFA.spad" 243727 243735 243897 243902) (-212 "D03AGNT.spad" 242813 242821 243717 243722) (-211 "D02EJFA.spad" 242275 242283 242803 242808) (-210 "D02CJFA.spad" 241753 241761 242265 242270) (-209 "D02BHFA.spad" 241243 241251 241743 241748) (-208 "D02BBFA.spad" 240733 240741 241233 241238) (-207 "D02AGNT.spad" 235547 235555 240723 240728) (-206 "D01WGTS.spad" 233866 233874 235537 235542) (-205 "D01TRNS.spad" 233843 233851 233856 233861) (-204 "D01GBFA.spad" 233365 233373 233833 233838) (-203 "D01FCFA.spad" 232887 232895 233355 233360) (-202 "D01ASFA.spad" 232355 232363 232877 232882) (-201 "D01AQFA.spad" 231801 231809 232345 232350) (-200 "D01APFA.spad" 231225 231233 231791 231796) (-199 "D01ANFA.spad" 230719 230727 231215 231220) (-198 "D01AMFA.spad" 230229 230237 230709 230714) (-197 "D01ALFA.spad" 229769 229777 230219 230224) (-196 "D01AKFA.spad" 229295 229303 229759 229764) (-195 "D01AJFA.spad" 228818 228826 229285 229290) (-194 "D01AGNT.spad" 224885 224893 228808 228813) (-193 "CYCLOTOM.spad" 224391 224399 224875 224880) (-192 "CYCLES.spad" 221183 221191 224381 224386) (-191 "CVMP.spad" 220600 220610 221173 221178) (-190 "CTRIGMNP.spad" 219100 219116 220590 220595) (-189 "CTOR.spad" 218791 218799 219090 219095) (-188 "CTORKIND.spad" 218394 218402 218781 218786) (-187 "CTORCAT.spad" 217643 217651 218384 218389) (-186 "CTORCAT.spad" 216890 216900 217633 217638) (-185 "CTORCALL.spad" 216479 216489 216880 216885) (-184 "CSTTOOLS.spad" 215724 215737 216469 216474) (-183 "CRFP.spad" 209448 209461 215714 215719) (-182 "CRCEAST.spad" 209168 209176 209438 209443) (-181 "CRAPACK.spad" 208219 208229 209158 209163) (-180 "CPMATCH.spad" 207723 207738 208144 208149) (-179 "CPIMA.spad" 207428 207447 207713 207718) (-178 "COORDSYS.spad" 202437 202447 207418 207423) (-177 "CONTOUR.spad" 201848 201856 202427 202432) (-176 "CONTFRAC.spad" 197598 197608 201750 201843) (-175 "CONDUIT.spad" 197356 197364 197588 197593) (-174 "COMRING.spad" 197030 197038 197294 197351) (-173 "COMPPROP.spad" 196548 196556 197020 197025) (-172 "COMPLPAT.spad" 196315 196330 196538 196543) (-171 "COMPLEX.spad" 191692 191702 191936 192197) (-170 "COMPLEX2.spad" 191407 191419 191682 191687) (-169 "COMPILER.spad" 190956 190964 191397 191402) (-168 "COMPFACT.spad" 190558 190572 190946 190951) (-167 "COMPCAT.spad" 188630 188640 190292 190553) (-166 "COMPCAT.spad" 186430 186442 188094 188099) (-165 "COMMUPC.spad" 186178 186196 186420 186425) (-164 "COMMONOP.spad" 185711 185719 186168 186173) (-163 "COMM.spad" 185522 185530 185701 185706) (-162 "COMMAAST.spad" 185285 185293 185512 185517) (-161 "COMBOPC.spad" 184200 184208 185275 185280) (-160 "COMBINAT.spad" 182967 182977 184190 184195) (-159 "COMBF.spad" 180349 180365 182957 182962) (-158 "COLOR.spad" 179186 179194 180339 180344) (-157 "COLONAST.spad" 178852 178860 179176 179181) (-156 "CMPLXRT.spad" 178563 178580 178842 178847) (-155 "CLLCTAST.spad" 178225 178233 178553 178558) (-154 "CLIP.spad" 174333 174341 178215 178220) (-153 "CLIF.spad" 172988 173004 174289 174328) (-152 "CLAGG.spad" 169493 169503 172978 172983) (-151 "CLAGG.spad" 165869 165881 169356 169361) (-150 "CINTSLPE.spad" 165200 165213 165859 165864) (-149 "CHVAR.spad" 163338 163360 165190 165195) (-148 "CHARZ.spad" 163253 163261 163318 163333) (-147 "CHARPOL.spad" 162763 162773 163243 163248) (-146 "CHARNZ.spad" 162516 162524 162743 162758) (-145 "CHAR.spad" 160390 160398 162506 162511) (-144 "CFCAT.spad" 159718 159726 160380 160385) (-143 "CDEN.spad" 158914 158928 159708 159713) (-142 "CCLASS.spad" 157025 157033 158287 158326) (-141 "CATEGORY.spad" 156067 156075 157015 157020) (-140 "CATCTOR.spad" 155958 155966 156057 156062) (-139 "CATAST.spad" 155576 155584 155948 155953) (-138 "CASEAST.spad" 155290 155298 155566 155571) (-137 "CARTEN.spad" 150657 150681 155280 155285) (-136 "CARTEN2.spad" 150047 150074 150647 150652) (-135 "CARD.spad" 147342 147350 150021 150042) (-134 "CAPSLAST.spad" 147116 147124 147332 147337) (-133 "CACHSET.spad" 146740 146748 147106 147111) (-132 "CABMON.spad" 146295 146303 146730 146735) (-131 "BYTEORD.spad" 145970 145978 146285 146290) (-130 "BYTE.spad" 145397 145405 145960 145965) (-129 "BYTEBUF.spad" 143095 143103 144405 144432) (-128 "BTREE.spad" 142051 142061 142585 142612) (-127 "BTOURN.spad" 140939 140949 141541 141568) (-126 "BTCAT.spad" 140331 140341 140907 140934) (-125 "BTCAT.spad" 139743 139755 140321 140326) (-124 "BTAGG.spad" 139209 139217 139711 139738) (-123 "BTAGG.spad" 138695 138705 139199 139204) (-122 "BSTREE.spad" 137319 137329 138185 138212) (-121 "BRILL.spad" 135516 135527 137309 137314) (-120 "BRAGG.spad" 134456 134466 135506 135511) (-119 "BRAGG.spad" 133360 133372 134412 134417) (-118 "BPADICRT.spad" 131234 131246 131489 131582) (-117 "BPADIC.spad" 130898 130910 131160 131229) (-116 "BOUNDZRO.spad" 130554 130571 130888 130893) (-115 "BOP.spad" 125736 125744 130544 130549) (-114 "BOP1.spad" 123202 123212 125726 125731) (-113 "BOOLE.spad" 122852 122860 123192 123197) (-112 "BOOLEAN.spad" 122290 122298 122842 122847) (-111 "BMODULE.spad" 122002 122014 122258 122285) (-110 "BITS.spad" 121385 121393 121600 121627) (-109 "BINDING.spad" 120798 120806 121375 121380) (-108 "BINARY.spad" 118812 118820 119168 119261) (-107 "BGAGG.spad" 118017 118027 118792 118807) (-106 "BGAGG.spad" 117230 117242 118007 118012) (-105 "BFUNCT.spad" 116794 116802 117210 117225) (-104 "BEZOUT.spad" 115934 115961 116744 116749) (-103 "BBTREE.spad" 112662 112672 115424 115451) (-102 "BASTYPE.spad" 112158 112166 112652 112657) (-101 "BASTYPE.spad" 111652 111662 112148 112153) (-100 "BALFACT.spad" 111111 111124 111642 111647) (-99 "AUTOMOR.spad" 110562 110571 111091 111106) (-98 "ATTREG.spad" 107285 107292 110314 110557) (-97 "ATTRBUT.spad" 103308 103315 107265 107280) (-96 "ATTRAST.spad" 103025 103032 103298 103303) (-95 "ATRIG.spad" 102495 102502 103015 103020) (-94 "ATRIG.spad" 101963 101972 102485 102490) (-93 "ASTCAT.spad" 101867 101874 101953 101958) (-92 "ASTCAT.spad" 101769 101778 101857 101862) (-91 "ASTACK.spad" 100991 101000 101259 101286) (-90 "ASSOCEQ.spad" 99817 99828 100947 100952) (-89 "ASP9.spad" 98898 98911 99807 99812) (-88 "ASP8.spad" 97941 97954 98888 98893) (-87 "ASP80.spad" 97263 97276 97931 97936) (-86 "ASP7.spad" 96423 96436 97253 97258) (-85 "ASP78.spad" 95874 95887 96413 96418) (-84 "ASP77.spad" 95243 95256 95864 95869) (-83 "ASP74.spad" 94335 94348 95233 95238) (-82 "ASP73.spad" 93606 93619 94325 94330) (-81 "ASP6.spad" 92473 92486 93596 93601) (-80 "ASP55.spad" 90982 90995 92463 92468) (-79 "ASP50.spad" 88799 88812 90972 90977) (-78 "ASP4.spad" 88094 88107 88789 88794) (-77 "ASP49.spad" 87093 87106 88084 88089) (-76 "ASP42.spad" 85500 85539 87083 87088) (-75 "ASP41.spad" 84079 84118 85490 85495) (-74 "ASP35.spad" 83067 83080 84069 84074) (-73 "ASP34.spad" 82368 82381 83057 83062) (-72 "ASP33.spad" 81928 81941 82358 82363) (-71 "ASP31.spad" 81068 81081 81918 81923) (-70 "ASP30.spad" 79960 79973 81058 81063) (-69 "ASP29.spad" 79426 79439 79950 79955) (-68 "ASP28.spad" 70699 70712 79416 79421) (-67 "ASP27.spad" 69596 69609 70689 70694) (-66 "ASP24.spad" 68683 68696 69586 69591) (-65 "ASP20.spad" 68147 68160 68673 68678) (-64 "ASP1.spad" 67528 67541 68137 68142) (-63 "ASP19.spad" 62214 62227 67518 67523) (-62 "ASP12.spad" 61628 61641 62204 62209) (-61 "ASP10.spad" 60899 60912 61618 61623) (-60 "ARRAY2.spad" 60142 60151 60389 60416) (-59 "ARRAY1.spad" 58826 58835 59172 59199) (-58 "ARRAY12.spad" 57539 57550 58816 58821) (-57 "ARR2CAT.spad" 53313 53334 57507 57534) (-56 "ARR2CAT.spad" 49107 49130 53303 53308) (-55 "ARITY.spad" 48479 48486 49097 49102) (-54 "APPRULE.spad" 47739 47761 48469 48474) (-53 "APPLYORE.spad" 47358 47371 47729 47734) (-52 "ANY.spad" 46217 46224 47348 47353) (-51 "ANY1.spad" 45288 45297 46207 46212) (-50 "ANTISYM.spad" 43733 43749 45268 45283) (-49 "ANON.spad" 43426 43433 43723 43728) (-48 "AN.spad" 41735 41742 43242 43335) (-47 "AMR.spad" 39920 39931 41633 41730) (-46 "AMR.spad" 37942 37955 39657 39662) (-45 "ALIST.spad" 34842 34863 35192 35219) (-44 "ALGSC.spad" 33977 34003 34714 34767) (-43 "ALGPKG.spad" 29760 29771 33933 33938) (-42 "ALGMFACT.spad" 28953 28967 29750 29755) (-41 "ALGMANIP.spad" 26427 26442 28786 28791) (-40 "ALGFF.spad" 24068 24095 24285 24441) (-39 "ALGFACT.spad" 23195 23205 24058 24063) (-38 "ALGEBRA.spad" 23028 23037 23151 23190) (-37 "ALGEBRA.spad" 22893 22904 23018 23023) (-36 "ALAGG.spad" 22405 22426 22861 22888) (-35 "AHYP.spad" 21786 21793 22395 22400) (-34 "AGG.spad" 20103 20110 21776 21781) (-33 "AGG.spad" 18384 18393 20059 20064) (-32 "AF.spad" 16815 16830 18319 18324) (-31 "ADDAST.spad" 16493 16500 16805 16810) (-30 "ACPLOT.spad" 15084 15091 16483 16488) (-29 "ACFS.spad" 12893 12902 14986 15079) (-28 "ACFS.spad" 10788 10799 12883 12888) (-27 "ACF.spad" 7470 7477 10690 10783) (-26 "ACF.spad" 4238 4247 7460 7465) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file -- cgit v1.2.3