diff options
Diffstat (limited to 'src/share/algebra')
-rw-r--r-- | src/share/algebra/browse.daase | 176 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 2 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 2 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 8 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 2 |
5 files changed, 95 insertions, 95 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 7b9391eb..5f119975 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(1970276 . 3577897419) +(1969262 . 3577905059) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Maybe| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|))) |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \\spad{nothing} if \\spad{u} has no key \\spad{k}."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -110,8 +110,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-3997 . T) (-3998 . T)) -((OR (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|)))))) +((-3998 . T)) +((OR (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757)))) (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|)))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|)))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL @@ -158,11 +158,11 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -170,7 +170,7 @@ NIL NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-61 R L) ((|constructor| (NIL "\\spadtype{AssociatedEquations} provides functions to compute the associated equations needed for factoring operators")) (|associatedEquations| (((|Record| (|:| |minor| (|List| (|PositiveInteger|))) (|:| |eq| |#2|) (|:| |minors| (|List| (|List| (|PositiveInteger|)))) (|:| |ops| (|List| |#2|))) |#2| (|PositiveInteger|)) "\\spad{associatedEquations(op, m)} returns \\spad{[w, eq, lw, lop]} such that \\spad{eq(w) = 0} where \\spad{w} is the given minor,{} and \\spad{lw_i = lop_i(w)} for all the other minors.")) (|uncouplingMatrices| (((|Vector| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{uncouplingMatrices(M)} returns \\spad{[A_1,...,A_n]} such that if \\spad{y = [y_1,...,y_n]} is a solution of \\spad{y' = M y},{} then \\spad{[\\$y_j',y_j'',...,y_j^{(n)}\\$] = \\$A_j y\\$} for all \\spad{j}'s.")) (|associatedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| (|List| (|PositiveInteger|))))) |#2| (|PositiveInteger|)) "\\spad{associatedSystem(op, m)} returns \\spad{[M,w]} such that the \\spad{m}-th associated equation system to \\spad{L} is \\spad{w' = M w}."))) @@ -178,7 +178,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-312)))) (-62 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-63 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) @@ -222,7 +222,7 @@ NIL NIL (-73 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-74 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) @@ -254,7 +254,7 @@ NIL NIL (-81) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-1014))) (|HasCategory| $ (QUOTE (-318 (-85)))) (-12 (|HasCategory| $ (QUOTE (-318 (-85)))) (|HasCategory| (-85) (QUOTE (-72))))) (-82 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) @@ -306,7 +306,7 @@ NIL NIL (-94 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-95 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) @@ -314,7 +314,7 @@ NIL NIL (-96) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-97 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}."))) @@ -322,15 +322,15 @@ NIL NIL (-98 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-99 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-100 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-101) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) @@ -338,7 +338,7 @@ NIL NIL (-102) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-757)))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014))))) (|HasCategory| (-101) (QUOTE (-553 (-773)))) (|HasCategory| (-101) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-101) (QUOTE (-757))) (OR (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-101) (QUOTE (-72))) (|HasCategory| (-101) (QUOTE (-1014))) (-12 (|HasCategory| (-101) (QUOTE (-260 (-101)))) (|HasCategory| (-101) (QUOTE (-1014)))) (-12 (|HasCategory| $ (QUOTE (-318 (-101)))) (|HasCategory| (-101) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-101))))) (-103) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) @@ -386,7 +386,7 @@ NIL NIL (-114) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-3997 . T) (-3987 . T) (-3998 . T)) +((-3987 . T) (-3998 . T)) ((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-320)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (|HasCategory| (-117) (QUOTE (-320))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-1014))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| $ (QUOTE (-318 (-117)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72))))) (-115 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) @@ -634,7 +634,7 @@ NIL NIL (-176 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-177 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) @@ -654,7 +654,7 @@ NIL NIL (-181 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3999 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72)))) (-182 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) @@ -714,11 +714,11 @@ NIL ((|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasAttribute| |#3| (QUOTE -3994)) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (-196 -2623 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim."))) -((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)) (-3997 . T)) +((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994))) NIL (-197 -2623 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)) (-3997 . T)) +((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994))) ((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|))))) (-198 -2623 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) @@ -742,7 +742,7 @@ NIL NIL (-203 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))))) (-204 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) @@ -770,11 +770,11 @@ NIL NIL (-210 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-3994 OR (-2564 (|has| |#4| (-962)) (|has| |#4| (-190))) (|has| |#4| (-6 -3994)) (-2564 (|has| |#4| (-962)) (|has| |#4| (-810 (-1091))))) (-3991 |has| |#4| (-962)) (-3992 |has| |#4| (-962)) (-3997 . T)) +((-3994 OR (-2564 (|has| |#4| (-962)) (|has| |#4| (-190))) (|has| |#4| (-6 -3994)) (-2564 (|has| |#4| (-962)) (|has| |#4| (-810 (-1091))))) (-3991 |has| |#4| (-962)) (-3992 |has| |#4| (-962))) ((OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-312))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-312)))) (|HasCategory| |#4| (QUOTE (-962))) (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-718))) (OR (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-757)))) (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-320))) (OR (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-190))) (OR (|HasCategory| |#4| (QUOTE (-190))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-810 (-1091))))) (|HasCategory| |#4| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-718))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-757))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (-12 (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-664))) (|HasCategory| |#4| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-962))))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#4| (QUOTE (-581 (-485)))) (|HasCategory| |#4| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-951 (-485)))) (|HasCategory| |#4| (QUOTE (-1014)))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#4| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#4| (QUOTE (-810 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasAttribute| |#4| (QUOTE -3994)) (-12 (|HasCategory| |#4| (QUOTE (-190))) (|HasCategory| |#4| (QUOTE (-962))))) (-12 (|HasCategory| |#4| (QUOTE (-189))) (|HasCategory| |#4| (QUOTE (-962)))) (-12 (|HasCategory| |#4| (QUOTE (-812 (-1091)))) (|HasCategory| |#4| (QUOTE (-962)))) (|HasCategory| |#4| (QUOTE (-146))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-104))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|))))) (-211 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-3994 OR (-2564 (|has| |#3| (-962)) (|has| |#3| (-190))) (|has| |#3| (-6 -3994)) (-2564 (|has| |#3| (-962)) (|has| |#3| (-810 (-1091))))) (-3991 |has| |#3| (-962)) (-3992 |has| |#3| (-962)) (-3997 . T)) +((-3994 OR (-2564 (|has| |#3| (-962)) (|has| |#3| (-190))) (|has| |#3| (-6 -3994)) (-2564 (|has| |#3| (-962)) (|has| |#3| (-810 (-1091))))) (-3991 |has| |#3| (-962)) (-3992 |has| |#3| (-962))) ((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasAttribute| |#3| (QUOTE -3994)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962))))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|))))) (-212 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) @@ -786,7 +786,7 @@ NIL NIL (-214 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) NIL (-215 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -934,7 +934,7 @@ NIL NIL (-251 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|))))) (-252) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) @@ -1042,7 +1042,7 @@ NIL NIL (-278 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-279 S -3094) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) @@ -1202,7 +1202,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-72)))) (-318 S) ((|constructor| (NIL "A finite aggregate is a homogeneous aggregate with a finite number of elements.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\spad{reduce(f,u,x)},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\spad{reduce(f,u,x)} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the starting value,{} usually the identity operation of \\spad{f}. Same as \\spad{reduce(f,u)} if \\spad{u} has 2 or more elements. Returns \\spad{f(x,y)} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\spad{reduce(+,u,0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\spad{[x,y,...,z]} then \\spad{reduce(f,u)} returns \\spad{f(..f(f(x,y),...),z)}. Note: if \\spad{u} has one element \\spad{x},{} \\spad{reduce(f,u)} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{members([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} \\indented{1}{in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} holds. For collections,{}} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) holds for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\spad{p(x)} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#u} returns the number of items in \\spad{u}."))) -((-3997 . T)) +NIL NIL (-319 S) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1226,7 +1226,7 @@ NIL ((|HasAttribute| |#1| (QUOTE -3998)) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72)))) (-324 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-3997 . T)) +NIL NIL (-325 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1406,7 +1406,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320)))) (-369 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-3997 . T) (-3987 . T) (-3998 . T)) +((-3987 . T) (-3998 . T)) NIL (-370 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) @@ -1542,7 +1542,7 @@ NIL NIL (-403 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (-404 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) (|One| (($) "1 is the identity for \\spad{product}."))) @@ -1590,11 +1590,11 @@ NIL ((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-146))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (-12 (|HasCategory| |#1| (QUOTE (-810 (-1091)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485))) (|devaluate| |#1|)))) (|HasCategory| (-350 (-485)) (QUOTE (-1026))) (|HasCategory| |#1| (QUOTE (-312))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (OR (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-496)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (|HasSignature| |#1| (|%list| (QUOTE -3948) (|%list| (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -350) (QUOTE (-485)))))) (OR (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-29 (-485)))) (|HasCategory| |#1| (QUOTE (-872))) (|HasCategory| |#1| (QUOTE (-1116)))) (-12 (|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasSignature| |#1| (|%list| (QUOTE -3814) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (|%list| (QUOTE -3083) (|%list| (|%list| (QUOTE -584) (QUOTE (-1091))) (|devaluate| |#1|))))))) (-415 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|))))) (-416 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (-417) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) @@ -1606,7 +1606,7 @@ NIL NIL (-419 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|))))) (-420) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) @@ -1618,7 +1618,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-822))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-822)))) (OR (|HasCategory| |#2| (QUOTE (-392))) (|HasCategory| |#2| (QUOTE (-822)))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-146))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-496)))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-330)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-330))))) (-12 (|HasCategory| |#2| (QUOTE (-797 (-485)))) (|HasCategory| (-774 |#1|) (QUOTE (-797 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-330))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-330)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-801 (-485))))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-801 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| (-774 |#1|) (QUOTE (-554 (-474))))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-118))) (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (|HasCategory| |#2| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-312))) (|HasAttribute| |#2| (QUOTE -3995)) (|HasCategory| |#2| (QUOTE (-392))) (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-822))) (|HasCategory| $ (QUOTE (-118)))) (|HasCategory| |#2| (QUOTE (-118))))) (-422 -2623 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)) (-3997 . T)) +((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994))) ((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|))))) (-423) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) @@ -1626,7 +1626,7 @@ NIL NIL (-424 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-425 -3094 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) @@ -1674,11 +1674,11 @@ NIL ((|HasCategory| $ (QUOTE (-962))) (|HasCategory| $ (QUOTE (-951 (-485))))) (-436 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-437 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-438 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) @@ -1690,7 +1690,7 @@ NIL NIL (-440 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-85) (QUOTE (-260 (-85)))) (|HasCategory| (-85) (QUOTE (-1014)))) (|HasCategory| (-85) (QUOTE (-554 (-474)))) (|HasCategory| (-85) (QUOTE (-757))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-85) (QUOTE (-72))) (|HasCategory| (-85) (QUOTE (-553 (-773)))) (|HasCategory| (-85) (QUOTE (-1014))) (|HasCategory| $ (QUOTE (-318 (-85)))) (-12 (|HasCategory| $ (QUOTE (-318 (-85)))) (|HasCategory| (-85) (QUOTE (-72))))) (-441 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) @@ -1762,7 +1762,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-717)))) (-458 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-459) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) @@ -1890,7 +1890,7 @@ NIL NIL (-490 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|))))) (-491 R -3094) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) @@ -2122,7 +2122,7 @@ NIL NIL (-548 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))))) (-549 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) @@ -2218,7 +2218,7 @@ NIL NIL (-572) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-260 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-51) (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-554 (-474)))) (-12 (|HasCategory| (-51) (QUOTE (-260 (-51)))) (|HasCategory| (-51) (QUOTE (-1014)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| (-51) (QUOTE (-72))) (OR (|HasCategory| (-51) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| (-51) (QUOTE (-1014))) (|HasCategory| (-51) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-1014))) (-12 (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| (-51))) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-2 (|:| -3862 (-1074)) (|:| |entry| (-51)))))) (-12 (|HasCategory| $ (QUOTE (-318 (-51)))) (|HasCategory| (-51) (QUOTE (-72))))) (-573 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) @@ -2266,7 +2266,7 @@ NIL NIL (-584 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))))) (-585 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) @@ -2290,7 +2290,7 @@ NIL NIL (-590 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-591 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) @@ -2366,7 +2366,7 @@ NIL NIL (-609 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-610 -3094 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) @@ -2382,7 +2382,7 @@ NIL NIL (-613 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-3994 . T) (-3997 . T) (-3991 . T) (-3992 . T)) +((-3994 . T) (-3991 . T) (-3992 . T)) ((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3999 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496))) (OR (|HasAttribute| |#2| (QUOTE (-3999 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) (-614) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) @@ -2442,7 +2442,7 @@ NIL ((|HasAttribute| |#2| (QUOTE (-3999 "*"))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-496)))) (-628 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-629 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) @@ -2454,7 +2454,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496)))) (-631 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-258))) (|HasCategory| |#1| (QUOTE (-496))) (|HasAttribute| |#1| (QUOTE (-3999 "*"))) (|HasCategory| |#1| (QUOTE (-312))) (|HasCategory| |#1| (QUOTE (-72))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (-632 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) @@ -2634,7 +2634,7 @@ NIL ((-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-320)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-118))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#2| (QUOTE (-757)))) (-676 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|unique| (((|List| |#1|) $) "\\spad{unique ms} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{members}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-3997 . T) (-3987 . T) (-3998 . T)) +((-3987 . T) (-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-677 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) @@ -2762,7 +2762,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-38 (-350 (-485)))))) (-708 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-709 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) @@ -2874,7 +2874,7 @@ NIL NIL (-736 -2623 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994)) (-3997 . T)) +((-3991 |has| |#2| (-962)) (-3992 |has| |#2| (-962)) (-3994 |has| |#2| (-6 -3994))) ((OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-312)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (OR (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757)))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-320))) (OR (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-190))) (OR (|HasCategory| |#2| (QUOTE (-190))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-718))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-312))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-320))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-962))))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-189))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-485)))) (|HasCategory| |#2| (QUOTE (-1014)))) (-12 (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-1014)))) (|HasAttribute| |#2| (QUOTE -3994)) (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-962)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-104))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|))))) (-737 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) @@ -2902,7 +2902,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-190)))) (-743 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-3997 . T) (-3987 . T) (-3998 . T)) +((-3987 . T) (-3998 . T)) NIL (-744 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) @@ -3350,7 +3350,7 @@ NIL NIL (-855 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-856 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) @@ -3410,7 +3410,7 @@ NIL NIL (-870 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-871 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) @@ -3458,7 +3458,7 @@ NIL NIL (-882 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) NIL (-883 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) @@ -3490,7 +3490,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-496)))) (-890 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-3997 . T)) +NIL NIL (-891 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) @@ -3506,7 +3506,7 @@ NIL NIL (-894 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-895 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) @@ -3566,7 +3566,7 @@ NIL NIL (-909 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) NIL (-910 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) @@ -3586,7 +3586,7 @@ NIL NIL (-914 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-915 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) @@ -3694,7 +3694,7 @@ NIL NIL (-941 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (-942) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) @@ -3766,7 +3766,7 @@ NIL NIL (-959 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (|HasCategory| (-704 |#1| (-774 |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|)))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-554 (-474)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| (-774 |#2|) (QUOTE (-320))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|))))) (|HasCategory| (-704 |#1| (-774 |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -704) (|devaluate| |#1|) (|%list| (QUOTE -774) (|devaluate| |#2|)))))) (-960) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) @@ -3794,11 +3794,11 @@ NIL ((|HasCategory| |#4| (QUOTE (-258))) (|HasCategory| |#4| (QUOTE (-312))) (|HasCategory| |#4| (QUOTE (-496))) (|HasCategory| |#4| (QUOTE (-146)))) (-966 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix."))) -((-3997 . T) (-3992 . T) (-3991 . T)) +((-3992 . T) (-3991 . T)) NIL (-967 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-3997 . T) (-3992 . T) (-3991 . T)) +((-3992 . T) (-3991 . T)) ((|HasCategory| |#3| (QUOTE (-146))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-258))) (|HasCategory| |#3| (QUOTE (-496))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-553 (-773))))) (-968 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) @@ -3866,7 +3866,7 @@ NIL NIL (-984 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-985 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) @@ -3970,7 +3970,7 @@ NIL NIL (-1010 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the members function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-3997 . T) (-3987 . T) (-3998 . T)) +((-3987 . T) (-3998 . T)) ((OR (-12 (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (|HasCategory| |#1| (QUOTE (-320))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-1011 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) @@ -4014,7 +4014,7 @@ NIL NIL (-1021 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-1022) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) @@ -4038,7 +4038,7 @@ NIL NIL (-1027 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-3991 |has| |#3| (-962)) (-3992 |has| |#3| (-962)) (-3994 |has| |#3| (-6 -3994)) (-3997 . T)) +((-3991 |has| |#3| (-962)) (-3992 |has| |#3| (-962)) (-3994 |has| |#3| (-6 -3994))) ((OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-553 (-773)))) (|HasCategory| |#3| (QUOTE (-312))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-312)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (OR (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757)))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-320))) (OR (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-581 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962))) (|HasCategory| |#3| (QUOTE (-1014)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-190))) (OR (|HasCategory| |#3| (QUOTE (-190))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-810 (-1091))))) (|HasCategory| |#3| (QUOTE (-1014))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-350 (-485)))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014))))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-718))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-757))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-312))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-664))) (|HasCategory| |#3| (QUOTE (-951 (-485))))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-962))))) (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| (-485) (QUOTE (-757))) (-12 (|HasCategory| |#3| (QUOTE (-581 (-485)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-189))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-812 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (OR (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-485)))) (|HasCategory| |#3| (QUOTE (-1014)))) (-12 (|HasCategory| |#3| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#3| (QUOTE (-1014)))) (|HasAttribute| |#3| (QUOTE -3994)) (-12 (|HasCategory| |#3| (QUOTE (-190))) (|HasCategory| |#3| (QUOTE (-962)))) (-12 (|HasCategory| |#3| (QUOTE (-810 (-1091)))) (|HasCategory| |#3| (QUOTE (-962)))) (|HasCategory| |#3| (QUOTE (-146))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-104))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1014))) (|HasCategory| |#3| (|%list| (QUOTE -260) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#3|))))) (-1028 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) @@ -4070,7 +4070,7 @@ NIL NIL (-1035 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) NIL (-1036 S) ((|constructor| (NIL "This category describes the class of homogeneous aggregates that support in place mutation that do not change their general shapes.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\spad{f(x)}"))) @@ -4082,7 +4082,7 @@ NIL ((|HasCategory| |#3| (QUOTE (-312))) (|HasAttribute| |#3| (QUOTE (-3999 "*"))) (|HasCategory| |#3| (QUOTE (-146)))) (-1038 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-3997 . T) (-3991 . T) (-3992 . T) (-3994 . T)) +((-3991 . T) (-3992 . T) (-3994 . T)) NIL (-1039 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) @@ -4098,7 +4098,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-38 (-350 (-485))))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-120))) (|HasCategory| |#1| (QUOTE (-118))) (OR (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-496)))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#1| (QUOTE (-312)))) (-1042 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-1043 UP -3094) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) @@ -4154,11 +4154,11 @@ NIL NIL (-1056 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-1055 |#1| |#2|) (|%list| (QUOTE -260) (|%list| (QUOTE -1055) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014))) (OR (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-1014)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-553 (-773)))) (|HasCategory| (-1055 |#1| |#2|) (QUOTE (-72)))) (-1057 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-3994 . T) (-3986 |has| |#2| (-6 (-3999 "*"))) (-3997 . T) (-3991 . T) (-3992 . T)) +((-3994 . T) (-3986 |has| |#2| (-6 (-3999 "*"))) (-3991 . T) (-3992 . T)) ((|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (QUOTE (-812 (-1091)))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-189))) (|HasAttribute| |#2| (QUOTE (-3999 #1="*"))) (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (QUOTE (-951 (-350 (-485))))) (|HasCategory| |#2| (QUOTE (-951 (-485)))) (OR (-12 (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-581 (-485)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-810 (-1091)))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-554 (-474)))) (|HasCategory| |#2| (QUOTE (-258))) (|HasCategory| |#2| (QUOTE (-496))) (|HasCategory| |#2| (QUOTE (-312))) (OR (|HasAttribute| |#2| (QUOTE (-3999 #1#))) (|HasCategory| |#2| (QUOTE (-190))) (|HasCategory| |#2| (QUOTE (-810 (-1091))))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-146)))) (-1058 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) @@ -4166,7 +4166,7 @@ NIL NIL (-1059) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-1060 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) @@ -4174,7 +4174,7 @@ NIL NIL (-1061 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (-1062) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) @@ -4182,7 +4182,7 @@ NIL NIL (-1063 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-1064 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) @@ -4194,7 +4194,7 @@ NIL NIL (-1066 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|))))) (-1067) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) @@ -4226,11 +4226,11 @@ NIL NIL (-1074) ((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-757)))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014))))) (|HasCategory| (-117) (QUOTE (-553 (-773)))) (|HasCategory| (-117) (QUOTE (-554 (-474)))) (OR (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-117) (QUOTE (-757))) (OR (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| (-117) (QUOTE (-72))) (|HasCategory| (-117) (QUOTE (-1014))) (-12 (|HasCategory| (-117) (QUOTE (-260 (-117)))) (|HasCategory| (-117) (QUOTE (-1014)))) (-12 (|HasCategory| $ (QUOTE (-318 (-117)))) (|HasCategory| (-117) (QUOTE (-72)))) (|HasCategory| $ (QUOTE (-318 (-117))))) (-1075 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72))) (|HasCategory| (-1074) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -3862 (-1074)) (|:| |entry| |#1|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (QUOTE (|:| -3862 (-1074))) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|))))) (-1076 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) @@ -4342,7 +4342,7 @@ NIL NIL (-1103 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) ((-12 (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (|%list| (QUOTE -260) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014)))) (OR (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| |#2| (QUOTE (-553 (-773))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-554 (-474)))) (-12 (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (|%list| (QUOTE -260) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#2| (QUOTE (-72))) (OR (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| |#2| (QUOTE (-1014))) (|HasCategory| |#2| (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-553 (-773)))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-1014))) (-12 (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (QUOTE (-72)))) (|HasCategory| $ (|%list| (QUOTE -318) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3862) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE |entry|) (|devaluate| |#2|))))) (-12 (|HasCategory| |#2| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#2|))))) (-1104 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) @@ -4362,7 +4362,7 @@ NIL NIL (-1108 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}."))) -((-3997 . T) (-3998 . T)) +((-3998 . T)) NIL (-1109 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) @@ -4398,7 +4398,7 @@ NIL NIL (-1117 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1014))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-72)))) (-1118 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) @@ -4430,7 +4430,7 @@ NIL ((|HasCategory| |#4| (QUOTE (-320)))) (-1125 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-1126 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) @@ -4646,11 +4646,11 @@ NIL ((|HasCategory| |#2| (QUOTE (-916))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-664))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) (-1179 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) NIL (-1180 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((OR (-12 (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-553 (-773)))) (|HasCategory| |#1| (QUOTE (-554 (-474)))) (OR (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| |#1| (QUOTE (-757))) (OR (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-1014)))) (|HasCategory| (-485) (QUOTE (-757))) (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-664))) (|HasCategory| |#1| (QUOTE (-962))) (-12 (|HasCategory| |#1| (QUOTE (-916))) (|HasCategory| |#1| (QUOTE (-962)))) (|HasCategory| |#1| (QUOTE (-1014))) (-12 (|HasCategory| |#1| (QUOTE (-1014))) (|HasCategory| |#1| (|%list| (QUOTE -260) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#1|)))) (-1181 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) @@ -4706,7 +4706,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-312)))) (-1194 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) -((-3998 . T) (-3997 . T)) +((-3998 . T)) ((-12 (|HasCategory| |#4| (QUOTE (-1014))) (|HasCategory| |#4| (|%list| (QUOTE -260) (|devaluate| |#4|)))) (|HasCategory| |#4| (QUOTE (-554 (-474)))) (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| |#1| (QUOTE (-496))) (|HasCategory| |#3| (QUOTE (-320))) (|HasCategory| |#4| (QUOTE (-553 (-773)))) (|HasCategory| |#4| (QUOTE (-1014))) (-12 (|HasCategory| |#4| (QUOTE (-72))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (|HasCategory| $ (|%list| (QUOTE -318) (|devaluate| |#4|)))) (-1195 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) @@ -4788,4 +4788,4 @@ NIL NIL NIL NIL -((-3 NIL 1970256 1970261 1970266 1970271) (-2 NIL 1970236 1970241 1970246 1970251) (-1 NIL 1970216 1970221 1970226 1970231) (0 NIL 1970196 1970201 1970206 1970211) (-1210 "ZMOD.spad" 1970005 1970018 1970134 1970191) (-1209 "ZLINDEP.spad" 1969103 1969114 1969995 1970000) (-1208 "ZDSOLVE.spad" 1959064 1959086 1969093 1969098) (-1207 "YSTREAM.spad" 1958559 1958570 1959054 1959059) (-1206 "YDIAGRAM.spad" 1958193 1958202 1958549 1958554) (-1205 "XRPOLY.spad" 1957413 1957433 1958049 1958118) (-1204 "XPR.spad" 1955208 1955221 1957131 1957230) (-1203 "XPOLYC.spad" 1954527 1954543 1955134 1955203) (-1202 "XPOLY.spad" 1954082 1954093 1954383 1954452) (-1201 "XPBWPOLY.spad" 1952553 1952573 1953888 1953957) (-1200 "XFALG.spad" 1949601 1949617 1952479 1952548) (-1199 "XF.spad" 1948064 1948079 1949503 1949596) (-1198 "XF.spad" 1946507 1946524 1947948 1947953) (-1197 "XEXPPKG.spad" 1945766 1945792 1946497 1946502) (-1196 "XDPOLY.spad" 1945380 1945396 1945622 1945691) (-1195 "XALG.spad" 1945048 1945059 1945336 1945375) (-1194 "WUTSET.spad" 1940890 1940907 1944521 1944548) (-1193 "WP.spad" 1940097 1940141 1940748 1940815) (-1192 "WHILEAST.spad" 1939895 1939904 1940087 1940092) (-1191 "WHEREAST.spad" 1939566 1939575 1939885 1939890) (-1190 "WFFINTBS.spad" 1937229 1937251 1939556 1939561) (-1189 "WEIER.spad" 1935451 1935462 1937219 1937224) (-1188 "VSPACE.spad" 1935124 1935135 1935419 1935446) (-1187 "VSPACE.spad" 1934817 1934830 1935114 1935119) (-1186 "VOID.spad" 1934494 1934503 1934807 1934812) (-1185 "VIEWDEF.spad" 1929695 1929704 1934484 1934489) (-1184 "VIEW3D.spad" 1913656 1913665 1929685 1929690) (-1183 "VIEW2D.spad" 1901555 1901564 1913646 1913651) (-1182 "VIEW.spad" 1899275 1899284 1901545 1901550) (-1181 "VECTOR2.spad" 1897914 1897927 1899265 1899270) (-1180 "VECTOR.spad" 1896472 1896483 1896723 1896750) (-1179 "VECTCAT.spad" 1894384 1894395 1896440 1896467) (-1178 "VECTCAT.spad" 1892105 1892118 1894163 1894168) (-1177 "VARIABLE.spad" 1891885 1891900 1892095 1892100) (-1176 "UTYPE.spad" 1891529 1891538 1891875 1891880) (-1175 "UTSODETL.spad" 1890824 1890848 1891485 1891490) (-1174 "UTSODE.spad" 1889040 1889060 1890814 1890819) (-1173 "UTSCAT.spad" 1886519 1886535 1888938 1889035) (-1172 "UTSCAT.spad" 1883666 1883684 1886087 1886092) (-1171 "UTS2.spad" 1883261 1883296 1883656 1883661) (-1170 "UTS.spad" 1878273 1878301 1881793 1881890) (-1169 "URAGG.spad" 1872994 1873005 1878263 1878268) (-1168 "URAGG.spad" 1867679 1867692 1872950 1872955) (-1167 "UPXSSING.spad" 1865447 1865473 1866883 1867016) (-1166 "UPXSCONS.spad" 1863265 1863285 1863638 1863787) (-1165 "UPXSCCA.spad" 1861836 1861856 1863111 1863260) (-1164 "UPXSCCA.spad" 1860549 1860571 1861826 1861831) (-1163 "UPXSCAT.spad" 1859138 1859154 1860395 1860544) (-1162 "UPXS2.spad" 1858681 1858734 1859128 1859133) (-1161 "UPXS.spad" 1856036 1856064 1856872 1857021) (-1160 "UPSQFREE.spad" 1854451 1854465 1856026 1856031) (-1159 "UPSCAT.spad" 1852246 1852270 1854349 1854446) (-1158 "UPSCAT.spad" 1849742 1849768 1851847 1851852) (-1157 "UPOLYC2.spad" 1849213 1849232 1849732 1849737) (-1156 "UPOLYC.spad" 1844293 1844304 1849055 1849208) (-1155 "UPOLYC.spad" 1839291 1839304 1844055 1844060) (-1154 "UPMP.spad" 1838223 1838236 1839281 1839286) (-1153 "UPDIVP.spad" 1837788 1837802 1838213 1838218) (-1152 "UPDECOMP.spad" 1836049 1836063 1837778 1837783) (-1151 "UPCDEN.spad" 1835266 1835282 1836039 1836044) (-1150 "UP2.spad" 1834630 1834651 1835256 1835261) (-1149 "UP.spad" 1832100 1832115 1832487 1832640) (-1148 "UNISEG2.spad" 1831597 1831610 1832056 1832061) (-1147 "UNISEG.spad" 1830950 1830961 1831516 1831521) (-1146 "UNIFACT.spad" 1830053 1830065 1830940 1830945) (-1145 "ULSCONS.spad" 1823899 1823919 1824269 1824418) (-1144 "ULSCCAT.spad" 1821636 1821656 1823745 1823894) (-1143 "ULSCCAT.spad" 1819481 1819503 1821592 1821597) (-1142 "ULSCAT.spad" 1817721 1817737 1819327 1819476) (-1141 "ULS2.spad" 1817235 1817288 1817711 1817716) (-1140 "ULS.spad" 1809268 1809296 1810213 1810636) (-1139 "UINT8.spad" 1809145 1809154 1809258 1809263) (-1138 "UINT64.spad" 1809021 1809030 1809135 1809140) (-1137 "UINT32.spad" 1808897 1808906 1809011 1809016) (-1136 "UINT16.spad" 1808773 1808782 1808887 1808892) (-1135 "UFD.spad" 1807838 1807847 1808699 1808768) (-1134 "UFD.spad" 1806965 1806976 1807828 1807833) (-1133 "UDVO.spad" 1805846 1805855 1806955 1806960) (-1132 "UDPO.spad" 1803427 1803438 1805802 1805807) (-1131 "TYPEAST.spad" 1803346 1803355 1803417 1803422) (-1130 "TYPE.spad" 1803278 1803287 1803336 1803341) (-1129 "TWOFACT.spad" 1801930 1801945 1803268 1803273) (-1128 "TUPLE.spad" 1801437 1801448 1801842 1801847) (-1127 "TUBETOOL.spad" 1798304 1798313 1801427 1801432) (-1126 "TUBE.spad" 1796951 1796968 1798294 1798299) (-1125 "TSETCAT.spad" 1785022 1785039 1796919 1796946) (-1124 "TSETCAT.spad" 1773079 1773098 1784978 1784983) (-1123 "TS.spad" 1771707 1771723 1772673 1772770) (-1122 "TRMANIP.spad" 1766071 1766088 1771395 1771400) (-1121 "TRIMAT.spad" 1765034 1765059 1766061 1766066) (-1120 "TRIGMNIP.spad" 1763561 1763578 1765024 1765029) (-1119 "TRIGCAT.spad" 1763073 1763082 1763551 1763556) (-1118 "TRIGCAT.spad" 1762583 1762594 1763063 1763068) (-1117 "TREE.spad" 1761223 1761234 1762255 1762282) (-1116 "TRANFUN.spad" 1761062 1761071 1761213 1761218) (-1115 "TRANFUN.spad" 1760899 1760910 1761052 1761057) (-1114 "TOPSP.spad" 1760573 1760582 1760889 1760894) (-1113 "TOOLSIGN.spad" 1760236 1760247 1760563 1760568) (-1112 "TEXTFILE.spad" 1758797 1758806 1760226 1760231) (-1111 "TEX1.spad" 1758353 1758364 1758787 1758792) (-1110 "TEX.spad" 1755547 1755556 1758343 1758348) (-1109 "TBCMPPK.spad" 1753648 1753671 1755537 1755542) (-1108 "TBAGG.spad" 1752891 1752914 1753616 1753643) (-1107 "TBAGG.spad" 1752154 1752179 1752881 1752886) (-1106 "TANEXP.spad" 1751562 1751573 1752144 1752149) (-1105 "TALGOP.spad" 1751286 1751297 1751552 1751557) (-1104 "TABLEAU.spad" 1750767 1750778 1751276 1751281) (-1103 "TABLE.spad" 1748516 1748539 1748786 1748813) (-1102 "TABLBUMP.spad" 1745295 1745306 1748506 1748511) (-1101 "SYSTEM.spad" 1744523 1744532 1745285 1745290) (-1100 "SYSSOLP.spad" 1742006 1742017 1744513 1744518) (-1099 "SYSPTR.spad" 1741905 1741914 1741996 1742001) (-1098 "SYSNNI.spad" 1741128 1741139 1741895 1741900) (-1097 "SYSINT.spad" 1740532 1740543 1741118 1741123) (-1096 "SYNTAX.spad" 1736866 1736875 1740522 1740527) (-1095 "SYMTAB.spad" 1734934 1734943 1736856 1736861) (-1094 "SYMS.spad" 1730963 1730972 1734924 1734929) (-1093 "SYMPOLY.spad" 1730096 1730107 1730178 1730305) (-1092 "SYMFUNC.spad" 1729597 1729608 1730086 1730091) (-1091 "SYMBOL.spad" 1727092 1727101 1729587 1729592) (-1090 "SUTS.spad" 1724205 1724233 1725624 1725721) (-1089 "SUPXS.spad" 1721547 1721575 1722396 1722545) (-1088 "SUPFRACF.spad" 1720652 1720670 1721537 1721542) (-1087 "SUP2.spad" 1720044 1720057 1720642 1720647) (-1086 "SUP.spad" 1717128 1717139 1717901 1718054) (-1085 "SUMRF.spad" 1716102 1716113 1717118 1717123) (-1084 "SUMFS.spad" 1715731 1715748 1716092 1716097) (-1083 "SULS.spad" 1707751 1707779 1708709 1709132) (-1082 "syntax.spad" 1707520 1707529 1707741 1707746) (-1081 "SUCH.spad" 1707210 1707225 1707510 1707515) (-1080 "SUBSPACE.spad" 1699341 1699356 1707200 1707205) (-1079 "SUBRESP.spad" 1698511 1698525 1699297 1699302) (-1078 "STTFNC.spad" 1694979 1694995 1698501 1698506) (-1077 "STTF.spad" 1691078 1691094 1694969 1694974) (-1076 "STTAYLOR.spad" 1683755 1683766 1690985 1690990) (-1075 "STRTBL.spad" 1681667 1681684 1681816 1681843) (-1074 "STRING.spad" 1680412 1680421 1680797 1680824) (-1073 "STREAM3.spad" 1679985 1680000 1680402 1680407) (-1072 "STREAM2.spad" 1679113 1679126 1679975 1679980) (-1071 "STREAM1.spad" 1678819 1678830 1679103 1679108) (-1070 "STREAM.spad" 1675714 1675725 1678321 1678336) (-1069 "STINPROD.spad" 1674650 1674666 1675704 1675709) (-1068 "STEPAST.spad" 1673884 1673893 1674640 1674645) (-1067 "STEP.spad" 1673201 1673210 1673874 1673879) (-1066 "STBL.spad" 1671053 1671081 1671220 1671247) (-1065 "STAGG.spad" 1669752 1669763 1671043 1671048) (-1064 "STAGG.spad" 1668449 1668462 1669742 1669747) (-1063 "STACK.spad" 1667871 1667882 1668121 1668148) (-1062 "SRING.spad" 1667631 1667640 1667861 1667866) (-1061 "SREGSET.spad" 1665202 1665219 1667104 1667131) (-1060 "SRDCMPK.spad" 1663779 1663799 1665192 1665197) (-1059 "SRAGG.spad" 1658962 1658971 1663747 1663774) (-1058 "SRAGG.spad" 1654165 1654176 1658952 1658957) (-1057 "SQMATRIX.spad" 1651842 1651860 1652758 1652845) (-1056 "SPLTREE.spad" 1646584 1646597 1651380 1651407) (-1055 "SPLNODE.spad" 1643204 1643217 1646574 1646579) (-1054 "SPFCAT.spad" 1642013 1642022 1643194 1643199) (-1053 "SPECOUT.spad" 1640565 1640574 1642003 1642008) (-1052 "SPADXPT.spad" 1632656 1632665 1640555 1640560) (-1051 "spad-parser.spad" 1632121 1632130 1632646 1632651) (-1050 "SPADAST.spad" 1631822 1631831 1632111 1632116) (-1049 "SPACEC.spad" 1616037 1616048 1631812 1631817) (-1048 "SPACE3.spad" 1615813 1615824 1616027 1616032) (-1047 "SORTPAK.spad" 1615362 1615375 1615769 1615774) (-1046 "SOLVETRA.spad" 1613125 1613136 1615352 1615357) (-1045 "SOLVESER.spad" 1611581 1611592 1613115 1613120) (-1044 "SOLVERAD.spad" 1607607 1607618 1611571 1611576) (-1043 "SOLVEFOR.spad" 1606069 1606087 1607597 1607602) (-1042 "SNTSCAT.spad" 1605669 1605686 1606037 1606064) (-1041 "SMTS.spad" 1603986 1604012 1605263 1605360) (-1040 "SMP.spad" 1601794 1601814 1602184 1602311) (-1039 "SMITH.spad" 1600639 1600664 1601784 1601789) (-1038 "SMATCAT.spad" 1598757 1598787 1600583 1600634) (-1037 "SMATCAT.spad" 1596807 1596839 1598635 1598640) (-1036 "aggcat.spad" 1596483 1596494 1596787 1596802) (-1035 "SKAGG.spad" 1595452 1595463 1596451 1596478) (-1034 "SINT.spad" 1594751 1594760 1595318 1595447) (-1033 "SIMPAN.spad" 1594479 1594488 1594741 1594746) (-1032 "SIGNRF.spad" 1593604 1593615 1594469 1594474) (-1031 "SIGNEF.spad" 1592890 1592907 1593594 1593599) (-1030 "syntax.spad" 1592307 1592316 1592880 1592885) (-1029 "SIG.spad" 1591669 1591678 1592297 1592302) (-1028 "SHP.spad" 1589613 1589628 1591625 1591630) (-1027 "SHDP.spad" 1579005 1579032 1579522 1579619) (-1026 "SGROUP.spad" 1578613 1578622 1578995 1579000) (-1025 "SGROUP.spad" 1578219 1578230 1578603 1578608) (-1024 "catdef.spad" 1577929 1577941 1578040 1578214) (-1023 "catdef.spad" 1577485 1577497 1577750 1577924) (-1022 "SGCF.spad" 1570624 1570633 1577475 1577480) (-1021 "SFRTCAT.spad" 1569570 1569587 1570592 1570619) (-1020 "SFRGCD.spad" 1568633 1568653 1569560 1569565) (-1019 "SFQCMPK.spad" 1563446 1563466 1568623 1568628) (-1018 "SEXOF.spad" 1563289 1563329 1563436 1563441) (-1017 "SEXCAT.spad" 1561117 1561157 1563279 1563284) (-1016 "SEX.spad" 1561009 1561018 1561107 1561112) (-1015 "SETMN.spad" 1559469 1559486 1560999 1561004) (-1014 "SETCAT.spad" 1558954 1558963 1559459 1559464) (-1013 "SETCAT.spad" 1558437 1558448 1558944 1558949) (-1012 "SETAGG.spad" 1554986 1554997 1558417 1558432) (-1011 "SETAGG.spad" 1551543 1551556 1554976 1554981) (-1010 "SET.spad" 1549689 1549700 1550788 1550827) (-1009 "syntax.spad" 1549392 1549401 1549679 1549684) (-1008 "SEGXCAT.spad" 1548548 1548561 1549382 1549387) (-1007 "SEGCAT.spad" 1547473 1547484 1548538 1548543) (-1006 "SEGBIND2.spad" 1547171 1547184 1547463 1547468) (-1005 "SEGBIND.spad" 1546929 1546940 1547118 1547123) (-1004 "SEGAST.spad" 1546659 1546668 1546919 1546924) (-1003 "SEG2.spad" 1546094 1546107 1546615 1546620) (-1002 "SEG.spad" 1545907 1545918 1546013 1546018) (-1001 "SDVAR.spad" 1545183 1545194 1545897 1545902) (-1000 "SDPOL.spad" 1542875 1542886 1543166 1543293) (-999 "SCPKG.spad" 1540965 1540975 1542865 1542870) (-998 "SCOPE.spad" 1540143 1540151 1540955 1540960) (-997 "SCACHE.spad" 1538840 1538850 1540133 1540138) (-996 "SASTCAT.spad" 1538750 1538758 1538830 1538835) (-995 "SAOS.spad" 1538623 1538631 1538740 1538745) (-994 "SAERFFC.spad" 1538337 1538356 1538613 1538618) (-993 "SAEFACT.spad" 1538039 1538058 1538327 1538332) (-992 "SAE.spad" 1535690 1535705 1536300 1536435) (-991 "RURPK.spad" 1533350 1533365 1535680 1535685) (-990 "RULESET.spad" 1532804 1532827 1533340 1533345) (-989 "RULECOLD.spad" 1532657 1532669 1532794 1532799) (-988 "RULE.spad" 1530906 1530929 1532647 1532652) (-987 "RTVALUE.spad" 1530642 1530650 1530896 1530901) (-986 "syntax.spad" 1530360 1530368 1530632 1530637) (-985 "RSETGCD.spad" 1526803 1526822 1530350 1530355) (-984 "RSETCAT.spad" 1516772 1516788 1526771 1526798) (-983 "RSETCAT.spad" 1506761 1506779 1516762 1516767) (-982 "RSDCMPK.spad" 1505262 1505281 1506751 1506756) (-981 "RRCC.spad" 1503647 1503676 1505252 1505257) (-980 "RRCC.spad" 1502030 1502061 1503637 1503642) (-979 "RPTAST.spad" 1501733 1501741 1502020 1502025) (-978 "RPOLCAT.spad" 1481238 1481252 1501601 1501728) (-977 "RPOLCAT.spad" 1460536 1460552 1480901 1480906) (-976 "ROMAN.spad" 1459865 1459873 1460402 1460531) (-975 "ROIRC.spad" 1458946 1458977 1459855 1459860) (-974 "RNS.spad" 1457923 1457931 1458848 1458941) (-973 "RNS.spad" 1456986 1456996 1457913 1457918) (-972 "RNGBIND.spad" 1456147 1456160 1456941 1456946) (-971 "RNG.spad" 1455756 1455764 1456137 1456142) (-970 "RNG.spad" 1455363 1455373 1455746 1455751) (-969 "RMODULE.spad" 1455145 1455155 1455353 1455358) (-968 "RMCAT2.spad" 1454566 1454622 1455135 1455140) (-967 "RMATRIX.spad" 1453376 1453394 1453718 1453757) (-966 "RMATCAT.spad" 1449014 1449044 1453332 1453371) (-965 "RMATCAT.spad" 1444542 1444574 1448862 1448867) (-964 "RLINSET.spad" 1444247 1444257 1444532 1444537) (-963 "RINTERP.spad" 1444136 1444155 1444237 1444242) (-962 "RING.spad" 1443607 1443615 1444116 1444131) (-961 "RING.spad" 1443086 1443096 1443597 1443602) (-960 "RIDIST.spad" 1442479 1442487 1443076 1443081) (-959 "RGCHAIN.spad" 1440724 1440739 1441617 1441644) (-958 "RGBCSPC.spad" 1440514 1440525 1440714 1440719) (-957 "RGBCMDL.spad" 1440077 1440088 1440504 1440509) (-956 "RFFACTOR.spad" 1439540 1439550 1440067 1440072) (-955 "RFFACT.spad" 1439276 1439287 1439530 1439535) (-954 "RFDIST.spad" 1438273 1438281 1439266 1439271) (-953 "RF.spad" 1435948 1435958 1438263 1438268) (-952 "RETSOL.spad" 1435368 1435380 1435938 1435943) (-951 "RETRACT.spad" 1434797 1434807 1435358 1435363) (-950 "RETRACT.spad" 1434224 1434236 1434787 1434792) (-949 "RETAST.spad" 1434037 1434045 1434214 1434219) (-948 "RESRING.spad" 1433385 1433431 1433975 1434032) (-947 "RESLATC.spad" 1432710 1432720 1433375 1433380) (-946 "REPSQ.spad" 1432442 1432452 1432700 1432705) (-945 "REPDB.spad" 1432150 1432160 1432432 1432437) (-944 "REP2.spad" 1421865 1421875 1431992 1431997) (-943 "REP1.spad" 1416086 1416096 1421815 1421820) (-942 "REP.spad" 1413641 1413649 1416076 1416081) (-941 "REGSET.spad" 1411306 1411322 1413114 1413141) (-940 "REF.spad" 1410825 1410835 1411296 1411301) (-939 "REDORDER.spad" 1410032 1410048 1410815 1410820) (-938 "RECLOS.spad" 1408929 1408948 1409632 1409725) (-937 "REALSOLV.spad" 1408070 1408078 1408919 1408924) (-936 "REAL0Q.spad" 1405369 1405383 1408060 1408065) (-935 "REAL0.spad" 1402214 1402228 1405359 1405364) (-934 "REAL.spad" 1402087 1402095 1402204 1402209) (-933 "RDUCEAST.spad" 1401809 1401817 1402077 1402082) (-932 "RDIV.spad" 1401465 1401489 1401799 1401804) (-931 "RDIST.spad" 1401033 1401043 1401455 1401460) (-930 "RDETRS.spad" 1399898 1399915 1401023 1401028) (-929 "RDETR.spad" 1398038 1398055 1399888 1399893) (-928 "RDEEFS.spad" 1397138 1397154 1398028 1398033) (-927 "RDEEF.spad" 1396149 1396165 1397128 1397133) (-926 "RCFIELD.spad" 1393368 1393376 1396051 1396144) (-925 "RCFIELD.spad" 1390673 1390683 1393358 1393363) (-924 "RCAGG.spad" 1388610 1388620 1390663 1390668) (-923 "RCAGG.spad" 1386476 1386488 1388531 1388536) (-922 "RATRET.spad" 1385837 1385847 1386466 1386471) (-921 "RATFACT.spad" 1385530 1385541 1385827 1385832) (-920 "RANDSRC.spad" 1384850 1384858 1385520 1385525) (-919 "RADUTIL.spad" 1384607 1384615 1384840 1384845) (-918 "RADIX.spad" 1381652 1381665 1383197 1383290) (-917 "RADFF.spad" 1379569 1379605 1379687 1379843) (-916 "RADCAT.spad" 1379165 1379173 1379559 1379564) (-915 "RADCAT.spad" 1378759 1378769 1379155 1379160) (-914 "QUEUE.spad" 1378173 1378183 1378431 1378458) (-913 "QUATCT2.spad" 1377794 1377812 1378163 1378168) (-912 "QUATCAT.spad" 1375965 1375975 1377724 1377789) (-911 "QUATCAT.spad" 1373901 1373913 1375662 1375667) (-910 "QUAT.spad" 1372508 1372518 1372850 1372915) (-909 "QUAGG.spad" 1371342 1371352 1372476 1372503) (-908 "QQUTAST.spad" 1371111 1371119 1371332 1371337) (-907 "QFORM.spad" 1370730 1370744 1371101 1371106) (-906 "QFCAT2.spad" 1370423 1370439 1370720 1370725) (-905 "QFCAT.spad" 1369126 1369136 1370325 1370418) (-904 "QFCAT.spad" 1367462 1367474 1368663 1368668) (-903 "QEQUAT.spad" 1367021 1367029 1367452 1367457) (-902 "QCMPACK.spad" 1361936 1361955 1367011 1367016) (-901 "QALGSET2.spad" 1359932 1359950 1361926 1361931) (-900 "QALGSET.spad" 1356037 1356069 1359846 1359851) (-899 "PWFFINTB.spad" 1353453 1353474 1356027 1356032) (-898 "PUSHVAR.spad" 1352792 1352811 1353443 1353448) (-897 "PTRANFN.spad" 1348928 1348938 1352782 1352787) (-896 "PTPACK.spad" 1346016 1346026 1348918 1348923) (-895 "PTFUNC2.spad" 1345839 1345853 1346006 1346011) (-894 "PTCAT.spad" 1345094 1345104 1345807 1345834) (-893 "PSQFR.spad" 1344409 1344433 1345084 1345089) (-892 "PSEUDLIN.spad" 1343295 1343305 1344399 1344404) (-891 "PSETPK.spad" 1330000 1330016 1343173 1343178) (-890 "PSETCAT.spad" 1324400 1324423 1329980 1329995) (-889 "PSETCAT.spad" 1318774 1318799 1324356 1324361) (-888 "PSCURVE.spad" 1317773 1317781 1318764 1318769) (-887 "PSCAT.spad" 1316556 1316585 1317671 1317768) (-886 "PSCAT.spad" 1315429 1315460 1316546 1316551) (-885 "PRTITION.spad" 1314127 1314135 1315419 1315424) (-884 "PRTDAST.spad" 1313846 1313854 1314117 1314122) (-883 "PRS.spad" 1303464 1303481 1313802 1313807) (-882 "PRQAGG.spad" 1302899 1302909 1303432 1303459) (-881 "PROPLOG.spad" 1302503 1302511 1302889 1302894) (-880 "PROPFUN2.spad" 1302126 1302139 1302493 1302498) (-879 "PROPFUN1.spad" 1301532 1301543 1302116 1302121) (-878 "PROPFRML.spad" 1300100 1300111 1301522 1301527) (-877 "PROPERTY.spad" 1299596 1299604 1300090 1300095) (-876 "PRODUCT.spad" 1297293 1297305 1297577 1297632) (-875 "PRINT.spad" 1297045 1297053 1297283 1297288) (-874 "PRIMES.spad" 1295306 1295316 1297035 1297040) (-873 "PRIMELT.spad" 1293427 1293441 1295296 1295301) (-872 "PRIMCAT.spad" 1293070 1293078 1293417 1293422) (-871 "PRIMARR2.spad" 1291837 1291849 1293060 1293065) (-870 "PRIMARR.spad" 1290731 1290741 1290901 1290928) (-869 "PREASSOC.spad" 1290113 1290125 1290721 1290726) (-868 "PR.spad" 1288631 1288643 1289330 1289457) (-867 "PPCURVE.spad" 1287768 1287776 1288621 1288626) (-866 "PORTNUM.spad" 1287559 1287567 1287758 1287763) (-865 "POLYROOT.spad" 1286408 1286430 1287515 1287520) (-864 "POLYLIFT.spad" 1285673 1285696 1286398 1286403) (-863 "POLYCATQ.spad" 1283799 1283821 1285663 1285668) (-862 "POLYCAT.spad" 1277301 1277322 1283667 1283794) (-861 "POLYCAT.spad" 1270323 1270346 1276691 1276696) (-860 "POLY2UP.spad" 1269775 1269789 1270313 1270318) (-859 "POLY2.spad" 1269372 1269384 1269765 1269770) (-858 "POLY.spad" 1267040 1267050 1267555 1267682) (-857 "POLUTIL.spad" 1266005 1266034 1266996 1267001) (-856 "POLTOPOL.spad" 1264753 1264768 1265995 1266000) (-855 "POINT.spad" 1263475 1263485 1263562 1263589) (-854 "PNTHEORY.spad" 1260177 1260185 1263465 1263470) (-853 "PMTOOLS.spad" 1258952 1258966 1260167 1260172) (-852 "PMSYM.spad" 1258501 1258511 1258942 1258947) (-851 "PMQFCAT.spad" 1258092 1258106 1258491 1258496) (-850 "PMPREDFS.spad" 1257554 1257576 1258082 1258087) (-849 "PMPRED.spad" 1257041 1257055 1257544 1257549) (-848 "PMPLCAT.spad" 1256118 1256136 1256970 1256975) (-847 "PMLSAGG.spad" 1255703 1255717 1256108 1256113) (-846 "PMKERNEL.spad" 1255282 1255294 1255693 1255698) (-845 "PMINS.spad" 1254862 1254872 1255272 1255277) (-844 "PMFS.spad" 1254439 1254457 1254852 1254857) (-843 "PMDOWN.spad" 1253729 1253743 1254429 1254434) (-842 "PMASSFS.spad" 1252704 1252720 1253719 1253724) (-841 "PMASS.spad" 1251722 1251730 1252694 1252699) (-840 "PLOTTOOL.spad" 1251502 1251510 1251712 1251717) (-839 "PLOT3D.spad" 1247966 1247974 1251492 1251497) (-838 "PLOT1.spad" 1247139 1247149 1247956 1247961) (-837 "PLOT.spad" 1242062 1242070 1247129 1247134) (-836 "PLEQN.spad" 1229464 1229491 1242052 1242057) (-835 "PINTERPA.spad" 1229248 1229264 1229454 1229459) (-834 "PINTERP.spad" 1228870 1228889 1229238 1229243) (-833 "PID.spad" 1227844 1227852 1228796 1228865) (-832 "PICOERCE.spad" 1227501 1227511 1227834 1227839) (-831 "PI.spad" 1227118 1227126 1227475 1227496) (-830 "PGROEB.spad" 1225727 1225741 1227108 1227113) (-829 "PGE.spad" 1217400 1217408 1225717 1225722) (-828 "PGCD.spad" 1216354 1216371 1217390 1217395) (-827 "PFRPAC.spad" 1215503 1215513 1216344 1216349) (-826 "PFR.spad" 1212206 1212216 1215405 1215498) (-825 "PFOTOOLS.spad" 1211464 1211480 1212196 1212201) (-824 "PFOQ.spad" 1210834 1210852 1211454 1211459) (-823 "PFO.spad" 1210253 1210280 1210824 1210829) (-822 "PFECAT.spad" 1207963 1207971 1210179 1210248) (-821 "PFECAT.spad" 1205701 1205711 1207919 1207924) (-820 "PFBRU.spad" 1203589 1203601 1205691 1205696) (-819 "PFBR.spad" 1201149 1201172 1203579 1203584) (-818 "PF.spad" 1200723 1200735 1200954 1201047) (-817 "PERMGRP.spad" 1195493 1195503 1200713 1200718) (-816 "PERMCAT.spad" 1194154 1194164 1195473 1195488) (-815 "PERMAN.spad" 1192710 1192724 1194144 1194149) (-814 "PERM.spad" 1188520 1188530 1192543 1192558) (-813 "PENDTREE.spad" 1187934 1187944 1188214 1188219) (-812 "PDSPC.spad" 1186747 1186757 1187924 1187929) (-811 "PDSPC.spad" 1185558 1185570 1186737 1186742) (-810 "PDRING.spad" 1185400 1185410 1185538 1185553) (-809 "PDMOD.spad" 1185216 1185228 1185368 1185395) (-808 "PDECOMP.spad" 1184686 1184703 1185206 1185211) (-807 "PDDOM.spad" 1184124 1184137 1184676 1184681) (-806 "PDDOM.spad" 1183560 1183575 1184114 1184119) (-805 "PCOMP.spad" 1183413 1183426 1183550 1183555) (-804 "PBWLB.spad" 1182011 1182028 1183403 1183408) (-803 "PATTERN2.spad" 1181749 1181761 1182001 1182006) (-802 "PATTERN1.spad" 1180093 1180109 1181739 1181744) (-801 "PATTERN.spad" 1174668 1174678 1180083 1180088) (-800 "PATRES2.spad" 1174340 1174354 1174658 1174663) (-799 "PATRES.spad" 1171923 1171935 1174330 1174335) (-798 "PATMATCH.spad" 1170164 1170195 1171675 1171680) (-797 "PATMAB.spad" 1169593 1169603 1170154 1170159) (-796 "PATLRES.spad" 1168679 1168693 1169583 1169588) (-795 "PATAB.spad" 1168443 1168453 1168669 1168674) (-794 "PARTPERM.spad" 1166499 1166507 1168433 1168438) (-793 "PARSURF.spad" 1165933 1165961 1166489 1166494) (-792 "PARSU2.spad" 1165730 1165746 1165923 1165928) (-791 "script-parser.spad" 1165250 1165258 1165720 1165725) (-790 "PARSCURV.spad" 1164684 1164712 1165240 1165245) (-789 "PARSC2.spad" 1164475 1164491 1164674 1164679) (-788 "PARPCURV.spad" 1163937 1163965 1164465 1164470) (-787 "PARPC2.spad" 1163728 1163744 1163927 1163932) (-786 "PARAMAST.spad" 1162856 1162864 1163718 1163723) (-785 "PAN2EXPR.spad" 1162268 1162276 1162846 1162851) (-784 "PALETTE.spad" 1161382 1161390 1162258 1162263) (-783 "PAIR.spad" 1160456 1160469 1161025 1161030) (-782 "PADICRC.spad" 1157861 1157879 1159024 1159117) (-781 "PADICRAT.spad" 1155921 1155933 1156134 1156227) (-780 "PADICCT.spad" 1154470 1154482 1155847 1155916) (-779 "PADIC.spad" 1154173 1154185 1154396 1154465) (-778 "PADEPAC.spad" 1152862 1152881 1154163 1154168) (-777 "PADE.spad" 1151614 1151630 1152852 1152857) (-776 "OWP.spad" 1150862 1150892 1151472 1151539) (-775 "OVERSET.spad" 1150435 1150443 1150852 1150857) (-774 "OVAR.spad" 1150216 1150239 1150425 1150430) (-773 "OUTFORM.spad" 1139624 1139632 1150206 1150211) (-772 "OUTBFILE.spad" 1139058 1139066 1139614 1139619) (-771 "OUTBCON.spad" 1138128 1138136 1139048 1139053) (-770 "OUTBCON.spad" 1137196 1137206 1138118 1138123) (-769 "OUT.spad" 1136314 1136322 1137186 1137191) (-768 "OSI.spad" 1135789 1135797 1136304 1136309) (-767 "OSGROUP.spad" 1135707 1135715 1135779 1135784) (-766 "ORTHPOL.spad" 1134218 1134228 1135650 1135655) (-765 "OREUP.spad" 1133712 1133740 1133939 1133978) (-764 "ORESUP.spad" 1133054 1133078 1133433 1133472) (-763 "OREPCTO.spad" 1130943 1130955 1132974 1132979) (-762 "OREPCAT.spad" 1125130 1125140 1130899 1130938) (-761 "OREPCAT.spad" 1119207 1119219 1124978 1124983) (-760 "ORDTYPE.spad" 1118444 1118452 1119197 1119202) (-759 "ORDTYPE.spad" 1117679 1117689 1118434 1118439) (-758 "ORDSTRCT.spad" 1117465 1117480 1117628 1117633) (-757 "ORDSET.spad" 1117165 1117173 1117455 1117460) (-756 "ORDRING.spad" 1116982 1116990 1117145 1117160) (-755 "ORDMON.spad" 1116837 1116845 1116972 1116977) (-754 "ORDFUNS.spad" 1115969 1115985 1116827 1116832) (-753 "ORDFIN.spad" 1115789 1115797 1115959 1115964) (-752 "ORDCOMP2.spad" 1115082 1115094 1115779 1115784) (-751 "ORDCOMP.spad" 1113608 1113618 1114690 1114719) (-750 "OPSIG.spad" 1113270 1113278 1113598 1113603) (-749 "OPQUERY.spad" 1112851 1112859 1113260 1113265) (-748 "OPERCAT.spad" 1112317 1112327 1112841 1112846) (-747 "OPERCAT.spad" 1111781 1111793 1112307 1112312) (-746 "OP.spad" 1111523 1111533 1111603 1111670) (-745 "ONECOMP2.spad" 1110947 1110959 1111513 1111518) (-744 "ONECOMP.spad" 1109753 1109763 1110555 1110584) (-743 "OMSAGG.spad" 1109541 1109551 1109709 1109748) (-742 "OMLO.spad" 1108974 1108986 1109427 1109466) (-741 "OINTDOM.spad" 1108737 1108745 1108900 1108969) (-740 "OFMONOID.spad" 1106876 1106886 1108693 1108698) (-739 "ODVAR.spad" 1106137 1106147 1106866 1106871) (-738 "ODR.spad" 1105781 1105807 1105949 1106098) (-737 "ODPOL.spad" 1103429 1103439 1103769 1103896) (-736 "ODP.spad" 1092965 1092985 1093338 1093435) (-735 "ODETOOLS.spad" 1091614 1091633 1092955 1092960) (-734 "ODESYS.spad" 1089308 1089325 1091604 1091609) (-733 "ODERTRIC.spad" 1085341 1085358 1089265 1089270) (-732 "ODERED.spad" 1084740 1084764 1085331 1085336) (-731 "ODERAT.spad" 1082373 1082390 1084730 1084735) (-730 "ODEPRRIC.spad" 1079466 1079488 1082363 1082368) (-729 "ODEPRIM.spad" 1076864 1076886 1079456 1079461) (-728 "ODEPAL.spad" 1076250 1076274 1076854 1076859) (-727 "ODEINT.spad" 1075685 1075701 1076240 1076245) (-726 "ODEEF.spad" 1071180 1071196 1075675 1075680) (-725 "ODECONST.spad" 1070725 1070743 1071170 1071175) (-724 "OCTCT2.spad" 1070366 1070384 1070715 1070720) (-723 "OCT.spad" 1068681 1068691 1069395 1069434) (-722 "OCAMON.spad" 1068529 1068537 1068671 1068676) (-721 "OC.spad" 1066325 1066335 1068485 1068524) (-720 "OC.spad" 1063860 1063872 1066022 1066027) (-719 "OASGP.spad" 1063675 1063683 1063850 1063855) (-718 "OAMONS.spad" 1063197 1063205 1063665 1063670) (-717 "OAMON.spad" 1062955 1062963 1063187 1063192) (-716 "OAMON.spad" 1062711 1062721 1062945 1062950) (-715 "OAGROUP.spad" 1062249 1062257 1062701 1062706) (-714 "OAGROUP.spad" 1061785 1061795 1062239 1062244) (-713 "NUMTUBE.spad" 1061376 1061392 1061775 1061780) (-712 "NUMQUAD.spad" 1049352 1049360 1061366 1061371) (-711 "NUMODE.spad" 1040704 1040712 1049342 1049347) (-710 "NUMFMT.spad" 1039544 1039552 1040694 1040699) (-709 "NUMERIC.spad" 1031659 1031669 1039350 1039355) (-708 "NTSCAT.spad" 1030167 1030183 1031627 1031654) (-707 "NTPOLFN.spad" 1029744 1029754 1030110 1030115) (-706 "NSUP2.spad" 1029136 1029148 1029734 1029739) (-705 "NSUP.spad" 1022573 1022583 1026993 1027146) (-704 "NSMP.spad" 1019485 1019504 1019777 1019904) (-703 "NREP.spad" 1017887 1017901 1019475 1019480) (-702 "NPCOEF.spad" 1017133 1017153 1017877 1017882) (-701 "NORMRETR.spad" 1016731 1016770 1017123 1017128) (-700 "NORMPK.spad" 1014673 1014692 1016721 1016726) (-699 "NORMMA.spad" 1014361 1014387 1014663 1014668) (-698 "NONE1.spad" 1014037 1014047 1014351 1014356) (-697 "NONE.spad" 1013778 1013786 1014027 1014032) (-696 "NODE1.spad" 1013265 1013281 1013768 1013773) (-695 "NNI.spad" 1012160 1012168 1013239 1013260) (-694 "NLINSOL.spad" 1010786 1010796 1012150 1012155) (-693 "NFINTBAS.spad" 1008346 1008363 1010776 1010781) (-692 "NETCLT.spad" 1008320 1008331 1008336 1008341) (-691 "NCODIV.spad" 1006544 1006560 1008310 1008315) (-690 "NCNTFRAC.spad" 1006186 1006200 1006534 1006539) (-689 "NCEP.spad" 1004352 1004366 1006176 1006181) (-688 "NASRING.spad" 1003956 1003964 1004342 1004347) (-687 "NASRING.spad" 1003558 1003568 1003946 1003951) (-686 "NARNG.spad" 1002958 1002966 1003548 1003553) (-685 "NARNG.spad" 1002356 1002366 1002948 1002953) (-684 "NAALG.spad" 1001921 1001931 1002324 1002351) (-683 "NAALG.spad" 1001506 1001518 1001911 1001916) (-682 "MULTSQFR.spad" 998464 998481 1001496 1001501) (-681 "MULTFACT.spad" 997847 997864 998454 998459) (-680 "MTSCAT.spad" 995941 995962 997745 997842) (-679 "MTHING.spad" 995600 995610 995931 995936) (-678 "MSYSCMD.spad" 995034 995042 995590 995595) (-677 "MSETAGG.spad" 994879 994889 995002 995029) (-676 "MSET.spad" 992665 992675 994412 994451) (-675 "MRING.spad" 989642 989654 992373 992440) (-674 "MRF2.spad" 989204 989218 989632 989637) (-673 "MRATFAC.spad" 988750 988767 989194 989199) (-672 "MPRFF.spad" 986790 986809 988740 988745) (-671 "MPOLY.spad" 984594 984609 984953 985080) (-670 "MPCPF.spad" 983858 983877 984584 984589) (-669 "MPC3.spad" 983675 983715 983848 983853) (-668 "MPC2.spad" 983329 983362 983665 983670) (-667 "MONOTOOL.spad" 981680 981697 983319 983324) (-666 "catdef.spad" 981113 981124 981334 981675) (-665 "catdef.spad" 980511 980522 980767 981108) (-664 "MONOID.spad" 979832 979840 980501 980506) (-663 "MONOID.spad" 979151 979161 979822 979827) (-662 "MONOGEN.spad" 977899 977912 979011 979146) (-661 "MONOGEN.spad" 976669 976684 977783 977788) (-660 "MONADWU.spad" 974749 974757 976659 976664) (-659 "MONADWU.spad" 972827 972837 974739 974744) (-658 "MONAD.spad" 971987 971995 972817 972822) (-657 "MONAD.spad" 971145 971155 971977 971982) (-656 "MOEBIUS.spad" 969881 969895 971125 971140) (-655 "MODULE.spad" 969751 969761 969849 969876) (-654 "MODULE.spad" 969641 969653 969741 969746) (-653 "MODRING.spad" 968976 969015 969621 969636) (-652 "MODOP.spad" 967633 967645 968798 968865) (-651 "MODMONOM.spad" 967364 967382 967623 967628) (-650 "MODMON.spad" 964434 964446 965149 965302) (-649 "MODFIELD.spad" 963796 963835 964336 964429) (-648 "MMLFORM.spad" 962656 962664 963786 963791) (-647 "MMAP.spad" 962398 962432 962646 962651) (-646 "MLO.spad" 960857 960867 962354 962393) (-645 "MLIFT.spad" 959469 959486 960847 960852) (-644 "MKUCFUNC.spad" 959004 959022 959459 959464) (-643 "MKRECORD.spad" 958592 958605 958994 958999) (-642 "MKFUNC.spad" 957999 958009 958582 958587) (-641 "MKFLCFN.spad" 956967 956977 957989 957994) (-640 "MKBCFUNC.spad" 956462 956480 956957 956962) (-639 "MHROWRED.spad" 954973 954983 956452 956457) (-638 "MFINFACT.spad" 954373 954395 954963 954968) (-637 "MESH.spad" 952168 952176 954363 954368) (-636 "MDDFACT.spad" 950387 950397 952158 952163) (-635 "MDAGG.spad" 949678 949688 950367 950382) (-634 "MCDEN.spad" 948888 948900 949668 949673) (-633 "MAYBE.spad" 948188 948199 948878 948883) (-632 "MATSTOR.spad" 945504 945514 948178 948183) (-631 "MATRIX.spad" 944283 944293 944767 944794) (-630 "MATLIN.spad" 941651 941675 944167 944172) (-629 "MATCAT2.spad" 940933 940981 941641 941646) (-628 "MATCAT.spad" 932629 932651 940901 940928) (-627 "MATCAT.spad" 924197 924221 932471 932476) (-626 "MAPPKG3.spad" 923112 923126 924187 924192) (-625 "MAPPKG2.spad" 922450 922462 923102 923107) (-624 "MAPPKG1.spad" 921278 921288 922440 922445) (-623 "MAPPAST.spad" 920617 920625 921268 921273) (-622 "MAPHACK3.spad" 920429 920443 920607 920612) (-621 "MAPHACK2.spad" 920198 920210 920419 920424) (-620 "MAPHACK1.spad" 919842 919852 920188 920193) (-619 "MAGMA.spad" 917648 917665 919832 919837) (-618 "MACROAST.spad" 917243 917251 917638 917643) (-617 "LZSTAGG.spad" 914497 914507 917233 917238) (-616 "LZSTAGG.spad" 911749 911761 914487 914492) (-615 "LWORD.spad" 908494 908511 911739 911744) (-614 "LSTAST.spad" 908278 908286 908484 908489) (-613 "LSQM.spad" 906556 906570 906950 907001) (-612 "LSPP.spad" 906091 906108 906546 906551) (-611 "LSMP1.spad" 903934 903948 906081 906086) (-610 "LSMP.spad" 902791 902819 903924 903929) (-609 "LSAGG.spad" 902460 902470 902759 902786) (-608 "LSAGG.spad" 902149 902161 902450 902455) (-607 "LPOLY.spad" 901111 901130 902005 902074) (-606 "LPEFRAC.spad" 900382 900392 901101 901106) (-605 "LOGIC.spad" 899984 899992 900372 900377) (-604 "LOGIC.spad" 899584 899594 899974 899979) (-603 "LODOOPS.spad" 898514 898526 899574 899579) (-602 "LODOF.spad" 897560 897577 898471 898476) (-601 "LODOCAT.spad" 896226 896236 897516 897555) (-600 "LODOCAT.spad" 894890 894902 896182 896187) (-599 "LODO2.spad" 894204 894216 894611 894650) (-598 "LODO1.spad" 893645 893655 893925 893964) (-597 "LODO.spad" 893070 893086 893366 893405) (-596 "LODEEF.spad" 891872 891890 893060 893065) (-595 "LO.spad" 891273 891287 891806 891833) (-594 "LNAGG.spad" 887460 887470 891263 891268) (-593 "LNAGG.spad" 883611 883623 887416 887421) (-592 "LMOPS.spad" 880379 880396 883601 883606) (-591 "LMODULE.spad" 880163 880173 880369 880374) (-590 "LMDICT.spad" 879383 879393 879631 879658) (-589 "LLINSET.spad" 879090 879100 879373 879378) (-588 "LITERAL.spad" 878996 879007 879080 879085) (-587 "LIST3.spad" 878307 878321 878986 878991) (-586 "LIST2MAP.spad" 875234 875246 878297 878302) (-585 "LIST2.spad" 873936 873948 875224 875229) (-584 "LIST.spad" 871657 871667 873000 873027) (-583 "LINSET.spad" 871436 871446 871647 871652) (-582 "LINFORM.spad" 870899 870911 871404 871431) (-581 "LINEXP.spad" 869642 869652 870889 870894) (-580 "LINELT.spad" 869013 869025 869525 869552) (-579 "LINDEP.spad" 867862 867874 868925 868930) (-578 "LINBASIS.spad" 867498 867513 867852 867857) (-577 "LIMITRF.spad" 865445 865455 867488 867493) (-576 "LIMITPS.spad" 864355 864368 865435 865440) (-575 "LIECAT.spad" 863839 863849 864281 864350) (-574 "LIECAT.spad" 863351 863363 863795 863800) (-573 "LIE.spad" 861355 861367 862629 862771) (-572 "LIB.spad" 859196 859204 859642 859669) (-571 "LGROBP.spad" 856549 856568 859186 859191) (-570 "LFCAT.spad" 855608 855616 856539 856544) (-569 "LF.spad" 854563 854579 855598 855603) (-568 "LEXTRIPK.spad" 850186 850201 854553 854558) (-567 "LEXP.spad" 848205 848232 850166 850181) (-566 "LETAST.spad" 847904 847912 848195 848200) (-565 "LEADCDET.spad" 846310 846327 847894 847899) (-564 "LAZM3PK.spad" 845054 845076 846300 846305) (-563 "LAUPOL.spad" 843721 843734 844621 844690) (-562 "LAPLACE.spad" 843304 843320 843711 843716) (-561 "LALG.spad" 843080 843090 843284 843299) (-560 "LALG.spad" 842864 842876 843070 843075) (-559 "LA.spad" 842304 842318 842786 842825) (-558 "KVTFROM.spad" 842047 842057 842294 842299) (-557 "KTVLOGIC.spad" 841591 841599 842037 842042) (-556 "KRCFROM.spad" 841337 841347 841581 841586) (-555 "KOVACIC.spad" 840068 840085 841327 841332) (-554 "KONVERT.spad" 839790 839800 840058 840063) (-553 "KOERCE.spad" 839527 839537 839780 839785) (-552 "KERNEL2.spad" 839230 839242 839517 839522) (-551 "KERNEL.spad" 837950 837960 839079 839084) (-550 "KDAGG.spad" 837059 837081 837930 837945) (-549 "KDAGG.spad" 836176 836200 837049 837054) (-548 "KAFILE.spad" 834591 834607 834826 834853) (-547 "JVMOP.spad" 834504 834512 834581 834586) (-546 "JVMMDACC.spad" 833558 833566 834494 834499) (-545 "JVMFDACC.spad" 832874 832882 833548 833553) (-544 "JVMCSTTG.spad" 831603 831611 832864 832869) (-543 "JVMCFACC.spad" 831049 831057 831593 831598) (-542 "JVMBCODE.spad" 830960 830968 831039 831044) (-541 "JORDAN.spad" 828777 828789 830238 830380) (-540 "JOINAST.spad" 828479 828487 828767 828772) (-539 "IXAGG.spad" 826612 826636 828469 828474) (-538 "IXAGG.spad" 824575 824601 826434 826439) (-537 "ITUPLE.spad" 823751 823761 824565 824570) (-536 "ITRIGMNP.spad" 822598 822617 823741 823746) (-535 "ITFUN3.spad" 822104 822118 822588 822593) (-534 "ITFUN2.spad" 821848 821860 822094 822099) (-533 "ITFORM.spad" 821203 821211 821838 821843) (-532 "ITAYLOR.spad" 819197 819212 821067 821164) (-531 "ISUPS.spad" 811646 811661 818183 818280) (-530 "ISUMP.spad" 811147 811163 811636 811641) (-529 "ISAST.spad" 810866 810874 811137 811142) (-528 "IRURPK.spad" 809583 809602 810856 810861) (-527 "IRSN.spad" 807587 807595 809573 809578) (-526 "IRRF2F.spad" 806080 806090 807543 807548) (-525 "IRREDFFX.spad" 805681 805692 806070 806075) (-524 "IROOT.spad" 804020 804030 805671 805676) (-523 "IRFORM.spad" 803344 803352 804010 804015) (-522 "IR2F.spad" 802558 802574 803334 803339) (-521 "IR2.spad" 801586 801602 802548 802553) (-520 "IR.spad" 799422 799436 801468 801495) (-519 "IPRNTPK.spad" 799182 799190 799412 799417) (-518 "IPF.spad" 798747 798759 798987 799080) (-517 "IPADIC.spad" 798516 798542 798673 798742) (-516 "IP4ADDR.spad" 798073 798081 798506 798511) (-515 "IOMODE.spad" 797595 797603 798063 798068) (-514 "IOBFILE.spad" 796980 796988 797585 797590) (-513 "IOBCON.spad" 796845 796853 796970 796975) (-512 "INVLAPLA.spad" 796494 796510 796835 796840) (-511 "INTTR.spad" 789888 789905 796484 796489) (-510 "INTTOOLS.spad" 787696 787712 789515 789520) (-509 "INTSLPE.spad" 787024 787032 787686 787691) (-508 "INTRVL.spad" 786590 786600 786938 787019) (-507 "INTRF.spad" 785022 785036 786580 786585) (-506 "INTRET.spad" 784454 784464 785012 785017) (-505 "INTRAT.spad" 783189 783206 784444 784449) (-504 "INTPM.spad" 781652 781668 782910 782915) (-503 "INTPAF.spad" 779528 779546 781581 781586) (-502 "INTHERTR.spad" 778802 778819 779518 779523) (-501 "INTHERAL.spad" 778472 778496 778792 778797) (-500 "INTHEORY.spad" 774911 774919 778462 778467) (-499 "INTG0.spad" 768675 768693 774840 774845) (-498 "INTFACT.spad" 767742 767752 768665 768670) (-497 "INTEF.spad" 766153 766169 767732 767737) (-496 "INTDOM.spad" 764776 764784 766079 766148) (-495 "INTDOM.spad" 763461 763471 764766 764771) (-494 "INTCAT.spad" 761728 761738 763375 763456) (-493 "INTBIT.spad" 761235 761243 761718 761723) (-492 "INTALG.spad" 760423 760450 761225 761230) (-491 "INTAF.spad" 759923 759939 760413 760418) (-490 "INTABL.spad" 757779 757810 757942 757969) (-489 "INT8.spad" 757659 757667 757769 757774) (-488 "INT64.spad" 757538 757546 757649 757654) (-487 "INT32.spad" 757417 757425 757528 757533) (-486 "INT16.spad" 757296 757304 757407 757412) (-485 "INT.spad" 756822 756830 757162 757291) (-484 "INS.spad" 754325 754333 756724 756817) (-483 "INS.spad" 751914 751924 754315 754320) (-482 "INPSIGN.spad" 751384 751397 751904 751909) (-481 "INPRODPF.spad" 750480 750499 751374 751379) (-480 "INPRODFF.spad" 749568 749592 750470 750475) (-479 "INNMFACT.spad" 748543 748560 749558 749563) (-478 "INMODGCD.spad" 748047 748077 748533 748538) (-477 "INFSP.spad" 746344 746366 748037 748042) (-476 "INFPROD0.spad" 745424 745443 746334 746339) (-475 "INFORM1.spad" 745049 745059 745414 745419) (-474 "INFORM.spad" 742260 742268 745039 745044) (-473 "INFINITY.spad" 741812 741820 742250 742255) (-472 "INETCLTS.spad" 741789 741797 741802 741807) (-471 "INEP.spad" 740335 740357 741779 741784) (-470 "INDE.spad" 739984 740001 740245 740250) (-469 "INCRMAPS.spad" 739421 739431 739974 739979) (-468 "INBFILE.spad" 738517 738525 739411 739416) (-467 "INBFF.spad" 734367 734378 738507 738512) (-466 "INBCON.spad" 732633 732641 734357 734362) (-465 "INBCON.spad" 730897 730907 732623 732628) (-464 "INAST.spad" 730558 730566 730887 730892) (-463 "IMPTAST.spad" 730266 730274 730548 730553) (-462 "IMATQF.spad" 729360 729404 730222 730227) (-461 "IMATLIN.spad" 727981 728005 729316 729321) (-460 "IFF.spad" 727394 727410 727665 727758) (-459 "IFAST.spad" 727008 727016 727384 727389) (-458 "IFARRAY.spad" 724374 724389 726072 726099) (-457 "IFAMON.spad" 724236 724253 724330 724335) (-456 "IEVALAB.spad" 723649 723661 724226 724231) (-455 "IEVALAB.spad" 723060 723074 723639 723644) (-454 "indexedp.spad" 722616 722628 723050 723055) (-453 "IDPOAMS.spad" 722294 722306 722528 722533) (-452 "IDPOAM.spad" 721936 721948 722206 722211) (-451 "IDPO.spad" 721350 721362 721848 721853) (-450 "IDPC.spad" 720065 720077 721340 721345) (-449 "IDPAM.spad" 719732 719744 719977 719982) (-448 "IDPAG.spad" 719401 719413 719644 719649) (-447 "IDENT.spad" 719053 719061 719391 719396) (-446 "catdef.spad" 718824 718835 718936 719048) (-445 "IDECOMP.spad" 716063 716081 718814 718819) (-444 "IDEAL.spad" 711025 711064 716011 716016) (-443 "ICDEN.spad" 710238 710254 711015 711020) (-442 "ICARD.spad" 709631 709639 710228 710233) (-441 "IBPTOOLS.spad" 708238 708255 709621 709626) (-440 "boolean.spad" 707631 707644 707764 707791) (-439 "IBATOOL.spad" 704616 704635 707621 707626) (-438 "IBACHIN.spad" 703123 703138 704606 704611) (-437 "array2.spad" 702608 702630 702795 702822) (-436 "IARRAY1.spad" 701526 701541 701672 701699) (-435 "IAN.spad" 699908 699916 701357 701450) (-434 "IALGFACT.spad" 699519 699552 699898 699903) (-433 "HYPCAT.spad" 698943 698951 699509 699514) (-432 "HYPCAT.spad" 698365 698375 698933 698938) (-431 "HOSTNAME.spad" 698181 698189 698355 698360) (-430 "HOMOTOP.spad" 697924 697934 698171 698176) (-429 "HOAGG.spad" 695531 695541 697914 697919) (-428 "HOAGG.spad" 692888 692900 695273 695278) (-427 "HEXADEC.spad" 691113 691121 691478 691571) (-426 "HEUGCD.spad" 690204 690215 691103 691108) (-425 "HELLFDIV.spad" 689810 689834 690194 690199) (-424 "HEAP.spad" 689267 689277 689482 689509) (-423 "HEADAST.spad" 688808 688816 689257 689262) (-422 "HDP.spad" 678340 678356 678717 678814) (-421 "HDMP.spad" 675887 675902 676503 676630) (-420 "HB.spad" 674162 674170 675877 675882) (-419 "HASHTBL.spad" 671970 672001 672181 672208) (-418 "HASAST.spad" 671686 671694 671960 671965) (-417 "HACKPI.spad" 671177 671185 671588 671681) (-416 "GTSET.spad" 669943 669959 670650 670677) (-415 "GSTBL.spad" 667788 667823 667962 667989) (-414 "GSERIES.spad" 665160 665187 665979 666128) (-413 "GROUP.spad" 664433 664441 665140 665155) (-412 "GROUP.spad" 663714 663724 664423 664428) (-411 "GROEBSOL.spad" 662208 662229 663704 663709) (-410 "GRMOD.spad" 660789 660801 662198 662203) (-409 "GRMOD.spad" 659368 659382 660779 660784) (-408 "GRIMAGE.spad" 652281 652289 659358 659363) (-407 "GRDEF.spad" 650660 650668 652271 652276) (-406 "GRAY.spad" 649131 649139 650650 650655) (-405 "GRALG.spad" 648226 648238 649121 649126) (-404 "GRALG.spad" 647319 647333 648216 648221) (-403 "GPOLSET.spad" 646616 646639 646828 646855) (-402 "GOSPER.spad" 645893 645911 646606 646611) (-401 "GMODPOL.spad" 645041 645068 645861 645888) (-400 "GHENSEL.spad" 644124 644138 645031 645036) (-399 "GENUPS.spad" 640417 640430 644114 644119) (-398 "GENUFACT.spad" 639994 640004 640407 640412) (-397 "GENPGCD.spad" 639596 639613 639984 639989) (-396 "GENMFACT.spad" 639048 639067 639586 639591) (-395 "GENEEZ.spad" 637007 637020 639038 639043) (-394 "GDMP.spad" 634396 634413 635170 635297) (-393 "GCNAALG.spad" 628319 628346 634190 634257) (-392 "GCDDOM.spad" 627511 627519 628245 628314) (-391 "GCDDOM.spad" 626765 626775 627501 627506) (-390 "GBINTERN.spad" 622785 622823 626755 626760) (-389 "GBF.spad" 618568 618606 622775 622780) (-388 "GBEUCLID.spad" 616450 616488 618558 618563) (-387 "GB.spad" 613976 614014 616406 616411) (-386 "GAUSSFAC.spad" 613289 613297 613966 613971) (-385 "GALUTIL.spad" 611615 611625 613245 613250) (-384 "GALPOLYU.spad" 610069 610082 611605 611610) (-383 "GALFACTU.spad" 608282 608301 610059 610064) (-382 "GALFACT.spad" 598495 598506 608272 608277) (-381 "FUNDESC.spad" 598173 598181 598485 598490) (-380 "FUNCTION.spad" 598022 598034 598163 598168) (-379 "FT.spad" 596322 596330 598012 598017) (-378 "FSUPFACT.spad" 595236 595255 596272 596277) (-377 "FST.spad" 593322 593330 595226 595231) (-376 "FSRED.spad" 592802 592818 593312 593317) (-375 "FSPRMELT.spad" 591668 591684 592759 592764) (-374 "FSPECF.spad" 589759 589775 591658 591663) (-373 "FSINT.spad" 589419 589435 589749 589754) (-372 "FSERIES.spad" 588610 588622 589239 589338) (-371 "FSCINT.spad" 587927 587943 588600 588605) (-370 "FSAGG2.spad" 586662 586678 587917 587922) (-369 "FSAGG.spad" 585779 585789 586618 586657) (-368 "FSAGG.spad" 584858 584870 585699 585704) (-367 "FS2UPS.spad" 579373 579407 584848 584853) (-366 "FS2EXPXP.spad" 578514 578537 579363 579368) (-365 "FS2.spad" 578169 578185 578504 578509) (-364 "FS.spad" 572441 572451 577948 578164) (-363 "FS.spad" 566515 566527 572024 572029) (-362 "FRUTIL.spad" 565469 565479 566505 566510) (-361 "FRNAALG.spad" 560746 560756 565411 565464) (-360 "FRNAALG.spad" 556035 556047 560702 560707) (-359 "FRNAAF2.spad" 555483 555501 556025 556030) (-358 "FRMOD.spad" 554891 554921 555412 555417) (-357 "FRIDEAL2.spad" 554495 554527 554881 554886) (-356 "FRIDEAL.spad" 553720 553741 554475 554490) (-355 "FRETRCT.spad" 553239 553249 553710 553715) (-354 "FRETRCT.spad" 552665 552677 553138 553143) (-353 "FRAMALG.spad" 551045 551058 552621 552660) (-352 "FRAMALG.spad" 549457 549472 551035 551040) (-351 "FRAC2.spad" 549062 549074 549447 549452) (-350 "FRAC.spad" 547049 547059 547436 547609) (-349 "FR2.spad" 546385 546397 547039 547044) (-348 "FR.spad" 540173 540183 545446 545515) (-347 "FPS.spad" 537012 537020 540063 540168) (-346 "FPS.spad" 533879 533889 536932 536937) (-345 "FPC.spad" 532925 532933 533781 533874) (-344 "FPC.spad" 532057 532067 532915 532920) (-343 "FPATMAB.spad" 531819 531829 532047 532052) (-342 "FPARFRAC.spad" 530661 530678 531809 531814) (-341 "FORDER.spad" 530352 530376 530651 530656) (-340 "FNLA.spad" 529776 529798 530320 530347) (-339 "FNCAT.spad" 528371 528379 529766 529771) (-338 "FNAME.spad" 528263 528271 528361 528366) (-337 "FMONOID.spad" 527944 527954 528219 528224) (-336 "FMONCAT.spad" 525113 525123 527934 527939) (-335 "FMCAT.spad" 522789 522807 525081 525108) (-334 "FM1.spad" 522154 522166 522723 522750) (-333 "FM.spad" 521769 521781 522008 522035) (-332 "FLOATRP.spad" 519512 519526 521759 521764) (-331 "FLOATCP.spad" 516951 516965 519502 519507) (-330 "FLOAT.spad" 514042 514050 516817 516946) (-329 "FLINEXP.spad" 513764 513774 514032 514037) (-328 "FLINEXP.spad" 513443 513455 513713 513718) (-327 "FLASORT.spad" 512769 512781 513433 513438) (-326 "FLALG.spad" 510439 510458 512695 512764) (-325 "FLAGG2.spad" 509156 509172 510429 510434) (-324 "FLAGG.spad" 506222 506232 509136 509151) (-323 "FLAGG.spad" 503191 503203 506107 506112) (-322 "FINRALG.spad" 501276 501289 503147 503186) (-321 "FINRALG.spad" 499287 499302 501160 501165) (-320 "FINITE.spad" 498439 498447 499277 499282) (-319 "FINITE.spad" 497589 497599 498429 498434) (-318 "aggcat.spad" 494509 494519 497569 497584) (-317 "FINAGG.spad" 491404 491416 494466 494471) (-316 "FINAALG.spad" 480589 480599 491346 491399) (-315 "FINAALG.spad" 469786 469798 480545 480550) (-314 "FILECAT.spad" 468320 468337 469776 469781) (-313 "FILE.spad" 467903 467913 468310 468315) (-312 "FIELD.spad" 467309 467317 467805 467898) (-311 "FIELD.spad" 466801 466811 467299 467304) (-310 "FGROUP.spad" 465464 465474 466781 466796) (-309 "FGLMICPK.spad" 464259 464274 465454 465459) (-308 "FFX.spad" 463645 463660 463978 464071) (-307 "FFSLPE.spad" 463156 463177 463635 463640) (-306 "FFPOLY2.spad" 462216 462233 463146 463151) (-305 "FFPOLY.spad" 453558 453569 462206 462211) (-304 "FFP.spad" 452966 452986 453277 453370) (-303 "FFNBX.spad" 451489 451509 452685 452778) (-302 "FFNBP.spad" 450013 450030 451208 451301) (-301 "FFNB.spad" 448481 448502 449697 449790) (-300 "FFINTBAS.spad" 445995 446014 448471 448476) (-299 "FFIELDC.spad" 443580 443588 445897 445990) (-298 "FFIELDC.spad" 441251 441261 443570 443575) (-297 "FFHOM.spad" 440023 440040 441241 441246) (-296 "FFF.spad" 437466 437477 440013 440018) (-295 "FFCGX.spad" 436324 436344 437185 437278) (-294 "FFCGP.spad" 435224 435244 436043 436136) (-293 "FFCG.spad" 434019 434040 434908 435001) (-292 "FFCAT2.spad" 433766 433806 434009 434014) (-291 "FFCAT.spad" 426931 426953 433605 433761) (-290 "FFCAT.spad" 420175 420199 426851 426856) (-289 "FF.spad" 419626 419642 419859 419952) (-288 "FEVALAB.spad" 419334 419344 419616 419621) (-287 "FEVALAB.spad" 418818 418830 419102 419107) (-286 "FDIVCAT.spad" 416914 416938 418808 418813) (-285 "FDIVCAT.spad" 415008 415034 416904 416909) (-284 "FDIV2.spad" 414664 414704 414998 415003) (-283 "FDIV.spad" 414122 414146 414654 414659) (-282 "FCTRDATA.spad" 413130 413138 414112 414117) (-281 "FCOMP.spad" 412509 412519 413120 413125) (-280 "FAXF.spad" 405544 405558 412411 412504) (-279 "FAXF.spad" 398631 398647 405500 405505) (-278 "FARRAY.spad" 396662 396672 397695 397722) (-277 "FAMR.spad" 394806 394818 396560 396657) (-276 "FAMR.spad" 392934 392948 394690 394695) (-275 "FAMONOID.spad" 392618 392628 392888 392893) (-274 "FAMONC.spad" 390938 390950 392608 392613) (-273 "FAGROUP.spad" 390578 390588 390834 390861) (-272 "FACUTIL.spad" 388790 388807 390568 390573) (-271 "FACTFUNC.spad" 387992 388002 388780 388785) (-270 "EXPUPXS.spad" 384884 384907 386183 386332) (-269 "EXPRTUBE.spad" 382172 382180 384874 384879) (-268 "EXPRODE.spad" 379340 379356 382162 382167) (-267 "EXPR2UPS.spad" 375462 375475 379330 379335) (-266 "EXPR2.spad" 375167 375179 375452 375457) (-265 "EXPR.spad" 370812 370822 371526 371813) (-264 "EXPEXPAN.spad" 367757 367782 368389 368482) (-263 "EXITAST.spad" 367493 367501 367747 367752) (-262 "EXIT.spad" 367164 367172 367483 367488) (-261 "EVALCYC.spad" 366624 366638 367154 367159) (-260 "EVALAB.spad" 366204 366214 366614 366619) (-259 "EVALAB.spad" 365782 365794 366194 366199) (-258 "EUCDOM.spad" 363372 363380 365708 365777) (-257 "EUCDOM.spad" 361024 361034 363362 363367) (-256 "ES2.spad" 360537 360553 361014 361019) (-255 "ES1.spad" 360107 360123 360527 360532) (-254 "ES.spad" 352978 352986 360097 360102) (-253 "ES.spad" 345770 345780 352891 352896) (-252 "ERROR.spad" 343097 343105 345760 345765) (-251 "EQTBL.spad" 340907 340929 341116 341143) (-250 "EQ2.spad" 340625 340637 340897 340902) (-249 "EQ.spad" 335531 335541 338326 338432) (-248 "EP.spad" 331857 331867 335521 335526) (-247 "ENV.spad" 330535 330543 331847 331852) (-246 "ENTIRER.spad" 330203 330211 330479 330530) (-245 "ENTIRER.spad" 329915 329925 330193 330198) (-244 "EMR.spad" 329203 329244 329841 329910) (-243 "ELTAGG.spad" 327457 327476 329193 329198) (-242 "ELTAGG.spad" 325675 325696 327413 327418) (-241 "ELTAB.spad" 325150 325163 325665 325670) (-240 "ELFUTS.spad" 324585 324604 325140 325145) (-239 "ELEMFUN.spad" 324274 324282 324575 324580) (-238 "ELEMFUN.spad" 323961 323971 324264 324269) (-237 "ELAGG.spad" 321932 321942 323941 323956) (-236 "ELAGG.spad" 319842 319854 321853 321858) (-235 "ELABOR.spad" 319188 319196 319832 319837) (-234 "ELABEXPR.spad" 318120 318128 319178 319183) (-233 "EFUPXS.spad" 314896 314926 318076 318081) (-232 "EFULS.spad" 311732 311755 314852 314857) (-231 "EFSTRUC.spad" 309747 309763 311722 311727) (-230 "EF.spad" 304523 304539 309737 309742) (-229 "EAB.spad" 302823 302831 304513 304518) (-228 "DVARCAT.spad" 299829 299839 302813 302818) (-227 "DVARCAT.spad" 296833 296845 299819 299824) (-226 "DSMP.spad" 294566 294580 294871 294998) (-225 "DSEXT.spad" 293868 293878 294556 294561) (-224 "DSEXT.spad" 293090 293102 293780 293785) (-223 "DROPT1.spad" 292755 292765 293080 293085) (-222 "DROPT0.spad" 287620 287628 292745 292750) (-221 "DROPT.spad" 281579 281587 287610 287615) (-220 "DRAWPT.spad" 279752 279760 281569 281574) (-219 "DRAWHACK.spad" 279060 279070 279742 279747) (-218 "DRAWCX.spad" 276538 276546 279050 279055) (-217 "DRAWCURV.spad" 276085 276100 276528 276533) (-216 "DRAWCFUN.spad" 265617 265625 276075 276080) (-215 "DRAW.spad" 258493 258506 265607 265612) (-214 "DQAGG.spad" 256671 256681 258461 258488) (-213 "DPOLCAT.spad" 252028 252044 256539 256666) (-212 "DPOLCAT.spad" 247471 247489 251984 251989) (-211 "DPMO.spad" 240073 240089 240211 240417) (-210 "DPMM.spad" 232688 232706 232813 233019) (-209 "DOMTMPLT.spad" 232459 232467 232678 232683) (-208 "DOMCTOR.spad" 232214 232222 232449 232454) (-207 "DOMAIN.spad" 231325 231333 232204 232209) (-206 "DMP.spad" 228918 228933 229488 229615) (-205 "DMEXT.spad" 228785 228795 228886 228913) (-204 "DLP.spad" 228145 228155 228775 228780) (-203 "DLIST.spad" 226605 226615 227209 227236) (-202 "DLAGG.spad" 225022 225032 226595 226600) (-201 "DIVRING.spad" 224564 224572 224966 225017) (-200 "DIVRING.spad" 224150 224160 224554 224559) (-199 "DISPLAY.spad" 222340 222348 224140 224145) (-198 "DIRPROD2.spad" 221158 221176 222330 222335) (-197 "DIRPROD.spad" 210427 210443 211067 211164) (-196 "DIRPCAT.spad" 209710 209726 210325 210422) (-195 "DIRPCAT.spad" 208619 208637 209236 209241) (-194 "DIOSP.spad" 207444 207452 208609 208614) (-193 "DIOPS.spad" 206440 206450 207424 207439) (-192 "DIOPS.spad" 205383 205395 206369 206374) (-191 "catdef.spad" 205241 205249 205373 205378) (-190 "DIFRING.spad" 205079 205087 205221 205236) (-189 "DIFFSPC.spad" 204658 204666 205069 205074) (-188 "DIFFSPC.spad" 204235 204245 204648 204653) (-187 "DIFFMOD.spad" 203724 203734 204203 204230) (-186 "DIFFDOM.spad" 202889 202900 203714 203719) (-185 "DIFFDOM.spad" 202052 202065 202879 202884) (-184 "DIFEXT.spad" 201871 201881 202032 202047) (-183 "DIAGG.spad" 201501 201511 201851 201866) (-182 "DIAGG.spad" 201139 201151 201491 201496) (-181 "DHMATRIX.spad" 199516 199526 200661 200688) (-180 "DFSFUN.spad" 193156 193164 199506 199511) (-179 "DFLOAT.spad" 189763 189771 193046 193151) (-178 "DFINTTLS.spad" 187994 188010 189753 189758) (-177 "DERHAM.spad" 185908 185940 187974 187989) (-176 "DEQUEUE.spad" 185297 185307 185580 185607) (-175 "DEGRED.spad" 184914 184928 185287 185292) (-174 "DEFINTRF.spad" 182496 182506 184904 184909) (-173 "DEFINTEF.spad" 181034 181050 182486 182491) (-172 "DEFAST.spad" 180418 180426 181024 181029) (-171 "DECIMAL.spad" 178647 178655 179008 179101) (-170 "DDFACT.spad" 176468 176485 178637 178642) (-169 "DBLRESP.spad" 176068 176092 176458 176463) (-168 "DBASIS.spad" 175694 175709 176058 176063) (-167 "DBASE.spad" 174358 174368 175684 175689) (-166 "DATAARY.spad" 173844 173857 174348 174353) (-165 "CYCLOTOM.spad" 173350 173358 173834 173839) (-164 "CYCLES.spad" 170142 170150 173340 173345) (-163 "CVMP.spad" 169559 169569 170132 170137) (-162 "CTRIGMNP.spad" 168059 168075 169549 169554) (-161 "CTORKIND.spad" 167662 167670 168049 168054) (-160 "CTORCAT.spad" 166903 166911 167652 167657) (-159 "CTORCAT.spad" 166142 166152 166893 166898) (-158 "CTORCALL.spad" 165731 165741 166132 166137) (-157 "CTOR.spad" 165422 165430 165721 165726) (-156 "CSTTOOLS.spad" 164667 164680 165412 165417) (-155 "CRFP.spad" 158439 158452 164657 164662) (-154 "CRCEAST.spad" 158159 158167 158429 158434) (-153 "CRAPACK.spad" 157226 157236 158149 158154) (-152 "CPMATCH.spad" 156727 156742 157148 157153) (-151 "CPIMA.spad" 156432 156451 156717 156722) (-150 "COORDSYS.spad" 151441 151451 156422 156427) (-149 "CONTOUR.spad" 150868 150876 151431 151436) (-148 "CONTFRAC.spad" 146618 146628 150770 150863) (-147 "CONDUIT.spad" 146376 146384 146608 146613) (-146 "COMRING.spad" 146050 146058 146314 146371) (-145 "COMPPROP.spad" 145568 145576 146040 146045) (-144 "COMPLPAT.spad" 145335 145350 145558 145563) (-143 "COMPLEX2.spad" 145050 145062 145325 145330) (-142 "COMPLEX.spad" 140756 140766 141000 141258) (-141 "COMPILER.spad" 140305 140313 140746 140751) (-140 "COMPFACT.spad" 139907 139921 140295 140300) (-139 "COMPCAT.spad" 137982 137992 139644 139902) (-138 "COMPCAT.spad" 135798 135810 137462 137467) (-137 "COMMUPC.spad" 135546 135564 135788 135793) (-136 "COMMONOP.spad" 135079 135087 135536 135541) (-135 "COMMAAST.spad" 134842 134850 135069 135074) (-134 "COMM.spad" 134653 134661 134832 134837) (-133 "COMBOPC.spad" 133576 133584 134643 134648) (-132 "COMBINAT.spad" 132343 132353 133566 133571) (-131 "COMBF.spad" 129765 129781 132333 132338) (-130 "COLOR.spad" 128602 128610 129755 129760) (-129 "COLONAST.spad" 128268 128276 128592 128597) (-128 "CMPLXRT.spad" 127979 127996 128258 128263) (-127 "CLLCTAST.spad" 127641 127649 127969 127974) (-126 "CLIP.spad" 123749 123757 127631 127636) (-125 "CLIF.spad" 122404 122420 123705 123744) (-124 "CLAGG.spad" 120396 120406 122394 122399) (-123 "CLAGG.spad" 118247 118259 120247 120252) (-122 "CINTSLPE.spad" 117602 117615 118237 118242) (-121 "CHVAR.spad" 115740 115762 117592 117597) (-120 "CHARZ.spad" 115655 115663 115720 115735) (-119 "CHARPOL.spad" 115181 115191 115645 115650) (-118 "CHARNZ.spad" 114943 114951 115161 115176) (-117 "CHAR.spad" 112311 112319 114933 114938) (-116 "CFCAT.spad" 111639 111647 112301 112306) (-115 "CDEN.spad" 110859 110873 111629 111634) (-114 "CCLASS.spad" 108916 108924 110178 110217) (-113 "CATEGORY.spad" 107990 107998 108906 108911) (-112 "CATCTOR.spad" 107881 107889 107980 107985) (-111 "CATAST.spad" 107507 107515 107871 107876) (-110 "CASEAST.spad" 107221 107229 107497 107502) (-109 "CARTEN2.spad" 106611 106638 107211 107216) (-108 "CARTEN.spad" 102363 102387 106601 106606) (-107 "CARD.spad" 99658 99666 102337 102358) (-106 "CAPSLAST.spad" 99440 99448 99648 99653) (-105 "CACHSET.spad" 99064 99072 99430 99435) (-104 "CABMON.spad" 98619 98627 99054 99059) (-103 "BYTEORD.spad" 98294 98302 98609 98614) (-102 "BYTEBUF.spad" 96218 96226 97424 97451) (-101 "BYTE.spad" 95693 95701 96208 96213) (-100 "BTREE.spad" 94831 94841 95365 95392) (-99 "BTOURN.spad" 93902 93911 94503 94530) (-98 "BTCAT.spad" 93460 93469 93870 93897) (-97 "BTCAT.spad" 93038 93049 93450 93455) (-96 "BTAGG.spad" 92505 92512 93006 93033) (-95 "BTAGG.spad" 91992 92001 92495 92500) (-94 "BSTREE.spad" 90799 90808 91664 91691) (-93 "BRILL.spad" 89005 89015 90789 90794) (-92 "BRAGG.spad" 87962 87971 88995 89000) (-91 "BRAGG.spad" 86883 86894 87918 87923) (-90 "BPADICRT.spad" 84943 84954 85189 85282) (-89 "BPADIC.spad" 84616 84627 84869 84938) (-88 "BOUNDZRO.spad" 84273 84289 84606 84611) (-87 "BOP1.spad" 81732 81741 84263 84268) (-86 "BOP.spad" 76875 76882 81722 81727) (-85 "BOOLEAN.spad" 76424 76431 76865 76870) (-84 "BOOLE.spad" 76075 76082 76414 76419) (-83 "BOOLE.spad" 75724 75733 76065 76070) (-82 "BMODULE.spad" 75437 75448 75692 75719) (-81 "BITS.spad" 74749 74756 74963 74990) (-80 "catdef.spad" 74632 74642 74739 74744) (-79 "catdef.spad" 74383 74393 74622 74627) (-78 "BINDING.spad" 73805 73812 74373 74378) (-77 "BINARY.spad" 72040 72047 72395 72488) (-76 "BGAGG.spad" 71360 71369 72020 72035) (-75 "BGAGG.spad" 70688 70699 71350 71355) (-74 "BEZOUT.spad" 69829 69855 70638 70643) (-73 "BBTREE.spad" 66772 66781 69501 69528) (-72 "BASTYPE.spad" 66272 66279 66762 66767) (-71 "BASTYPE.spad" 65770 65779 66262 66267) (-70 "BALFACT.spad" 65230 65242 65760 65765) (-69 "AUTOMOR.spad" 64681 64690 65210 65225) (-68 "ATTREG.spad" 61813 61820 64457 64676) (-67 "ATTRAST.spad" 61530 61537 61803 61808) (-66 "ATRIG.spad" 61000 61007 61520 61525) (-65 "ATRIG.spad" 60468 60477 60990 60995) (-64 "ASTCAT.spad" 60372 60379 60458 60463) (-63 "ASTCAT.spad" 60274 60283 60362 60367) (-62 "ASTACK.spad" 59678 59687 59946 59973) (-61 "ASSOCEQ.spad" 58512 58523 59634 59639) (-60 "ARRAY2.spad" 58035 58044 58184 58211) (-59 "ARRAY12.spad" 56748 56759 58025 58030) (-58 "ARRAY1.spad" 55466 55475 55812 55839) (-57 "ARR2CAT.spad" 51506 51527 55434 55461) (-56 "ARR2CAT.spad" 47566 47589 51496 51501) (-55 "ARITY.spad" 46938 46945 47556 47561) (-54 "APPRULE.spad" 46222 46244 46928 46933) (-53 "APPLYORE.spad" 45841 45854 46212 46217) (-52 "ANY1.spad" 44912 44921 45831 45836) (-51 "ANY.spad" 43763 43770 44902 44907) (-50 "ANTISYM.spad" 42208 42224 43743 43758) (-49 "ANON.spad" 41917 41924 42198 42203) (-48 "AN.spad" 40385 40392 41748 41841) (-47 "AMR.spad" 38570 38581 40283 40380) (-46 "AMR.spad" 36618 36631 38333 38338) (-45 "ALIST.spad" 33330 33351 33680 33707) (-44 "ALGSC.spad" 32465 32491 33202 33255) (-43 "ALGPKG.spad" 28248 28259 32421 32426) (-42 "ALGMFACT.spad" 27441 27455 28238 28243) (-41 "ALGMANIP.spad" 24942 24957 27285 27290) (-40 "ALGFF.spad" 22760 22787 22977 23133) (-39 "ALGFACT.spad" 21879 21889 22750 22755) (-38 "ALGEBRA.spad" 21712 21721 21835 21874) (-37 "ALGEBRA.spad" 21577 21588 21702 21707) (-36 "ALAGG.spad" 21093 21114 21545 21572) (-35 "AHYP.spad" 20474 20481 21083 21088) (-34 "AGG.spad" 19288 19295 20464 20469) (-33 "AGG.spad" 18066 18075 19244 19249) (-32 "AF.spad" 16511 16526 18015 18020) (-31 "ADDAST.spad" 16197 16204 16501 16506) (-30 "ACPLOT.spad" 15074 15081 16187 16192) (-29 "ACFS.spad" 12931 12940 14976 15069) (-28 "ACFS.spad" 10874 10885 12921 12926) (-27 "ACF.spad" 7628 7635 10776 10869) (-26 "ACF.spad" 4468 4477 7618 7623) (-25 "ABELSG.spad" 4009 4016 4458 4463) (-24 "ABELSG.spad" 3548 3557 3999 4004) (-23 "ABELMON.spad" 2976 2983 3538 3543) (-22 "ABELMON.spad" 2402 2411 2966 2971) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 1969242 1969247 1969252 1969257) (-2 NIL 1969222 1969227 1969232 1969237) (-1 NIL 1969202 1969207 1969212 1969217) (0 NIL 1969182 1969187 1969192 1969197) (-1210 "ZMOD.spad" 1968991 1969004 1969120 1969177) (-1209 "ZLINDEP.spad" 1968089 1968100 1968981 1968986) (-1208 "ZDSOLVE.spad" 1958050 1958072 1968079 1968084) (-1207 "YSTREAM.spad" 1957545 1957556 1958040 1958045) (-1206 "YDIAGRAM.spad" 1957179 1957188 1957535 1957540) (-1205 "XRPOLY.spad" 1956399 1956419 1957035 1957104) (-1204 "XPR.spad" 1954194 1954207 1956117 1956216) (-1203 "XPOLYC.spad" 1953513 1953529 1954120 1954189) (-1202 "XPOLY.spad" 1953068 1953079 1953369 1953438) (-1201 "XPBWPOLY.spad" 1951539 1951559 1952874 1952943) (-1200 "XFALG.spad" 1948587 1948603 1951465 1951534) (-1199 "XF.spad" 1947050 1947065 1948489 1948582) (-1198 "XF.spad" 1945493 1945510 1946934 1946939) (-1197 "XEXPPKG.spad" 1944752 1944778 1945483 1945488) (-1196 "XDPOLY.spad" 1944366 1944382 1944608 1944677) (-1195 "XALG.spad" 1944034 1944045 1944322 1944361) (-1194 "WUTSET.spad" 1939888 1939905 1943519 1943534) (-1193 "WP.spad" 1939095 1939139 1939746 1939813) (-1192 "WHILEAST.spad" 1938893 1938902 1939085 1939090) (-1191 "WHEREAST.spad" 1938564 1938573 1938883 1938888) (-1190 "WFFINTBS.spad" 1936227 1936249 1938554 1938559) (-1189 "WEIER.spad" 1934449 1934460 1936217 1936222) (-1188 "VSPACE.spad" 1934122 1934133 1934417 1934444) (-1187 "VSPACE.spad" 1933815 1933828 1934112 1934117) (-1186 "VOID.spad" 1933492 1933501 1933805 1933810) (-1185 "VIEWDEF.spad" 1928693 1928702 1933482 1933487) (-1184 "VIEW3D.spad" 1912654 1912663 1928683 1928688) (-1183 "VIEW2D.spad" 1900553 1900562 1912644 1912649) (-1182 "VIEW.spad" 1898273 1898282 1900543 1900548) (-1181 "VECTOR2.spad" 1896912 1896925 1898263 1898268) (-1180 "VECTOR.spad" 1895482 1895493 1895733 1895748) (-1179 "VECTCAT.spad" 1893406 1893417 1895462 1895477) (-1178 "VECTCAT.spad" 1891127 1891140 1893185 1893190) (-1177 "VARIABLE.spad" 1890907 1890922 1891117 1891122) (-1176 "UTYPE.spad" 1890551 1890560 1890897 1890902) (-1175 "UTSODETL.spad" 1889846 1889870 1890507 1890512) (-1174 "UTSODE.spad" 1888062 1888082 1889836 1889841) (-1173 "UTSCAT.spad" 1885541 1885557 1887960 1888057) (-1172 "UTSCAT.spad" 1882688 1882706 1885109 1885114) (-1171 "UTS2.spad" 1882283 1882318 1882678 1882683) (-1170 "UTS.spad" 1877295 1877323 1880815 1880912) (-1169 "URAGG.spad" 1872016 1872027 1877285 1877290) (-1168 "URAGG.spad" 1866701 1866714 1871972 1871977) (-1167 "UPXSSING.spad" 1864469 1864495 1865905 1866038) (-1166 "UPXSCONS.spad" 1862287 1862307 1862660 1862809) (-1165 "UPXSCCA.spad" 1860858 1860878 1862133 1862282) (-1164 "UPXSCCA.spad" 1859571 1859593 1860848 1860853) (-1163 "UPXSCAT.spad" 1858160 1858176 1859417 1859566) (-1162 "UPXS2.spad" 1857703 1857756 1858150 1858155) (-1161 "UPXS.spad" 1855058 1855086 1855894 1856043) (-1160 "UPSQFREE.spad" 1853473 1853487 1855048 1855053) (-1159 "UPSCAT.spad" 1851268 1851292 1853371 1853468) (-1158 "UPSCAT.spad" 1848764 1848790 1850869 1850874) (-1157 "UPOLYC2.spad" 1848235 1848254 1848754 1848759) (-1156 "UPOLYC.spad" 1843315 1843326 1848077 1848230) (-1155 "UPOLYC.spad" 1838313 1838326 1843077 1843082) (-1154 "UPMP.spad" 1837245 1837258 1838303 1838308) (-1153 "UPDIVP.spad" 1836810 1836824 1837235 1837240) (-1152 "UPDECOMP.spad" 1835071 1835085 1836800 1836805) (-1151 "UPCDEN.spad" 1834288 1834304 1835061 1835066) (-1150 "UP2.spad" 1833652 1833673 1834278 1834283) (-1149 "UP.spad" 1831122 1831137 1831509 1831662) (-1148 "UNISEG2.spad" 1830619 1830632 1831078 1831083) (-1147 "UNISEG.spad" 1829972 1829983 1830538 1830543) (-1146 "UNIFACT.spad" 1829075 1829087 1829962 1829967) (-1145 "ULSCONS.spad" 1822921 1822941 1823291 1823440) (-1144 "ULSCCAT.spad" 1820658 1820678 1822767 1822916) (-1143 "ULSCCAT.spad" 1818503 1818525 1820614 1820619) (-1142 "ULSCAT.spad" 1816743 1816759 1818349 1818498) (-1141 "ULS2.spad" 1816257 1816310 1816733 1816738) (-1140 "ULS.spad" 1808290 1808318 1809235 1809658) (-1139 "UINT8.spad" 1808167 1808176 1808280 1808285) (-1138 "UINT64.spad" 1808043 1808052 1808157 1808162) (-1137 "UINT32.spad" 1807919 1807928 1808033 1808038) (-1136 "UINT16.spad" 1807795 1807804 1807909 1807914) (-1135 "UFD.spad" 1806860 1806869 1807721 1807790) (-1134 "UFD.spad" 1805987 1805998 1806850 1806855) (-1133 "UDVO.spad" 1804868 1804877 1805977 1805982) (-1132 "UDPO.spad" 1802449 1802460 1804824 1804829) (-1131 "TYPEAST.spad" 1802368 1802377 1802439 1802444) (-1130 "TYPE.spad" 1802300 1802309 1802358 1802363) (-1129 "TWOFACT.spad" 1800952 1800967 1802290 1802295) (-1128 "TUPLE.spad" 1800459 1800470 1800864 1800869) (-1127 "TUBETOOL.spad" 1797326 1797335 1800449 1800454) (-1126 "TUBE.spad" 1795973 1795990 1797316 1797321) (-1125 "TSETCAT.spad" 1784056 1784073 1795953 1795968) (-1124 "TSETCAT.spad" 1772113 1772132 1784012 1784017) (-1123 "TS.spad" 1770741 1770757 1771707 1771804) (-1122 "TRMANIP.spad" 1765105 1765122 1770429 1770434) (-1121 "TRIMAT.spad" 1764068 1764093 1765095 1765100) (-1120 "TRIGMNIP.spad" 1762595 1762612 1764058 1764063) (-1119 "TRIGCAT.spad" 1762107 1762116 1762585 1762590) (-1118 "TRIGCAT.spad" 1761617 1761628 1762097 1762102) (-1117 "TREE.spad" 1760269 1760280 1761301 1761316) (-1116 "TRANFUN.spad" 1760108 1760117 1760259 1760264) (-1115 "TRANFUN.spad" 1759945 1759956 1760098 1760103) (-1114 "TOPSP.spad" 1759619 1759628 1759935 1759940) (-1113 "TOOLSIGN.spad" 1759282 1759293 1759609 1759614) (-1112 "TEXTFILE.spad" 1757843 1757852 1759272 1759277) (-1111 "TEX1.spad" 1757399 1757410 1757833 1757838) (-1110 "TEX.spad" 1754593 1754602 1757389 1757394) (-1109 "TBCMPPK.spad" 1752694 1752717 1754583 1754588) (-1108 "TBAGG.spad" 1751949 1751972 1752674 1752689) (-1107 "TBAGG.spad" 1751212 1751237 1751939 1751944) (-1106 "TANEXP.spad" 1750620 1750631 1751202 1751207) (-1105 "TALGOP.spad" 1750344 1750355 1750610 1750615) (-1104 "TABLEAU.spad" 1749825 1749836 1750334 1750339) (-1103 "TABLE.spad" 1747586 1747609 1747856 1747871) (-1102 "TABLBUMP.spad" 1744365 1744376 1747576 1747581) (-1101 "SYSTEM.spad" 1743593 1743602 1744355 1744360) (-1100 "SYSSOLP.spad" 1741076 1741087 1743583 1743588) (-1099 "SYSPTR.spad" 1740975 1740984 1741066 1741071) (-1098 "SYSNNI.spad" 1740198 1740209 1740965 1740970) (-1097 "SYSINT.spad" 1739602 1739613 1740188 1740193) (-1096 "SYNTAX.spad" 1735936 1735945 1739592 1739597) (-1095 "SYMTAB.spad" 1734004 1734013 1735926 1735931) (-1094 "SYMS.spad" 1730033 1730042 1733994 1733999) (-1093 "SYMPOLY.spad" 1729166 1729177 1729248 1729375) (-1092 "SYMFUNC.spad" 1728667 1728678 1729156 1729161) (-1091 "SYMBOL.spad" 1726162 1726171 1728657 1728662) (-1090 "SUTS.spad" 1723275 1723303 1724694 1724791) (-1089 "SUPXS.spad" 1720617 1720645 1721466 1721615) (-1088 "SUPFRACF.spad" 1719722 1719740 1720607 1720612) (-1087 "SUP2.spad" 1719114 1719127 1719712 1719717) (-1086 "SUP.spad" 1716198 1716209 1716971 1717124) (-1085 "SUMRF.spad" 1715172 1715183 1716188 1716193) (-1084 "SUMFS.spad" 1714801 1714818 1715162 1715167) (-1083 "SULS.spad" 1706821 1706849 1707779 1708202) (-1082 "syntax.spad" 1706590 1706599 1706811 1706816) (-1081 "SUCH.spad" 1706280 1706295 1706580 1706585) (-1080 "SUBSPACE.spad" 1698411 1698426 1706270 1706275) (-1079 "SUBRESP.spad" 1697581 1697595 1698367 1698372) (-1078 "STTFNC.spad" 1694049 1694065 1697571 1697576) (-1077 "STTF.spad" 1690148 1690164 1694039 1694044) (-1076 "STTAYLOR.spad" 1682825 1682836 1690055 1690060) (-1075 "STRTBL.spad" 1680749 1680766 1680898 1680913) (-1074 "STRING.spad" 1679506 1679515 1679891 1679906) (-1073 "STREAM3.spad" 1679079 1679094 1679496 1679501) (-1072 "STREAM2.spad" 1678207 1678220 1679069 1679074) (-1071 "STREAM1.spad" 1677913 1677924 1678197 1678202) (-1070 "STREAM.spad" 1674808 1674819 1677415 1677430) (-1069 "STINPROD.spad" 1673744 1673760 1674798 1674803) (-1068 "STEPAST.spad" 1672978 1672987 1673734 1673739) (-1067 "STEP.spad" 1672295 1672304 1672968 1672973) (-1066 "STBL.spad" 1670159 1670187 1670326 1670341) (-1065 "STAGG.spad" 1668858 1668869 1670149 1670154) (-1064 "STAGG.spad" 1667555 1667568 1668848 1668853) (-1063 "STACK.spad" 1666989 1667000 1667239 1667254) (-1062 "SRING.spad" 1666749 1666758 1666979 1666984) (-1061 "SREGSET.spad" 1664332 1664349 1666234 1666249) (-1060 "SRDCMPK.spad" 1662909 1662929 1664322 1664327) (-1059 "SRAGG.spad" 1658104 1658113 1662889 1662904) (-1058 "SRAGG.spad" 1653307 1653318 1658094 1658099) (-1057 "SQMATRIX.spad" 1650996 1651014 1651912 1651987) (-1056 "SPLTREE.spad" 1645750 1645763 1650546 1650561) (-1055 "SPLNODE.spad" 1642370 1642383 1645740 1645745) (-1054 "SPFCAT.spad" 1641179 1641188 1642360 1642365) (-1053 "SPECOUT.spad" 1639731 1639740 1641169 1641174) (-1052 "SPADXPT.spad" 1631822 1631831 1639721 1639726) (-1051 "spad-parser.spad" 1631287 1631296 1631812 1631817) (-1050 "SPADAST.spad" 1630988 1630997 1631277 1631282) (-1049 "SPACEC.spad" 1615203 1615214 1630978 1630983) (-1048 "SPACE3.spad" 1614979 1614990 1615193 1615198) (-1047 "SORTPAK.spad" 1614528 1614541 1614935 1614940) (-1046 "SOLVETRA.spad" 1612291 1612302 1614518 1614523) (-1045 "SOLVESER.spad" 1610747 1610758 1612281 1612286) (-1044 "SOLVERAD.spad" 1606773 1606784 1610737 1610742) (-1043 "SOLVEFOR.spad" 1605235 1605253 1606763 1606768) (-1042 "SNTSCAT.spad" 1604847 1604864 1605215 1605230) (-1041 "SMTS.spad" 1603164 1603190 1604441 1604538) (-1040 "SMP.spad" 1600972 1600992 1601362 1601489) (-1039 "SMITH.spad" 1599817 1599842 1600962 1600967) (-1038 "SMATCAT.spad" 1597947 1597977 1599773 1599812) (-1037 "SMATCAT.spad" 1595997 1596029 1597825 1597830) (-1036 "aggcat.spad" 1595673 1595684 1595977 1595992) (-1035 "SKAGG.spad" 1594654 1594665 1595653 1595668) (-1034 "SINT.spad" 1593953 1593962 1594520 1594649) (-1033 "SIMPAN.spad" 1593681 1593690 1593943 1593948) (-1032 "SIGNRF.spad" 1592806 1592817 1593671 1593676) (-1031 "SIGNEF.spad" 1592092 1592109 1592796 1592801) (-1030 "syntax.spad" 1591509 1591518 1592082 1592087) (-1029 "SIG.spad" 1590871 1590880 1591499 1591504) (-1028 "SHP.spad" 1588815 1588830 1590827 1590832) (-1027 "SHDP.spad" 1578219 1578246 1578736 1578821) (-1026 "SGROUP.spad" 1577827 1577836 1578209 1578214) (-1025 "SGROUP.spad" 1577433 1577444 1577817 1577822) (-1024 "catdef.spad" 1577143 1577155 1577254 1577428) (-1023 "catdef.spad" 1576699 1576711 1576964 1577138) (-1022 "SGCF.spad" 1569838 1569847 1576689 1576694) (-1021 "SFRTCAT.spad" 1568796 1568813 1569818 1569833) (-1020 "SFRGCD.spad" 1567859 1567879 1568786 1568791) (-1019 "SFQCMPK.spad" 1562672 1562692 1567849 1567854) (-1018 "SEXOF.spad" 1562515 1562555 1562662 1562667) (-1017 "SEXCAT.spad" 1560343 1560383 1562505 1562510) (-1016 "SEX.spad" 1560235 1560244 1560333 1560338) (-1015 "SETMN.spad" 1558695 1558712 1560225 1560230) (-1014 "SETCAT.spad" 1558180 1558189 1558685 1558690) (-1013 "SETCAT.spad" 1557663 1557674 1558170 1558175) (-1012 "SETAGG.spad" 1554212 1554223 1557643 1557658) (-1011 "SETAGG.spad" 1550769 1550782 1554202 1554207) (-1010 "SET.spad" 1548927 1548938 1550026 1550053) (-1009 "syntax.spad" 1548630 1548639 1548917 1548922) (-1008 "SEGXCAT.spad" 1547786 1547799 1548620 1548625) (-1007 "SEGCAT.spad" 1546711 1546722 1547776 1547781) (-1006 "SEGBIND2.spad" 1546409 1546422 1546701 1546706) (-1005 "SEGBIND.spad" 1546167 1546178 1546356 1546361) (-1004 "SEGAST.spad" 1545897 1545906 1546157 1546162) (-1003 "SEG2.spad" 1545332 1545345 1545853 1545858) (-1002 "SEG.spad" 1545145 1545156 1545251 1545256) (-1001 "SDVAR.spad" 1544421 1544432 1545135 1545140) (-1000 "SDPOL.spad" 1542113 1542124 1542404 1542531) (-999 "SCPKG.spad" 1540203 1540213 1542103 1542108) (-998 "SCOPE.spad" 1539381 1539389 1540193 1540198) (-997 "SCACHE.spad" 1538078 1538088 1539371 1539376) (-996 "SASTCAT.spad" 1537988 1537996 1538068 1538073) (-995 "SAOS.spad" 1537861 1537869 1537978 1537983) (-994 "SAERFFC.spad" 1537575 1537594 1537851 1537856) (-993 "SAEFACT.spad" 1537277 1537296 1537565 1537570) (-992 "SAE.spad" 1534928 1534943 1535538 1535673) (-991 "RURPK.spad" 1532588 1532603 1534918 1534923) (-990 "RULESET.spad" 1532042 1532065 1532578 1532583) (-989 "RULECOLD.spad" 1531895 1531907 1532032 1532037) (-988 "RULE.spad" 1530144 1530167 1531885 1531890) (-987 "RTVALUE.spad" 1529880 1529888 1530134 1530139) (-986 "syntax.spad" 1529598 1529606 1529870 1529875) (-985 "RSETGCD.spad" 1526041 1526060 1529588 1529593) (-984 "RSETCAT.spad" 1516022 1516038 1526021 1526036) (-983 "RSETCAT.spad" 1506011 1506029 1516012 1516017) (-982 "RSDCMPK.spad" 1504512 1504531 1506001 1506006) (-981 "RRCC.spad" 1502897 1502926 1504502 1504507) (-980 "RRCC.spad" 1501280 1501311 1502887 1502892) (-979 "RPTAST.spad" 1500983 1500991 1501270 1501275) (-978 "RPOLCAT.spad" 1480488 1480502 1500851 1500978) (-977 "RPOLCAT.spad" 1459786 1459802 1480151 1480156) (-976 "ROMAN.spad" 1459115 1459123 1459652 1459781) (-975 "ROIRC.spad" 1458196 1458227 1459105 1459110) (-974 "RNS.spad" 1457173 1457181 1458098 1458191) (-973 "RNS.spad" 1456236 1456246 1457163 1457168) (-972 "RNGBIND.spad" 1455397 1455410 1456191 1456196) (-971 "RNG.spad" 1455006 1455014 1455387 1455392) (-970 "RNG.spad" 1454613 1454623 1454996 1455001) (-969 "RMODULE.spad" 1454395 1454405 1454603 1454608) (-968 "RMCAT2.spad" 1453816 1453872 1454385 1454390) (-967 "RMATRIX.spad" 1452638 1452656 1452980 1453007) (-966 "RMATCAT.spad" 1448288 1448318 1452606 1452633) (-965 "RMATCAT.spad" 1443816 1443848 1448136 1448141) (-964 "RLINSET.spad" 1443521 1443531 1443806 1443811) (-963 "RINTERP.spad" 1443410 1443429 1443511 1443516) (-962 "RING.spad" 1442881 1442889 1443390 1443405) (-961 "RING.spad" 1442360 1442370 1442871 1442876) (-960 "RIDIST.spad" 1441753 1441761 1442350 1442355) (-959 "RGCHAIN.spad" 1440010 1440025 1440903 1440918) (-958 "RGBCSPC.spad" 1439800 1439811 1440000 1440005) (-957 "RGBCMDL.spad" 1439363 1439374 1439790 1439795) (-956 "RFFACTOR.spad" 1438826 1438836 1439353 1439358) (-955 "RFFACT.spad" 1438562 1438573 1438816 1438821) (-954 "RFDIST.spad" 1437559 1437567 1438552 1438557) (-953 "RF.spad" 1435234 1435244 1437549 1437554) (-952 "RETSOL.spad" 1434654 1434666 1435224 1435229) (-951 "RETRACT.spad" 1434083 1434093 1434644 1434649) (-950 "RETRACT.spad" 1433510 1433522 1434073 1434078) (-949 "RETAST.spad" 1433323 1433331 1433500 1433505) (-948 "RESRING.spad" 1432671 1432717 1433261 1433318) (-947 "RESLATC.spad" 1431996 1432006 1432661 1432666) (-946 "REPSQ.spad" 1431728 1431738 1431986 1431991) (-945 "REPDB.spad" 1431436 1431446 1431718 1431723) (-944 "REP2.spad" 1421151 1421161 1431278 1431283) (-943 "REP1.spad" 1415372 1415382 1421101 1421106) (-942 "REP.spad" 1412927 1412935 1415362 1415367) (-941 "REGSET.spad" 1410604 1410620 1412412 1412427) (-940 "REF.spad" 1410123 1410133 1410594 1410599) (-939 "REDORDER.spad" 1409330 1409346 1410113 1410118) (-938 "RECLOS.spad" 1408227 1408246 1408930 1409023) (-937 "REALSOLV.spad" 1407368 1407376 1408217 1408222) (-936 "REAL0Q.spad" 1404667 1404681 1407358 1407363) (-935 "REAL0.spad" 1401512 1401526 1404657 1404662) (-934 "REAL.spad" 1401385 1401393 1401502 1401507) (-933 "RDUCEAST.spad" 1401107 1401115 1401375 1401380) (-932 "RDIV.spad" 1400763 1400787 1401097 1401102) (-931 "RDIST.spad" 1400331 1400341 1400753 1400758) (-930 "RDETRS.spad" 1399196 1399213 1400321 1400326) (-929 "RDETR.spad" 1397336 1397353 1399186 1399191) (-928 "RDEEFS.spad" 1396436 1396452 1397326 1397331) (-927 "RDEEF.spad" 1395447 1395463 1396426 1396431) (-926 "RCFIELD.spad" 1392666 1392674 1395349 1395442) (-925 "RCFIELD.spad" 1389971 1389981 1392656 1392661) (-924 "RCAGG.spad" 1387908 1387918 1389961 1389966) (-923 "RCAGG.spad" 1385774 1385786 1387829 1387834) (-922 "RATRET.spad" 1385135 1385145 1385764 1385769) (-921 "RATFACT.spad" 1384828 1384839 1385125 1385130) (-920 "RANDSRC.spad" 1384148 1384156 1384818 1384823) (-919 "RADUTIL.spad" 1383905 1383913 1384138 1384143) (-918 "RADIX.spad" 1380950 1380963 1382495 1382588) (-917 "RADFF.spad" 1378867 1378903 1378985 1379141) (-916 "RADCAT.spad" 1378463 1378471 1378857 1378862) (-915 "RADCAT.spad" 1378057 1378067 1378453 1378458) (-914 "QUEUE.spad" 1377483 1377493 1377741 1377756) (-913 "QUATCT2.spad" 1377104 1377122 1377473 1377478) (-912 "QUATCAT.spad" 1375275 1375285 1377034 1377099) (-911 "QUATCAT.spad" 1373211 1373223 1374972 1374977) (-910 "QUAT.spad" 1371818 1371828 1372160 1372225) (-909 "QUAGG.spad" 1370664 1370674 1371798 1371813) (-908 "QQUTAST.spad" 1370433 1370441 1370654 1370659) (-907 "QFORM.spad" 1370052 1370066 1370423 1370428) (-906 "QFCAT2.spad" 1369745 1369761 1370042 1370047) (-905 "QFCAT.spad" 1368448 1368458 1369647 1369740) (-904 "QFCAT.spad" 1366784 1366796 1367985 1367990) (-903 "QEQUAT.spad" 1366343 1366351 1366774 1366779) (-902 "QCMPACK.spad" 1361258 1361277 1366333 1366338) (-901 "QALGSET2.spad" 1359254 1359272 1361248 1361253) (-900 "QALGSET.spad" 1355359 1355391 1359168 1359173) (-899 "PWFFINTB.spad" 1352775 1352796 1355349 1355354) (-898 "PUSHVAR.spad" 1352114 1352133 1352765 1352770) (-897 "PTRANFN.spad" 1348250 1348260 1352104 1352109) (-896 "PTPACK.spad" 1345338 1345348 1348240 1348245) (-895 "PTFUNC2.spad" 1345161 1345175 1345328 1345333) (-894 "PTCAT.spad" 1344428 1344438 1345141 1345156) (-893 "PSQFR.spad" 1343743 1343767 1344418 1344423) (-892 "PSEUDLIN.spad" 1342629 1342639 1343733 1343738) (-891 "PSETPK.spad" 1329334 1329350 1342507 1342512) (-890 "PSETCAT.spad" 1323744 1323767 1329324 1329329) (-889 "PSETCAT.spad" 1318118 1318143 1323700 1323705) (-888 "PSCURVE.spad" 1317117 1317125 1318108 1318113) (-887 "PSCAT.spad" 1315900 1315929 1317015 1317112) (-886 "PSCAT.spad" 1314773 1314804 1315890 1315895) (-885 "PRTITION.spad" 1313471 1313479 1314763 1314768) (-884 "PRTDAST.spad" 1313190 1313198 1313461 1313466) (-883 "PRS.spad" 1302808 1302825 1313146 1313151) (-882 "PRQAGG.spad" 1302255 1302265 1302788 1302803) (-881 "PROPLOG.spad" 1301859 1301867 1302245 1302250) (-880 "PROPFUN2.spad" 1301482 1301495 1301849 1301854) (-879 "PROPFUN1.spad" 1300888 1300899 1301472 1301477) (-878 "PROPFRML.spad" 1299456 1299467 1300878 1300883) (-877 "PROPERTY.spad" 1298952 1298960 1299446 1299451) (-876 "PRODUCT.spad" 1296649 1296661 1296933 1296988) (-875 "PRINT.spad" 1296401 1296409 1296639 1296644) (-874 "PRIMES.spad" 1294662 1294672 1296391 1296396) (-873 "PRIMELT.spad" 1292783 1292797 1294652 1294657) (-872 "PRIMCAT.spad" 1292426 1292434 1292773 1292778) (-871 "PRIMARR2.spad" 1291193 1291205 1292416 1292421) (-870 "PRIMARR.spad" 1290099 1290109 1290269 1290284) (-869 "PREASSOC.spad" 1289481 1289493 1290089 1290094) (-868 "PR.spad" 1287999 1288011 1288698 1288825) (-867 "PPCURVE.spad" 1287136 1287144 1287989 1287994) (-866 "PORTNUM.spad" 1286927 1286935 1287126 1287131) (-865 "POLYROOT.spad" 1285776 1285798 1286883 1286888) (-864 "POLYLIFT.spad" 1285041 1285064 1285766 1285771) (-863 "POLYCATQ.spad" 1283167 1283189 1285031 1285036) (-862 "POLYCAT.spad" 1276669 1276690 1283035 1283162) (-861 "POLYCAT.spad" 1269691 1269714 1276059 1276064) (-860 "POLY2UP.spad" 1269143 1269157 1269681 1269686) (-859 "POLY2.spad" 1268740 1268752 1269133 1269138) (-858 "POLY.spad" 1266408 1266418 1266923 1267050) (-857 "POLUTIL.spad" 1265373 1265402 1266364 1266369) (-856 "POLTOPOL.spad" 1264121 1264136 1265363 1265368) (-855 "POINT.spad" 1262855 1262865 1262942 1262957) (-854 "PNTHEORY.spad" 1259557 1259565 1262845 1262850) (-853 "PMTOOLS.spad" 1258332 1258346 1259547 1259552) (-852 "PMSYM.spad" 1257881 1257891 1258322 1258327) (-851 "PMQFCAT.spad" 1257472 1257486 1257871 1257876) (-850 "PMPREDFS.spad" 1256934 1256956 1257462 1257467) (-849 "PMPRED.spad" 1256421 1256435 1256924 1256929) (-848 "PMPLCAT.spad" 1255498 1255516 1256350 1256355) (-847 "PMLSAGG.spad" 1255083 1255097 1255488 1255493) (-846 "PMKERNEL.spad" 1254662 1254674 1255073 1255078) (-845 "PMINS.spad" 1254242 1254252 1254652 1254657) (-844 "PMFS.spad" 1253819 1253837 1254232 1254237) (-843 "PMDOWN.spad" 1253109 1253123 1253809 1253814) (-842 "PMASSFS.spad" 1252084 1252100 1253099 1253104) (-841 "PMASS.spad" 1251102 1251110 1252074 1252079) (-840 "PLOTTOOL.spad" 1250882 1250890 1251092 1251097) (-839 "PLOT3D.spad" 1247346 1247354 1250872 1250877) (-838 "PLOT1.spad" 1246519 1246529 1247336 1247341) (-837 "PLOT.spad" 1241442 1241450 1246509 1246514) (-836 "PLEQN.spad" 1228844 1228871 1241432 1241437) (-835 "PINTERPA.spad" 1228628 1228644 1228834 1228839) (-834 "PINTERP.spad" 1228250 1228269 1228618 1228623) (-833 "PID.spad" 1227224 1227232 1228176 1228245) (-832 "PICOERCE.spad" 1226881 1226891 1227214 1227219) (-831 "PI.spad" 1226498 1226506 1226855 1226876) (-830 "PGROEB.spad" 1225107 1225121 1226488 1226493) (-829 "PGE.spad" 1216780 1216788 1225097 1225102) (-828 "PGCD.spad" 1215734 1215751 1216770 1216775) (-827 "PFRPAC.spad" 1214883 1214893 1215724 1215729) (-826 "PFR.spad" 1211586 1211596 1214785 1214878) (-825 "PFOTOOLS.spad" 1210844 1210860 1211576 1211581) (-824 "PFOQ.spad" 1210214 1210232 1210834 1210839) (-823 "PFO.spad" 1209633 1209660 1210204 1210209) (-822 "PFECAT.spad" 1207343 1207351 1209559 1209628) (-821 "PFECAT.spad" 1205081 1205091 1207299 1207304) (-820 "PFBRU.spad" 1202969 1202981 1205071 1205076) (-819 "PFBR.spad" 1200529 1200552 1202959 1202964) (-818 "PF.spad" 1200103 1200115 1200334 1200427) (-817 "PERMGRP.spad" 1194873 1194883 1200093 1200098) (-816 "PERMCAT.spad" 1193534 1193544 1194853 1194868) (-815 "PERMAN.spad" 1192090 1192104 1193524 1193529) (-814 "PERM.spad" 1187900 1187910 1191923 1191938) (-813 "PENDTREE.spad" 1187314 1187324 1187594 1187599) (-812 "PDSPC.spad" 1186127 1186137 1187304 1187309) (-811 "PDSPC.spad" 1184938 1184950 1186117 1186122) (-810 "PDRING.spad" 1184780 1184790 1184918 1184933) (-809 "PDMOD.spad" 1184596 1184608 1184748 1184775) (-808 "PDECOMP.spad" 1184066 1184083 1184586 1184591) (-807 "PDDOM.spad" 1183504 1183517 1184056 1184061) (-806 "PDDOM.spad" 1182940 1182955 1183494 1183499) (-805 "PCOMP.spad" 1182793 1182806 1182930 1182935) (-804 "PBWLB.spad" 1181391 1181408 1182783 1182788) (-803 "PATTERN2.spad" 1181129 1181141 1181381 1181386) (-802 "PATTERN1.spad" 1179473 1179489 1181119 1181124) (-801 "PATTERN.spad" 1174048 1174058 1179463 1179468) (-800 "PATRES2.spad" 1173720 1173734 1174038 1174043) (-799 "PATRES.spad" 1171303 1171315 1173710 1173715) (-798 "PATMATCH.spad" 1169544 1169575 1171055 1171060) (-797 "PATMAB.spad" 1168973 1168983 1169534 1169539) (-796 "PATLRES.spad" 1168059 1168073 1168963 1168968) (-795 "PATAB.spad" 1167823 1167833 1168049 1168054) (-794 "PARTPERM.spad" 1165879 1165887 1167813 1167818) (-793 "PARSURF.spad" 1165313 1165341 1165869 1165874) (-792 "PARSU2.spad" 1165110 1165126 1165303 1165308) (-791 "script-parser.spad" 1164630 1164638 1165100 1165105) (-790 "PARSCURV.spad" 1164064 1164092 1164620 1164625) (-789 "PARSC2.spad" 1163855 1163871 1164054 1164059) (-788 "PARPCURV.spad" 1163317 1163345 1163845 1163850) (-787 "PARPC2.spad" 1163108 1163124 1163307 1163312) (-786 "PARAMAST.spad" 1162236 1162244 1163098 1163103) (-785 "PAN2EXPR.spad" 1161648 1161656 1162226 1162231) (-784 "PALETTE.spad" 1160762 1160770 1161638 1161643) (-783 "PAIR.spad" 1159836 1159849 1160405 1160410) (-782 "PADICRC.spad" 1157241 1157259 1158404 1158497) (-781 "PADICRAT.spad" 1155301 1155313 1155514 1155607) (-780 "PADICCT.spad" 1153850 1153862 1155227 1155296) (-779 "PADIC.spad" 1153553 1153565 1153776 1153845) (-778 "PADEPAC.spad" 1152242 1152261 1153543 1153548) (-777 "PADE.spad" 1150994 1151010 1152232 1152237) (-776 "OWP.spad" 1150242 1150272 1150852 1150919) (-775 "OVERSET.spad" 1149815 1149823 1150232 1150237) (-774 "OVAR.spad" 1149596 1149619 1149805 1149810) (-773 "OUTFORM.spad" 1139004 1139012 1149586 1149591) (-772 "OUTBFILE.spad" 1138438 1138446 1138994 1138999) (-771 "OUTBCON.spad" 1137508 1137516 1138428 1138433) (-770 "OUTBCON.spad" 1136576 1136586 1137498 1137503) (-769 "OUT.spad" 1135694 1135702 1136566 1136571) (-768 "OSI.spad" 1135169 1135177 1135684 1135689) (-767 "OSGROUP.spad" 1135087 1135095 1135159 1135164) (-766 "ORTHPOL.spad" 1133598 1133608 1135030 1135035) (-765 "OREUP.spad" 1133092 1133120 1133319 1133358) (-764 "ORESUP.spad" 1132434 1132458 1132813 1132852) (-763 "OREPCTO.spad" 1130323 1130335 1132354 1132359) (-762 "OREPCAT.spad" 1124510 1124520 1130279 1130318) (-761 "OREPCAT.spad" 1118587 1118599 1124358 1124363) (-760 "ORDTYPE.spad" 1117824 1117832 1118577 1118582) (-759 "ORDTYPE.spad" 1117059 1117069 1117814 1117819) (-758 "ORDSTRCT.spad" 1116845 1116860 1117008 1117013) (-757 "ORDSET.spad" 1116545 1116553 1116835 1116840) (-756 "ORDRING.spad" 1116362 1116370 1116525 1116540) (-755 "ORDMON.spad" 1116217 1116225 1116352 1116357) (-754 "ORDFUNS.spad" 1115349 1115365 1116207 1116212) (-753 "ORDFIN.spad" 1115169 1115177 1115339 1115344) (-752 "ORDCOMP2.spad" 1114462 1114474 1115159 1115164) (-751 "ORDCOMP.spad" 1112988 1112998 1114070 1114099) (-750 "OPSIG.spad" 1112650 1112658 1112978 1112983) (-749 "OPQUERY.spad" 1112231 1112239 1112640 1112645) (-748 "OPERCAT.spad" 1111697 1111707 1112221 1112226) (-747 "OPERCAT.spad" 1111161 1111173 1111687 1111692) (-746 "OP.spad" 1110903 1110913 1110983 1111050) (-745 "ONECOMP2.spad" 1110327 1110339 1110893 1110898) (-744 "ONECOMP.spad" 1109133 1109143 1109935 1109964) (-743 "OMSAGG.spad" 1108933 1108943 1109101 1109128) (-742 "OMLO.spad" 1108366 1108378 1108819 1108858) (-741 "OINTDOM.spad" 1108129 1108137 1108292 1108361) (-740 "OFMONOID.spad" 1106268 1106278 1108085 1108090) (-739 "ODVAR.spad" 1105529 1105539 1106258 1106263) (-738 "ODR.spad" 1105173 1105199 1105341 1105490) (-737 "ODPOL.spad" 1102821 1102831 1103161 1103288) (-736 "ODP.spad" 1092369 1092389 1092742 1092827) (-735 "ODETOOLS.spad" 1091018 1091037 1092359 1092364) (-734 "ODESYS.spad" 1088712 1088729 1091008 1091013) (-733 "ODERTRIC.spad" 1084745 1084762 1088669 1088674) (-732 "ODERED.spad" 1084144 1084168 1084735 1084740) (-731 "ODERAT.spad" 1081777 1081794 1084134 1084139) (-730 "ODEPRRIC.spad" 1078870 1078892 1081767 1081772) (-729 "ODEPRIM.spad" 1076268 1076290 1078860 1078865) (-728 "ODEPAL.spad" 1075654 1075678 1076258 1076263) (-727 "ODEINT.spad" 1075089 1075105 1075644 1075649) (-726 "ODEEF.spad" 1070584 1070600 1075079 1075084) (-725 "ODECONST.spad" 1070129 1070147 1070574 1070579) (-724 "OCTCT2.spad" 1069770 1069788 1070119 1070124) (-723 "OCT.spad" 1068085 1068095 1068799 1068838) (-722 "OCAMON.spad" 1067933 1067941 1068075 1068080) (-721 "OC.spad" 1065729 1065739 1067889 1067928) (-720 "OC.spad" 1063264 1063276 1065426 1065431) (-719 "OASGP.spad" 1063079 1063087 1063254 1063259) (-718 "OAMONS.spad" 1062601 1062609 1063069 1063074) (-717 "OAMON.spad" 1062359 1062367 1062591 1062596) (-716 "OAMON.spad" 1062115 1062125 1062349 1062354) (-715 "OAGROUP.spad" 1061653 1061661 1062105 1062110) (-714 "OAGROUP.spad" 1061189 1061199 1061643 1061648) (-713 "NUMTUBE.spad" 1060780 1060796 1061179 1061184) (-712 "NUMQUAD.spad" 1048756 1048764 1060770 1060775) (-711 "NUMODE.spad" 1040108 1040116 1048746 1048751) (-710 "NUMFMT.spad" 1038948 1038956 1040098 1040103) (-709 "NUMERIC.spad" 1031063 1031073 1038754 1038759) (-708 "NTSCAT.spad" 1029583 1029599 1031043 1031058) (-707 "NTPOLFN.spad" 1029160 1029170 1029526 1029531) (-706 "NSUP2.spad" 1028552 1028564 1029150 1029155) (-705 "NSUP.spad" 1021989 1021999 1026409 1026562) (-704 "NSMP.spad" 1018901 1018920 1019193 1019320) (-703 "NREP.spad" 1017303 1017317 1018891 1018896) (-702 "NPCOEF.spad" 1016549 1016569 1017293 1017298) (-701 "NORMRETR.spad" 1016147 1016186 1016539 1016544) (-700 "NORMPK.spad" 1014089 1014108 1016137 1016142) (-699 "NORMMA.spad" 1013777 1013803 1014079 1014084) (-698 "NONE1.spad" 1013453 1013463 1013767 1013772) (-697 "NONE.spad" 1013194 1013202 1013443 1013448) (-696 "NODE1.spad" 1012681 1012697 1013184 1013189) (-695 "NNI.spad" 1011576 1011584 1012655 1012676) (-694 "NLINSOL.spad" 1010202 1010212 1011566 1011571) (-693 "NFINTBAS.spad" 1007762 1007779 1010192 1010197) (-692 "NETCLT.spad" 1007736 1007747 1007752 1007757) (-691 "NCODIV.spad" 1005960 1005976 1007726 1007731) (-690 "NCNTFRAC.spad" 1005602 1005616 1005950 1005955) (-689 "NCEP.spad" 1003768 1003782 1005592 1005597) (-688 "NASRING.spad" 1003372 1003380 1003758 1003763) (-687 "NASRING.spad" 1002974 1002984 1003362 1003367) (-686 "NARNG.spad" 1002374 1002382 1002964 1002969) (-685 "NARNG.spad" 1001772 1001782 1002364 1002369) (-684 "NAALG.spad" 1001337 1001347 1001740 1001767) (-683 "NAALG.spad" 1000922 1000934 1001327 1001332) (-682 "MULTSQFR.spad" 997880 997897 1000912 1000917) (-681 "MULTFACT.spad" 997263 997280 997870 997875) (-680 "MTSCAT.spad" 995357 995378 997161 997258) (-679 "MTHING.spad" 995016 995026 995347 995352) (-678 "MSYSCMD.spad" 994450 994458 995006 995011) (-677 "MSETAGG.spad" 994295 994305 994418 994445) (-676 "MSET.spad" 992093 992103 993840 993867) (-675 "MRING.spad" 989070 989082 991801 991868) (-674 "MRF2.spad" 988632 988646 989060 989065) (-673 "MRATFAC.spad" 988178 988195 988622 988627) (-672 "MPRFF.spad" 986218 986237 988168 988173) (-671 "MPOLY.spad" 984022 984037 984381 984508) (-670 "MPCPF.spad" 983286 983305 984012 984017) (-669 "MPC3.spad" 983103 983143 983276 983281) (-668 "MPC2.spad" 982757 982790 983093 983098) (-667 "MONOTOOL.spad" 981108 981125 982747 982752) (-666 "catdef.spad" 980541 980552 980762 981103) (-665 "catdef.spad" 979939 979950 980195 980536) (-664 "MONOID.spad" 979260 979268 979929 979934) (-663 "MONOID.spad" 978579 978589 979250 979255) (-662 "MONOGEN.spad" 977327 977340 978439 978574) (-661 "MONOGEN.spad" 976097 976112 977211 977216) (-660 "MONADWU.spad" 974177 974185 976087 976092) (-659 "MONADWU.spad" 972255 972265 974167 974172) (-658 "MONAD.spad" 971415 971423 972245 972250) (-657 "MONAD.spad" 970573 970583 971405 971410) (-656 "MOEBIUS.spad" 969309 969323 970553 970568) (-655 "MODULE.spad" 969179 969189 969277 969304) (-654 "MODULE.spad" 969069 969081 969169 969174) (-653 "MODRING.spad" 968404 968443 969049 969064) (-652 "MODOP.spad" 967061 967073 968226 968293) (-651 "MODMONOM.spad" 966792 966810 967051 967056) (-650 "MODMON.spad" 963862 963874 964577 964730) (-649 "MODFIELD.spad" 963224 963263 963764 963857) (-648 "MMLFORM.spad" 962084 962092 963214 963219) (-647 "MMAP.spad" 961826 961860 962074 962079) (-646 "MLO.spad" 960285 960295 961782 961821) (-645 "MLIFT.spad" 958897 958914 960275 960280) (-644 "MKUCFUNC.spad" 958432 958450 958887 958892) (-643 "MKRECORD.spad" 958020 958033 958422 958427) (-642 "MKFUNC.spad" 957427 957437 958010 958015) (-641 "MKFLCFN.spad" 956395 956405 957417 957422) (-640 "MKBCFUNC.spad" 955890 955908 956385 956390) (-639 "MHROWRED.spad" 954401 954411 955880 955885) (-638 "MFINFACT.spad" 953801 953823 954391 954396) (-637 "MESH.spad" 951596 951604 953791 953796) (-636 "MDDFACT.spad" 949815 949825 951586 951591) (-635 "MDAGG.spad" 949106 949116 949795 949810) (-634 "MCDEN.spad" 948316 948328 949096 949101) (-633 "MAYBE.spad" 947616 947627 948306 948311) (-632 "MATSTOR.spad" 944932 944942 947606 947611) (-631 "MATRIX.spad" 943723 943733 944207 944222) (-630 "MATLIN.spad" 941091 941115 943607 943612) (-629 "MATCAT2.spad" 940373 940421 941081 941086) (-628 "MATCAT.spad" 932081 932103 940353 940368) (-627 "MATCAT.spad" 923649 923673 931923 931928) (-626 "MAPPKG3.spad" 922564 922578 923639 923644) (-625 "MAPPKG2.spad" 921902 921914 922554 922559) (-624 "MAPPKG1.spad" 920730 920740 921892 921897) (-623 "MAPPAST.spad" 920069 920077 920720 920725) (-622 "MAPHACK3.spad" 919881 919895 920059 920064) (-621 "MAPHACK2.spad" 919650 919662 919871 919876) (-620 "MAPHACK1.spad" 919294 919304 919640 919645) (-619 "MAGMA.spad" 917100 917117 919284 919289) (-618 "MACROAST.spad" 916695 916703 917090 917095) (-617 "LZSTAGG.spad" 913949 913959 916685 916690) (-616 "LZSTAGG.spad" 911201 911213 913939 913944) (-615 "LWORD.spad" 907946 907963 911191 911196) (-614 "LSTAST.spad" 907730 907738 907936 907941) (-613 "LSQM.spad" 906020 906034 906414 906453) (-612 "LSPP.spad" 905555 905572 906010 906015) (-611 "LSMP1.spad" 903398 903412 905545 905550) (-610 "LSMP.spad" 902255 902283 903388 903393) (-609 "LSAGG.spad" 901936 901946 902235 902250) (-608 "LSAGG.spad" 901625 901637 901926 901931) (-607 "LPOLY.spad" 900587 900606 901481 901550) (-606 "LPEFRAC.spad" 899858 899868 900577 900582) (-605 "LOGIC.spad" 899460 899468 899848 899853) (-604 "LOGIC.spad" 899060 899070 899450 899455) (-603 "LODOOPS.spad" 897990 898002 899050 899055) (-602 "LODOF.spad" 897036 897053 897947 897952) (-601 "LODOCAT.spad" 895702 895712 896992 897031) (-600 "LODOCAT.spad" 894366 894378 895658 895663) (-599 "LODO2.spad" 893680 893692 894087 894126) (-598 "LODO1.spad" 893121 893131 893401 893440) (-597 "LODO.spad" 892546 892562 892842 892881) (-596 "LODEEF.spad" 891348 891366 892536 892541) (-595 "LO.spad" 890749 890763 891282 891309) (-594 "LNAGG.spad" 886936 886946 890739 890744) (-593 "LNAGG.spad" 883087 883099 886892 886897) (-592 "LMOPS.spad" 879855 879872 883077 883082) (-591 "LMODULE.spad" 879639 879649 879845 879850) (-590 "LMDICT.spad" 878871 878881 879119 879134) (-589 "LLINSET.spad" 878578 878588 878861 878866) (-588 "LITERAL.spad" 878484 878495 878568 878573) (-587 "LIST3.spad" 877795 877809 878474 878479) (-586 "LIST2MAP.spad" 874722 874734 877785 877790) (-585 "LIST2.spad" 873424 873436 874712 874717) (-584 "LIST.spad" 871157 871167 872500 872515) (-583 "LINSET.spad" 870936 870946 871147 871152) (-582 "LINFORM.spad" 870399 870411 870904 870931) (-581 "LINEXP.spad" 869142 869152 870389 870394) (-580 "LINELT.spad" 868513 868525 869025 869052) (-579 "LINDEP.spad" 867362 867374 868425 868430) (-578 "LINBASIS.spad" 866998 867013 867352 867357) (-577 "LIMITRF.spad" 864945 864955 866988 866993) (-576 "LIMITPS.spad" 863855 863868 864935 864940) (-575 "LIECAT.spad" 863339 863349 863781 863850) (-574 "LIECAT.spad" 862851 862863 863295 863300) (-573 "LIE.spad" 860855 860867 862129 862271) (-572 "LIB.spad" 858708 858716 859154 859169) (-571 "LGROBP.spad" 856061 856080 858698 858703) (-570 "LFCAT.spad" 855120 855128 856051 856056) (-569 "LF.spad" 854075 854091 855110 855115) (-568 "LEXTRIPK.spad" 849698 849713 854065 854070) (-567 "LEXP.spad" 847717 847744 849678 849693) (-566 "LETAST.spad" 847416 847424 847707 847712) (-565 "LEADCDET.spad" 845822 845839 847406 847411) (-564 "LAZM3PK.spad" 844566 844588 845812 845817) (-563 "LAUPOL.spad" 843233 843246 844133 844202) (-562 "LAPLACE.spad" 842816 842832 843223 843228) (-561 "LALG.spad" 842592 842602 842796 842811) (-560 "LALG.spad" 842376 842388 842582 842587) (-559 "LA.spad" 841816 841830 842298 842337) (-558 "KVTFROM.spad" 841559 841569 841806 841811) (-557 "KTVLOGIC.spad" 841103 841111 841549 841554) (-556 "KRCFROM.spad" 840849 840859 841093 841098) (-555 "KOVACIC.spad" 839580 839597 840839 840844) (-554 "KONVERT.spad" 839302 839312 839570 839575) (-553 "KOERCE.spad" 839039 839049 839292 839297) (-552 "KERNEL2.spad" 838742 838754 839029 839034) (-551 "KERNEL.spad" 837462 837472 838591 838596) (-550 "KDAGG.spad" 836571 836593 837442 837457) (-549 "KDAGG.spad" 835688 835712 836561 836566) (-548 "KAFILE.spad" 834115 834131 834350 834365) (-547 "JVMOP.spad" 834028 834036 834105 834110) (-546 "JVMMDACC.spad" 833082 833090 834018 834023) (-545 "JVMFDACC.spad" 832398 832406 833072 833077) (-544 "JVMCSTTG.spad" 831127 831135 832388 832393) (-543 "JVMCFACC.spad" 830573 830581 831117 831122) (-542 "JVMBCODE.spad" 830484 830492 830563 830568) (-541 "JORDAN.spad" 828301 828313 829762 829904) (-540 "JOINAST.spad" 828003 828011 828291 828296) (-539 "IXAGG.spad" 826136 826160 827993 827998) (-538 "IXAGG.spad" 824099 824125 825958 825963) (-537 "ITUPLE.spad" 823275 823285 824089 824094) (-536 "ITRIGMNP.spad" 822122 822141 823265 823270) (-535 "ITFUN3.spad" 821628 821642 822112 822117) (-534 "ITFUN2.spad" 821372 821384 821618 821623) (-533 "ITFORM.spad" 820727 820735 821362 821367) (-532 "ITAYLOR.spad" 818721 818736 820591 820688) (-531 "ISUPS.spad" 811170 811185 817707 817804) (-530 "ISUMP.spad" 810671 810687 811160 811165) (-529 "ISAST.spad" 810390 810398 810661 810666) (-528 "IRURPK.spad" 809107 809126 810380 810385) (-527 "IRSN.spad" 807111 807119 809097 809102) (-526 "IRRF2F.spad" 805604 805614 807067 807072) (-525 "IRREDFFX.spad" 805205 805216 805594 805599) (-524 "IROOT.spad" 803544 803554 805195 805200) (-523 "IRFORM.spad" 802868 802876 803534 803539) (-522 "IR2F.spad" 802082 802098 802858 802863) (-521 "IR2.spad" 801110 801126 802072 802077) (-520 "IR.spad" 798946 798960 800992 801019) (-519 "IPRNTPK.spad" 798706 798714 798936 798941) (-518 "IPF.spad" 798271 798283 798511 798604) (-517 "IPADIC.spad" 798040 798066 798197 798266) (-516 "IP4ADDR.spad" 797597 797605 798030 798035) (-515 "IOMODE.spad" 797119 797127 797587 797592) (-514 "IOBFILE.spad" 796504 796512 797109 797114) (-513 "IOBCON.spad" 796369 796377 796494 796499) (-512 "INVLAPLA.spad" 796018 796034 796359 796364) (-511 "INTTR.spad" 789412 789429 796008 796013) (-510 "INTTOOLS.spad" 787220 787236 789039 789044) (-509 "INTSLPE.spad" 786548 786556 787210 787215) (-508 "INTRVL.spad" 786114 786124 786462 786543) (-507 "INTRF.spad" 784546 784560 786104 786109) (-506 "INTRET.spad" 783978 783988 784536 784541) (-505 "INTRAT.spad" 782713 782730 783968 783973) (-504 "INTPM.spad" 781176 781192 782434 782439) (-503 "INTPAF.spad" 779052 779070 781105 781110) (-502 "INTHERTR.spad" 778326 778343 779042 779047) (-501 "INTHERAL.spad" 777996 778020 778316 778321) (-500 "INTHEORY.spad" 774435 774443 777986 777991) (-499 "INTG0.spad" 768199 768217 774364 774369) (-498 "INTFACT.spad" 767266 767276 768189 768194) (-497 "INTEF.spad" 765677 765693 767256 767261) (-496 "INTDOM.spad" 764300 764308 765603 765672) (-495 "INTDOM.spad" 762985 762995 764290 764295) (-494 "INTCAT.spad" 761252 761262 762899 762980) (-493 "INTBIT.spad" 760759 760767 761242 761247) (-492 "INTALG.spad" 759947 759974 760749 760754) (-491 "INTAF.spad" 759447 759463 759937 759942) (-490 "INTABL.spad" 757315 757346 757478 757493) (-489 "INT8.spad" 757195 757203 757305 757310) (-488 "INT64.spad" 757074 757082 757185 757190) (-487 "INT32.spad" 756953 756961 757064 757069) (-486 "INT16.spad" 756832 756840 756943 756948) (-485 "INT.spad" 756358 756366 756698 756827) (-484 "INS.spad" 753861 753869 756260 756353) (-483 "INS.spad" 751450 751460 753851 753856) (-482 "INPSIGN.spad" 750920 750933 751440 751445) (-481 "INPRODPF.spad" 750016 750035 750910 750915) (-480 "INPRODFF.spad" 749104 749128 750006 750011) (-479 "INNMFACT.spad" 748079 748096 749094 749099) (-478 "INMODGCD.spad" 747583 747613 748069 748074) (-477 "INFSP.spad" 745880 745902 747573 747578) (-476 "INFPROD0.spad" 744960 744979 745870 745875) (-475 "INFORM1.spad" 744585 744595 744950 744955) (-474 "INFORM.spad" 741796 741804 744575 744580) (-473 "INFINITY.spad" 741348 741356 741786 741791) (-472 "INETCLTS.spad" 741325 741333 741338 741343) (-471 "INEP.spad" 739871 739893 741315 741320) (-470 "INDE.spad" 739520 739537 739781 739786) (-469 "INCRMAPS.spad" 738957 738967 739510 739515) (-468 "INBFILE.spad" 738053 738061 738947 738952) (-467 "INBFF.spad" 733903 733914 738043 738048) (-466 "INBCON.spad" 732169 732177 733893 733898) (-465 "INBCON.spad" 730433 730443 732159 732164) (-464 "INAST.spad" 730094 730102 730423 730428) (-463 "IMPTAST.spad" 729802 729810 730084 730089) (-462 "IMATQF.spad" 728896 728940 729758 729763) (-461 "IMATLIN.spad" 727517 727541 728852 728857) (-460 "IFF.spad" 726930 726946 727201 727294) (-459 "IFAST.spad" 726544 726552 726920 726925) (-458 "IFARRAY.spad" 723922 723937 725620 725635) (-457 "IFAMON.spad" 723784 723801 723878 723883) (-456 "IEVALAB.spad" 723197 723209 723774 723779) (-455 "IEVALAB.spad" 722608 722622 723187 723192) (-454 "indexedp.spad" 722164 722176 722598 722603) (-453 "IDPOAMS.spad" 721842 721854 722076 722081) (-452 "IDPOAM.spad" 721484 721496 721754 721759) (-451 "IDPO.spad" 720898 720910 721396 721401) (-450 "IDPC.spad" 719613 719625 720888 720893) (-449 "IDPAM.spad" 719280 719292 719525 719530) (-448 "IDPAG.spad" 718949 718961 719192 719197) (-447 "IDENT.spad" 718601 718609 718939 718944) (-446 "catdef.spad" 718372 718383 718484 718596) (-445 "IDECOMP.spad" 715611 715629 718362 718367) (-444 "IDEAL.spad" 710573 710612 715559 715564) (-443 "ICDEN.spad" 709786 709802 710563 710568) (-442 "ICARD.spad" 709179 709187 709776 709781) (-441 "IBPTOOLS.spad" 707786 707803 709169 709174) (-440 "boolean.spad" 707191 707204 707324 707339) (-439 "IBATOOL.spad" 704176 704195 707181 707186) (-438 "IBACHIN.spad" 702683 702698 704166 704171) (-437 "array2.spad" 702180 702202 702367 702382) (-436 "IARRAY1.spad" 701110 701125 701256 701271) (-435 "IAN.spad" 699492 699500 700941 701034) (-434 "IALGFACT.spad" 699103 699136 699482 699487) (-433 "HYPCAT.spad" 698527 698535 699093 699098) (-432 "HYPCAT.spad" 697949 697959 698517 698522) (-431 "HOSTNAME.spad" 697765 697773 697939 697944) (-430 "HOMOTOP.spad" 697508 697518 697755 697760) (-429 "HOAGG.spad" 695115 695125 697498 697503) (-428 "HOAGG.spad" 692472 692484 694857 694862) (-427 "HEXADEC.spad" 690697 690705 691062 691155) (-426 "HEUGCD.spad" 689788 689799 690687 690692) (-425 "HELLFDIV.spad" 689394 689418 689778 689783) (-424 "HEAP.spad" 688863 688873 689078 689093) (-423 "HEADAST.spad" 688404 688412 688853 688858) (-422 "HDP.spad" 677948 677964 678325 678410) (-421 "HDMP.spad" 675495 675510 676111 676238) (-420 "HB.spad" 673770 673778 675485 675490) (-419 "HASHTBL.spad" 671590 671621 671801 671816) (-418 "HASAST.spad" 671306 671314 671580 671585) (-417 "HACKPI.spad" 670797 670805 671208 671301) (-416 "GTSET.spad" 669575 669591 670282 670297) (-415 "GSTBL.spad" 667432 667467 667606 667621) (-414 "GSERIES.spad" 664804 664831 665623 665772) (-413 "GROUP.spad" 664077 664085 664784 664799) (-412 "GROUP.spad" 663358 663368 664067 664072) (-411 "GROEBSOL.spad" 661852 661873 663348 663353) (-410 "GRMOD.spad" 660433 660445 661842 661847) (-409 "GRMOD.spad" 659012 659026 660423 660428) (-408 "GRIMAGE.spad" 651925 651933 659002 659007) (-407 "GRDEF.spad" 650304 650312 651915 651920) (-406 "GRAY.spad" 648775 648783 650294 650299) (-405 "GRALG.spad" 647870 647882 648765 648770) (-404 "GRALG.spad" 646963 646977 647860 647865) (-403 "GPOLSET.spad" 646272 646295 646484 646499) (-402 "GOSPER.spad" 645549 645567 646262 646267) (-401 "GMODPOL.spad" 644697 644724 645517 645544) (-400 "GHENSEL.spad" 643780 643794 644687 644692) (-399 "GENUPS.spad" 640073 640086 643770 643775) (-398 "GENUFACT.spad" 639650 639660 640063 640068) (-397 "GENPGCD.spad" 639252 639269 639640 639645) (-396 "GENMFACT.spad" 638704 638723 639242 639247) (-395 "GENEEZ.spad" 636663 636676 638694 638699) (-394 "GDMP.spad" 634052 634069 634826 634953) (-393 "GCNAALG.spad" 627975 628002 633846 633913) (-392 "GCDDOM.spad" 627167 627175 627901 627970) (-391 "GCDDOM.spad" 626421 626431 627157 627162) (-390 "GBINTERN.spad" 622441 622479 626411 626416) (-389 "GBF.spad" 618224 618262 622431 622436) (-388 "GBEUCLID.spad" 616106 616144 618214 618219) (-387 "GB.spad" 613632 613670 616062 616067) (-386 "GAUSSFAC.spad" 612945 612953 613622 613627) (-385 "GALUTIL.spad" 611271 611281 612901 612906) (-384 "GALPOLYU.spad" 609725 609738 611261 611266) (-383 "GALFACTU.spad" 607938 607957 609715 609720) (-382 "GALFACT.spad" 598151 598162 607928 607933) (-381 "FUNDESC.spad" 597829 597837 598141 598146) (-380 "FUNCTION.spad" 597678 597690 597819 597824) (-379 "FT.spad" 595978 595986 597668 597673) (-378 "FSUPFACT.spad" 594892 594911 595928 595933) (-377 "FST.spad" 592978 592986 594882 594887) (-376 "FSRED.spad" 592458 592474 592968 592973) (-375 "FSPRMELT.spad" 591324 591340 592415 592420) (-374 "FSPECF.spad" 589415 589431 591314 591319) (-373 "FSINT.spad" 589075 589091 589405 589410) (-372 "FSERIES.spad" 588266 588278 588895 588994) (-371 "FSCINT.spad" 587583 587599 588256 588261) (-370 "FSAGG2.spad" 586318 586334 587573 587578) (-369 "FSAGG.spad" 585447 585457 586286 586313) (-368 "FSAGG.spad" 584526 584538 585367 585372) (-367 "FS2UPS.spad" 579041 579075 584516 584521) (-366 "FS2EXPXP.spad" 578182 578205 579031 579036) (-365 "FS2.spad" 577837 577853 578172 578177) (-364 "FS.spad" 572109 572119 577616 577832) (-363 "FS.spad" 566183 566195 571692 571697) (-362 "FRUTIL.spad" 565137 565147 566173 566178) (-361 "FRNAALG.spad" 560414 560424 565079 565132) (-360 "FRNAALG.spad" 555703 555715 560370 560375) (-359 "FRNAAF2.spad" 555151 555169 555693 555698) (-358 "FRMOD.spad" 554559 554589 555080 555085) (-357 "FRIDEAL2.spad" 554163 554195 554549 554554) (-356 "FRIDEAL.spad" 553388 553409 554143 554158) (-355 "FRETRCT.spad" 552907 552917 553378 553383) (-354 "FRETRCT.spad" 552333 552345 552806 552811) (-353 "FRAMALG.spad" 550713 550726 552289 552328) (-352 "FRAMALG.spad" 549125 549140 550703 550708) (-351 "FRAC2.spad" 548730 548742 549115 549120) (-350 "FRAC.spad" 546717 546727 547104 547277) (-349 "FR2.spad" 546053 546065 546707 546712) (-348 "FR.spad" 539841 539851 545114 545183) (-347 "FPS.spad" 536680 536688 539731 539836) (-346 "FPS.spad" 533547 533557 536600 536605) (-345 "FPC.spad" 532593 532601 533449 533542) (-344 "FPC.spad" 531725 531735 532583 532588) (-343 "FPATMAB.spad" 531487 531497 531715 531720) (-342 "FPARFRAC.spad" 530329 530346 531477 531482) (-341 "FORDER.spad" 530020 530044 530319 530324) (-340 "FNLA.spad" 529444 529466 529988 530015) (-339 "FNCAT.spad" 528039 528047 529434 529439) (-338 "FNAME.spad" 527931 527939 528029 528034) (-337 "FMONOID.spad" 527612 527622 527887 527892) (-336 "FMONCAT.spad" 524781 524791 527602 527607) (-335 "FMCAT.spad" 522457 522475 524749 524776) (-334 "FM1.spad" 521822 521834 522391 522418) (-333 "FM.spad" 521437 521449 521676 521703) (-332 "FLOATRP.spad" 519180 519194 521427 521432) (-331 "FLOATCP.spad" 516619 516633 519170 519175) (-330 "FLOAT.spad" 513710 513718 516485 516614) (-329 "FLINEXP.spad" 513432 513442 513700 513705) (-328 "FLINEXP.spad" 513111 513123 513381 513386) (-327 "FLASORT.spad" 512437 512449 513101 513106) (-326 "FLALG.spad" 510107 510126 512363 512432) (-325 "FLAGG2.spad" 508824 508840 510097 510102) (-324 "FLAGG.spad" 505900 505910 508814 508819) (-323 "FLAGG.spad" 502869 502881 505785 505790) (-322 "FINRALG.spad" 500954 500967 502825 502864) (-321 "FINRALG.spad" 498965 498980 500838 500843) (-320 "FINITE.spad" 498117 498125 498955 498960) (-319 "FINITE.spad" 497267 497277 498107 498112) (-318 "aggcat.spad" 494197 494207 497257 497262) (-317 "FINAGG.spad" 491092 491104 494154 494159) (-316 "FINAALG.spad" 480277 480287 491034 491087) (-315 "FINAALG.spad" 469474 469486 480233 480238) (-314 "FILECAT.spad" 468008 468025 469464 469469) (-313 "FILE.spad" 467591 467601 467998 468003) (-312 "FIELD.spad" 466997 467005 467493 467586) (-311 "FIELD.spad" 466489 466499 466987 466992) (-310 "FGROUP.spad" 465152 465162 466469 466484) (-309 "FGLMICPK.spad" 463947 463962 465142 465147) (-308 "FFX.spad" 463333 463348 463666 463759) (-307 "FFSLPE.spad" 462844 462865 463323 463328) (-306 "FFPOLY2.spad" 461904 461921 462834 462839) (-305 "FFPOLY.spad" 453246 453257 461894 461899) (-304 "FFP.spad" 452654 452674 452965 453058) (-303 "FFNBX.spad" 451177 451197 452373 452466) (-302 "FFNBP.spad" 449701 449718 450896 450989) (-301 "FFNB.spad" 448169 448190 449385 449478) (-300 "FFINTBAS.spad" 445683 445702 448159 448164) (-299 "FFIELDC.spad" 443268 443276 445585 445678) (-298 "FFIELDC.spad" 440939 440949 443258 443263) (-297 "FFHOM.spad" 439711 439728 440929 440934) (-296 "FFF.spad" 437154 437165 439701 439706) (-295 "FFCGX.spad" 436012 436032 436873 436966) (-294 "FFCGP.spad" 434912 434932 435731 435824) (-293 "FFCG.spad" 433707 433728 434596 434689) (-292 "FFCAT2.spad" 433454 433494 433697 433702) (-291 "FFCAT.spad" 426619 426641 433293 433449) (-290 "FFCAT.spad" 419863 419887 426539 426544) (-289 "FF.spad" 419314 419330 419547 419640) (-288 "FEVALAB.spad" 419022 419032 419304 419309) (-287 "FEVALAB.spad" 418506 418518 418790 418795) (-286 "FDIVCAT.spad" 416602 416626 418496 418501) (-285 "FDIVCAT.spad" 414696 414722 416592 416597) (-284 "FDIV2.spad" 414352 414392 414686 414691) (-283 "FDIV.spad" 413810 413834 414342 414347) (-282 "FCTRDATA.spad" 412818 412826 413800 413805) (-281 "FCOMP.spad" 412197 412207 412808 412813) (-280 "FAXF.spad" 405232 405246 412099 412192) (-279 "FAXF.spad" 398319 398335 405188 405193) (-278 "FARRAY.spad" 396362 396372 397395 397410) (-277 "FAMR.spad" 394506 394518 396260 396357) (-276 "FAMR.spad" 392634 392648 394390 394395) (-275 "FAMONOID.spad" 392318 392328 392588 392593) (-274 "FAMONC.spad" 390638 390650 392308 392313) (-273 "FAGROUP.spad" 390278 390288 390534 390561) (-272 "FACUTIL.spad" 388490 388507 390268 390273) (-271 "FACTFUNC.spad" 387692 387702 388480 388485) (-270 "EXPUPXS.spad" 384584 384607 385883 386032) (-269 "EXPRTUBE.spad" 381872 381880 384574 384579) (-268 "EXPRODE.spad" 379040 379056 381862 381867) (-267 "EXPR2UPS.spad" 375162 375175 379030 379035) (-266 "EXPR2.spad" 374867 374879 375152 375157) (-265 "EXPR.spad" 370512 370522 371226 371513) (-264 "EXPEXPAN.spad" 367457 367482 368089 368182) (-263 "EXITAST.spad" 367193 367201 367447 367452) (-262 "EXIT.spad" 366864 366872 367183 367188) (-261 "EVALCYC.spad" 366324 366338 366854 366859) (-260 "EVALAB.spad" 365904 365914 366314 366319) (-259 "EVALAB.spad" 365482 365494 365894 365899) (-258 "EUCDOM.spad" 363072 363080 365408 365477) (-257 "EUCDOM.spad" 360724 360734 363062 363067) (-256 "ES2.spad" 360237 360253 360714 360719) (-255 "ES1.spad" 359807 359823 360227 360232) (-254 "ES.spad" 352678 352686 359797 359802) (-253 "ES.spad" 345470 345480 352591 352596) (-252 "ERROR.spad" 342797 342805 345460 345465) (-251 "EQTBL.spad" 340619 340641 340828 340843) (-250 "EQ2.spad" 340337 340349 340609 340614) (-249 "EQ.spad" 335243 335253 338038 338144) (-248 "EP.spad" 331569 331579 335233 335238) (-247 "ENV.spad" 330247 330255 331559 331564) (-246 "ENTIRER.spad" 329915 329923 330191 330242) (-245 "ENTIRER.spad" 329627 329637 329905 329910) (-244 "EMR.spad" 328915 328956 329553 329622) (-243 "ELTAGG.spad" 327169 327188 328905 328910) (-242 "ELTAGG.spad" 325387 325408 327125 327130) (-241 "ELTAB.spad" 324862 324875 325377 325382) (-240 "ELFUTS.spad" 324297 324316 324852 324857) (-239 "ELEMFUN.spad" 323986 323994 324287 324292) (-238 "ELEMFUN.spad" 323673 323683 323976 323981) (-237 "ELAGG.spad" 321644 321654 323653 323668) (-236 "ELAGG.spad" 319554 319566 321565 321570) (-235 "ELABOR.spad" 318900 318908 319544 319549) (-234 "ELABEXPR.spad" 317832 317840 318890 318895) (-233 "EFUPXS.spad" 314608 314638 317788 317793) (-232 "EFULS.spad" 311444 311467 314564 314569) (-231 "EFSTRUC.spad" 309459 309475 311434 311439) (-230 "EF.spad" 304235 304251 309449 309454) (-229 "EAB.spad" 302535 302543 304225 304230) (-228 "DVARCAT.spad" 299541 299551 302525 302530) (-227 "DVARCAT.spad" 296545 296557 299531 299536) (-226 "DSMP.spad" 294278 294292 294583 294710) (-225 "DSEXT.spad" 293580 293590 294268 294273) (-224 "DSEXT.spad" 292802 292814 293492 293497) (-223 "DROPT1.spad" 292467 292477 292792 292797) (-222 "DROPT0.spad" 287332 287340 292457 292462) (-221 "DROPT.spad" 281291 281299 287322 287327) (-220 "DRAWPT.spad" 279464 279472 281281 281286) (-219 "DRAWHACK.spad" 278772 278782 279454 279459) (-218 "DRAWCX.spad" 276250 276258 278762 278767) (-217 "DRAWCURV.spad" 275797 275812 276240 276245) (-216 "DRAWCFUN.spad" 265329 265337 275787 275792) (-215 "DRAW.spad" 258205 258218 265319 265324) (-214 "DQAGG.spad" 256395 256405 258185 258200) (-213 "DPOLCAT.spad" 251752 251768 256263 256390) (-212 "DPOLCAT.spad" 247195 247213 251708 251713) (-211 "DPMO.spad" 239809 239825 239947 240141) (-210 "DPMM.spad" 232436 232454 232561 232755) (-209 "DOMTMPLT.spad" 232207 232215 232426 232431) (-208 "DOMCTOR.spad" 231962 231970 232197 232202) (-207 "DOMAIN.spad" 231073 231081 231952 231957) (-206 "DMP.spad" 228666 228681 229236 229363) (-205 "DMEXT.spad" 228533 228543 228634 228661) (-204 "DLP.spad" 227893 227903 228523 228528) (-203 "DLIST.spad" 226365 226375 226969 226984) (-202 "DLAGG.spad" 224782 224792 226355 226360) (-201 "DIVRING.spad" 224324 224332 224726 224777) (-200 "DIVRING.spad" 223910 223920 224314 224319) (-199 "DISPLAY.spad" 222100 222108 223900 223905) (-198 "DIRPROD2.spad" 220918 220936 222090 222095) (-197 "DIRPROD.spad" 210199 210215 210839 210924) (-196 "DIRPCAT.spad" 209494 209510 210109 210194) (-195 "DIRPCAT.spad" 208403 208421 209020 209025) (-194 "DIOSP.spad" 207228 207236 208393 208398) (-193 "DIOPS.spad" 206224 206234 207208 207223) (-192 "DIOPS.spad" 205167 205179 206153 206158) (-191 "catdef.spad" 205025 205033 205157 205162) (-190 "DIFRING.spad" 204863 204871 205005 205020) (-189 "DIFFSPC.spad" 204442 204450 204853 204858) (-188 "DIFFSPC.spad" 204019 204029 204432 204437) (-187 "DIFFMOD.spad" 203508 203518 203987 204014) (-186 "DIFFDOM.spad" 202673 202684 203498 203503) (-185 "DIFFDOM.spad" 201836 201849 202663 202668) (-184 "DIFEXT.spad" 201655 201665 201816 201831) (-183 "DIAGG.spad" 201285 201295 201635 201650) (-182 "DIAGG.spad" 200923 200935 201275 201280) (-181 "DHMATRIX.spad" 199312 199322 200457 200472) (-180 "DFSFUN.spad" 192952 192960 199302 199307) (-179 "DFLOAT.spad" 189559 189567 192842 192947) (-178 "DFINTTLS.spad" 187790 187806 189549 189554) (-177 "DERHAM.spad" 185704 185736 187770 187785) (-176 "DEQUEUE.spad" 185105 185115 185388 185403) (-175 "DEGRED.spad" 184722 184736 185095 185100) (-174 "DEFINTRF.spad" 182304 182314 184712 184717) (-173 "DEFINTEF.spad" 180842 180858 182294 182299) (-172 "DEFAST.spad" 180226 180234 180832 180837) (-171 "DECIMAL.spad" 178455 178463 178816 178909) (-170 "DDFACT.spad" 176276 176293 178445 178450) (-169 "DBLRESP.spad" 175876 175900 176266 176271) (-168 "DBASIS.spad" 175502 175517 175866 175871) (-167 "DBASE.spad" 174166 174176 175492 175497) (-166 "DATAARY.spad" 173652 173665 174156 174161) (-165 "CYCLOTOM.spad" 173158 173166 173642 173647) (-164 "CYCLES.spad" 169950 169958 173148 173153) (-163 "CVMP.spad" 169367 169377 169940 169945) (-162 "CTRIGMNP.spad" 167867 167883 169357 169362) (-161 "CTORKIND.spad" 167470 167478 167857 167862) (-160 "CTORCAT.spad" 166711 166719 167460 167465) (-159 "CTORCAT.spad" 165950 165960 166701 166706) (-158 "CTORCALL.spad" 165539 165549 165940 165945) (-157 "CTOR.spad" 165230 165238 165529 165534) (-156 "CSTTOOLS.spad" 164475 164488 165220 165225) (-155 "CRFP.spad" 158247 158260 164465 164470) (-154 "CRCEAST.spad" 157967 157975 158237 158242) (-153 "CRAPACK.spad" 157034 157044 157957 157962) (-152 "CPMATCH.spad" 156535 156550 156956 156961) (-151 "CPIMA.spad" 156240 156259 156525 156530) (-150 "COORDSYS.spad" 151249 151259 156230 156235) (-149 "CONTOUR.spad" 150676 150684 151239 151244) (-148 "CONTFRAC.spad" 146426 146436 150578 150671) (-147 "CONDUIT.spad" 146184 146192 146416 146421) (-146 "COMRING.spad" 145858 145866 146122 146179) (-145 "COMPPROP.spad" 145376 145384 145848 145853) (-144 "COMPLPAT.spad" 145143 145158 145366 145371) (-143 "COMPLEX2.spad" 144858 144870 145133 145138) (-142 "COMPLEX.spad" 140564 140574 140808 141066) (-141 "COMPILER.spad" 140113 140121 140554 140559) (-140 "COMPFACT.spad" 139715 139729 140103 140108) (-139 "COMPCAT.spad" 137790 137800 139452 139710) (-138 "COMPCAT.spad" 135606 135618 137270 137275) (-137 "COMMUPC.spad" 135354 135372 135596 135601) (-136 "COMMONOP.spad" 134887 134895 135344 135349) (-135 "COMMAAST.spad" 134650 134658 134877 134882) (-134 "COMM.spad" 134461 134469 134640 134645) (-133 "COMBOPC.spad" 133384 133392 134451 134456) (-132 "COMBINAT.spad" 132151 132161 133374 133379) (-131 "COMBF.spad" 129573 129589 132141 132146) (-130 "COLOR.spad" 128410 128418 129563 129568) (-129 "COLONAST.spad" 128076 128084 128400 128405) (-128 "CMPLXRT.spad" 127787 127804 128066 128071) (-127 "CLLCTAST.spad" 127449 127457 127777 127782) (-126 "CLIP.spad" 123557 123565 127439 127444) (-125 "CLIF.spad" 122212 122228 123513 123552) (-124 "CLAGG.spad" 120204 120214 122202 122207) (-123 "CLAGG.spad" 118055 118067 120055 120060) (-122 "CINTSLPE.spad" 117410 117423 118045 118050) (-121 "CHVAR.spad" 115548 115570 117400 117405) (-120 "CHARZ.spad" 115463 115471 115528 115543) (-119 "CHARPOL.spad" 114989 114999 115453 115458) (-118 "CHARNZ.spad" 114751 114759 114969 114984) (-117 "CHAR.spad" 112119 112127 114741 114746) (-116 "CFCAT.spad" 111447 111455 112109 112114) (-115 "CDEN.spad" 110667 110681 111437 111442) (-114 "CCLASS.spad" 108736 108744 109998 110025) (-113 "CATEGORY.spad" 107810 107818 108726 108731) (-112 "CATCTOR.spad" 107701 107709 107800 107805) (-111 "CATAST.spad" 107327 107335 107691 107696) (-110 "CASEAST.spad" 107041 107049 107317 107322) (-109 "CARTEN2.spad" 106431 106458 107031 107036) (-108 "CARTEN.spad" 102183 102207 106421 106426) (-107 "CARD.spad" 99478 99486 102157 102178) (-106 "CAPSLAST.spad" 99260 99268 99468 99473) (-105 "CACHSET.spad" 98884 98892 99250 99255) (-104 "CABMON.spad" 98439 98447 98874 98879) (-103 "BYTEORD.spad" 98114 98122 98429 98434) (-102 "BYTEBUF.spad" 96050 96058 97256 97271) (-101 "BYTE.spad" 95525 95533 96040 96045) (-100 "BTREE.spad" 94675 94685 95209 95224) (-99 "BTOURN.spad" 93758 93767 94359 94374) (-98 "BTCAT.spad" 93328 93337 93738 93753) (-97 "BTCAT.spad" 92906 92917 93318 93323) (-96 "BTAGG.spad" 92385 92392 92886 92901) (-95 "BTAGG.spad" 91872 91881 92375 92380) (-94 "BSTREE.spad" 90691 90700 91556 91571) (-93 "BRILL.spad" 88897 88907 90681 90686) (-92 "BRAGG.spad" 87854 87863 88887 88892) (-91 "BRAGG.spad" 86775 86786 87810 87815) (-90 "BPADICRT.spad" 84835 84846 85081 85174) (-89 "BPADIC.spad" 84508 84519 84761 84830) (-88 "BOUNDZRO.spad" 84165 84181 84498 84503) (-87 "BOP1.spad" 81624 81633 84155 84160) (-86 "BOP.spad" 76767 76774 81614 81619) (-85 "BOOLEAN.spad" 76316 76323 76757 76762) (-84 "BOOLE.spad" 75967 75974 76306 76311) (-83 "BOOLE.spad" 75616 75625 75957 75962) (-82 "BMODULE.spad" 75329 75340 75584 75611) (-81 "BITS.spad" 74653 74660 74867 74882) (-80 "catdef.spad" 74536 74546 74643 74648) (-79 "catdef.spad" 74287 74297 74526 74531) (-78 "BINDING.spad" 73709 73716 74277 74282) (-77 "BINARY.spad" 71944 71951 72299 72392) (-76 "BGAGG.spad" 71264 71273 71924 71939) (-75 "BGAGG.spad" 70592 70603 71254 71259) (-74 "BEZOUT.spad" 69733 69759 70542 70547) (-73 "BBTREE.spad" 66688 66697 69417 69432) (-72 "BASTYPE.spad" 66188 66195 66678 66683) (-71 "BASTYPE.spad" 65686 65695 66178 66183) (-70 "BALFACT.spad" 65146 65158 65676 65681) (-69 "AUTOMOR.spad" 64597 64606 65126 65141) (-68 "ATTREG.spad" 61729 61736 64373 64592) (-67 "ATTRAST.spad" 61446 61453 61719 61724) (-66 "ATRIG.spad" 60916 60923 61436 61441) (-65 "ATRIG.spad" 60384 60393 60906 60911) (-64 "ASTCAT.spad" 60288 60295 60374 60379) (-63 "ASTCAT.spad" 60190 60199 60278 60283) (-62 "ASTACK.spad" 59606 59615 59874 59889) (-61 "ASSOCEQ.spad" 58440 58451 59562 59567) (-60 "ARRAY2.spad" 57975 57984 58124 58139) (-59 "ARRAY12.spad" 56688 56699 57965 57970) (-58 "ARRAY1.spad" 55418 55427 55764 55779) (-57 "ARR2CAT.spad" 51470 51491 55398 55413) (-56 "ARR2CAT.spad" 47530 47553 51460 51465) (-55 "ARITY.spad" 46902 46909 47520 47525) (-54 "APPRULE.spad" 46186 46208 46892 46897) (-53 "APPLYORE.spad" 45805 45818 46176 46181) (-52 "ANY1.spad" 44876 44885 45795 45800) (-51 "ANY.spad" 43727 43734 44866 44871) (-50 "ANTISYM.spad" 42172 42188 43707 43722) (-49 "ANON.spad" 41881 41888 42162 42167) (-48 "AN.spad" 40349 40356 41712 41805) (-47 "AMR.spad" 38534 38545 40247 40344) (-46 "AMR.spad" 36582 36595 38297 38302) (-45 "ALIST.spad" 33306 33327 33656 33671) (-44 "ALGSC.spad" 32441 32467 33178 33231) (-43 "ALGPKG.spad" 28224 28235 32397 32402) (-42 "ALGMFACT.spad" 27417 27431 28214 28219) (-41 "ALGMANIP.spad" 24918 24933 27261 27266) (-40 "ALGFF.spad" 22736 22763 22953 23109) (-39 "ALGFACT.spad" 21855 21865 22726 22731) (-38 "ALGEBRA.spad" 21688 21697 21811 21850) (-37 "ALGEBRA.spad" 21553 21564 21678 21683) (-36 "ALAGG.spad" 21081 21102 21533 21548) (-35 "AHYP.spad" 20462 20469 21071 21076) (-34 "AGG.spad" 19276 19283 20452 20457) (-33 "AGG.spad" 18054 18063 19232 19237) (-32 "AF.spad" 16499 16514 18003 18008) (-31 "ADDAST.spad" 16185 16192 16489 16494) (-30 "ACPLOT.spad" 15062 15069 16175 16180) (-29 "ACFS.spad" 12919 12928 14964 15057) (-28 "ACFS.spad" 10862 10873 12909 12914) (-27 "ACF.spad" 7616 7623 10764 10857) (-26 "ACF.spad" 4456 4465 7606 7611) (-25 "ABELSG.spad" 3997 4004 4446 4451) (-24 "ABELSG.spad" 3536 3545 3987 3992) (-23 "ABELMON.spad" 2964 2971 3526 3531) (-22 "ABELMON.spad" 2390 2399 2954 2959) (-21 "ABELGRP.spad" 2055 2062 2380 2385) (-20 "ABELGRP.spad" 1718 1727 2045 2050) (-19 "A1AGG.spad" 870 879 1698 1713) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 6c82584c..05e9935c 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,5 +1,5 @@ -(200821 . 3577897422) +(200821 . 3577905062) ((((-773)) . T)) ((((-773)) . T)) ((((-773)) . T)) diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index 4a8c72aa..dbbec366 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,5 +1,5 @@ -(30 . 3577897418) +(30 . 3577905058) (4000 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index cc673121..efc8722a 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,5 +1,5 @@ -(2819833 . 3577897428) +(2819823 . 3577905069) ((-1733 (((-85) (-1 (-85) |#2| |#2|) $) 86 T ELT) (((-85) $) NIL T ELT)) (-1731 (($ (-1 (-85) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-3790 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-1147 (-485)) |#2|) 44 T ELT)) (-2298 (($ $) 80 T ELT)) (-3844 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3421 (((-485) (-1 (-85) |#2|) $) 27 T ELT) (((-485) |#2| $) NIL T ELT) (((-485) |#2| $ (-485)) 96 T ELT)) (-3520 (($ (-1 (-85) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2610 (((-584 |#2|) $) 13 T ELT)) (-3328 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-3960 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2305 (($ |#2| $ (-485)) NIL T ELT) (($ $ $ (-485)) 67 T ELT)) (-1355 (((-3 |#2| "failed") (-1 (-85) |#2|) $) 29 T ELT)) (-1948 (((-85) (-1 (-85) |#2|) $) 23 T ELT)) (-3802 ((|#2| $ (-485) |#2|) NIL T ELT) ((|#2| $ (-485)) NIL T ELT) (($ $ (-1147 (-485))) 66 T ELT)) (-2306 (($ $ (-485)) 76 T ELT) (($ $ (-1147 (-485))) 75 T ELT)) (-1947 (((-695) (-1 (-85) |#2|) $) 34 T ELT) (((-695) |#2| $) NIL T ELT)) (-1732 (($ $ $ (-485)) 69 T ELT)) (-3402 (($ $) 68 T ELT)) (-3532 (($ (-584 |#2|)) 73 T ELT)) (-3804 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-584 $)) 85 T ELT)) (-3948 (((-773) $) 92 T ELT)) (-1949 (((-85) (-1 (-85) |#2|) $) 22 T ELT)) (-3058 (((-85) $ $) 95 T ELT)) (-2687 (((-85) $ $) 99 T ELT))) (((-18 |#1| |#2|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -1947 ((-695) |#2| |#1|)) (-15 -3328 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2687 ((-85) |#1| |#1|)) (-15 -1731 (|#1| |#1|)) (-15 -1731 (|#1| (-1 (-85) |#2| |#2|) |#1|)) (-15 -2298 (|#1| |#1|)) (-15 -1732 (|#1| |#1| |#1| (-485))) (-15 -1733 ((-85) |#1|)) (-15 -3520 (|#1| |#1| |#1|)) (-15 -3421 ((-485) |#2| |#1| (-485))) (-15 -3421 ((-485) |#2| |#1|)) (-15 -3421 ((-485) (-1 (-85) |#2|) |#1|)) (-15 -1733 ((-85) (-1 (-85) |#2| |#2|) |#1|)) (-15 -3520 (|#1| (-1 (-85) |#2| |#2|) |#1| |#1|)) (-15 -1949 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#2|) |#1|)) (-15 -1947 ((-695) (-1 (-85) |#2|) |#1|)) (-15 -2610 ((-584 |#2|) |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -3844 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -3790 (|#2| |#1| (-1147 (-485)) |#2|)) (-15 -2305 (|#1| |#1| |#1| (-485))) (-15 -2305 (|#1| |#2| |#1| (-485))) (-15 -2306 (|#1| |#1| (-1147 (-485)))) (-15 -2306 (|#1| |#1| (-485))) (-15 -3960 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3804 (|#1| (-584 |#1|))) (-15 -3804 (|#1| |#1| |#1|)) (-15 -3804 (|#1| |#2| |#1|)) (-15 -3804 (|#1| |#1| |#2|)) (-15 -3802 (|#1| |#1| (-1147 (-485)))) (-15 -3532 (|#1| (-584 |#2|))) (-15 -1355 ((-3 |#2| "failed") (-1 (-85) |#2|) |#1|)) (-15 -3802 (|#2| |#1| (-485))) (-15 -3802 (|#2| |#1| (-485) |#2|)) (-15 -3790 (|#2| |#1| (-485) |#2|)) (-15 -3960 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3402 (|#1| |#1|))) (-19 |#2|) (-1130)) (T -18)) NIL @@ -1034,7 +1034,7 @@ NIL ((-2570 (((-85) $ $) 19 (|has| |#1| (-72)) ELT)) (-3726 (($) 7 T CONST)) (-3844 ((|#1| (-1 |#1| |#1| |#1|) $) 44 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 43 T ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 42 (|has| |#1| (-72)) ELT)) (-2610 (((-584 |#1|) $) 29 T ELT)) (-3247 (((-85) |#1| $) 27 (|has| |#1| (-72)) ELT)) (-3328 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-3244 (((-1074) $) 22 (|has| |#1| (-1014)) ELT)) (-3245 (((-1034) $) 21 (|has| |#1| (-1014)) ELT)) (-1948 (((-85) (-1 (-85) |#1|) $) 31 T ELT)) (-3770 (($ $ (-584 (-249 |#1|))) 26 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-249 |#1|)) 25 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT) (($ $ (-584 |#1|) (-584 |#1|)) 23 (-12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-3405 (((-85) $) 8 T ELT)) (-3567 (($) 9 T ELT)) (-1947 (((-695) (-1 (-85) |#1|) $) 30 T ELT) (((-695) |#1| $) 28 (|has| |#1| (-72)) ELT)) (-3402 (($ $) 10 T ELT)) (-3948 (((-773) $) 17 (|has| |#1| (-553 (-773))) ELT)) (-1266 (((-85) $ $) 20 (|has| |#1| (-72)) ELT)) (-1949 (((-85) (-1 (-85) |#1|) $) 32 T ELT)) (-3058 (((-85) $ $) 18 (|has| |#1| (-72)) ELT)) (-3959 (((-695) $) 6 T ELT))) (((-318 |#1|) (-113) (-1130)) (T -318)) ((-3959 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-695)))) (-1949 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1948 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-85)))) (-1947 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-85) *4)) (-4 *1 (-318 *4)) (-4 *4 (-1130)) (-5 *2 (-695)))) (-2610 (*1 *2 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-5 *2 (-584 *3)))) (-3844 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1130)))) (-3844 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *1 (-318 *2)) (-4 *2 (-1130)))) (-1947 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-695)))) (-3247 (*1 *2 *3 *1) (-12 (-4 *1 (-318 *3)) (-4 *3 (-1130)) (-4 *3 (-72)) (-5 *2 (-85)))) (-3844 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-72)) (-4 *1 (-318 *2)) (-4 *2 (-1130))))) -(-13 (-429 |t#1|) (-10 -8 (-6 -3997) (-15 -3959 ((-695) $)) (-15 -1949 ((-85) (-1 (-85) |t#1|) $)) (-15 -1948 ((-85) (-1 (-85) |t#1|) $)) (-15 -1947 ((-695) (-1 (-85) |t#1|) $)) (-15 -2610 ((-584 |t#1|) $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1947 ((-695) |t#1| $)) (-15 -3247 ((-85) |t#1| $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|))) |%noBranch|))) +(-13 (-429 |t#1|) (-10 -8 (-15 -3959 ((-695) $)) (-15 -1949 ((-85) (-1 (-85) |t#1|) $)) (-15 -1948 ((-85) (-1 (-85) |t#1|) $)) (-15 -1947 ((-695) (-1 (-85) |t#1|) $)) (-15 -2610 ((-584 |t#1|) $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (IF (|has| |t#1| (-72)) (PROGN (-15 -1947 ((-695) |t#1| $)) (-15 -3247 ((-85) |t#1| $)) (-15 -3844 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|))) |%noBranch|))) (((-34) . T) ((-72) OR (|has| |#1| (-1014)) (|has| |#1| (-72))) ((-553 (-773)) OR (|has| |#1| (-1014)) (|has| |#1| (-553 (-773)))) ((-260 |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-429 |#1|) . T) ((-456 |#1| |#1|) -12 (|has| |#1| (-260 |#1|)) (|has| |#1| (-1014))) ((-13) . T) ((-1014) |has| |#1| (-1014)) ((-1130) . T)) ((-2996 (($) 15 T ELT))) (((-319 |#1|) (-10 -7 (-15 -2996 (|#1|))) (-320)) (T -319)) @@ -3681,7 +3681,7 @@ NIL ((-3598 ((|#1| (-584 |#1|)) 46 T ELT)) (-3600 ((|#1| |#1| (-485)) 24 T ELT)) (-3599 (((-1086 |#1|) |#1| (-831)) 20 T ELT))) (((-1106 |#1|) (-10 -7 (-15 -3598 (|#1| (-584 |#1|))) (-15 -3599 ((-1086 |#1|) |#1| (-831))) (-15 -3600 (|#1| |#1| (-485)))) (-312)) (T -1106)) ((-3600 (*1 *2 *2 *3) (-12 (-5 *3 (-485)) (-5 *1 (-1106 *2)) (-4 *2 (-312)))) (-3599 (*1 *2 *3 *4) (-12 (-5 *4 (-831)) (-5 *2 (-1086 *3)) (-5 *1 (-1106 *3)) (-4 *3 (-312)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-584 *2)) (-5 *1 (-1106 *2)) (-4 *2 (-312))))) -((-3601 (($) 10 T ELT) (($ (-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3407 (($ (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 65 T ELT) (($ (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2610 (((-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 35 T ELT) (((-584 |#3|) $) 37 T ELT) (((-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 35 T ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 55 T ELT) (($ (-1 |#3| |#3|) $) 29 T ELT) (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 55 T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 51 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 51 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 34 T ELT)) (-1275 (((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 58 T ELT)) (-3611 (($ (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2204 (((-584 |#2|) $) 19 T ELT)) (-2205 (((-85) |#2| $) 63 T ELT)) (-1355 (((-3 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 62 T ELT)) (-1276 (((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 67 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 71 T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-2206 (((-584 |#3|) $) 39 T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-695) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-695) |#3| $) NIL T ELT) (((-695) (-1 (-85) |#3|) $) 77 T ELT) (((-695) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3948 (((-773) $) 27 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 69 T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3058 (((-85) $ $) 49 T ELT))) +((-3601 (($) 10 T ELT) (($ (-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)))) 14 T ELT)) (-3407 (($ (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 63 T ELT) (($ (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-2610 (((-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 35 T ELT) (((-584 |#3|) $) NIL T ELT) (((-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 35 T ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) 29 T ELT) (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 53 T ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 49 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 34 T ELT)) (-1275 (((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 56 T ELT)) (-3611 (($ (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 16 T ELT)) (-2204 (((-584 |#2|) $) 19 T ELT)) (-2205 (((-85) |#2| $) 61 T ELT)) (-1355 (((-3 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) 60 T ELT)) (-1276 (((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) 65 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 69 T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-2206 (((-584 |#3|) $) 37 T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-695) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-695) |#3| $) NIL T ELT) (((-695) (-1 (-85) |#3|) $) 75 T ELT) (((-695) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) $) NIL T ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3948 (((-773) $) 27 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT) (((-85) (-1 (-85) |#3|) $) 67 T ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) $) NIL T ELT)) (-3058 (((-85) $ $) 47 T ELT))) (((-1107 |#1| |#2| |#3|) (-10 -7 (-15 -3058 ((-85) |#1| |#1|)) (-15 -3948 ((-773) |#1|)) (-15 -3960 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3601 (|#1| (-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))))) (-15 -3601 (|#1|)) (-15 -3960 (|#1| (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3328 (|#1| (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1949 ((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 ((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-695) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -2610 ((-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-695) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3407 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3960 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3328 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -1949 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1948 ((-85) (-1 (-85) |#3|) |#1|)) (-15 -1947 ((-695) (-1 (-85) |#3|) |#1|)) (-15 -2610 ((-584 |#3|) |#1|)) (-15 -1947 ((-695) |#3| |#1|)) (-15 -2206 ((-584 |#3|) |#1|)) (-15 -2205 ((-85) |#2| |#1|)) (-15 -2204 ((-584 |#2|) |#1|)) (-15 -3407 (|#1| (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3407 (|#1| (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1355 ((-3 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) #1#) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1275 ((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3611 (|#1| (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -1276 ((-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -3328 (|#1| (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-695) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) |#1|)) (-15 -2610 ((-584 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1947 ((-695) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1948 ((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -1949 ((-85) (-1 (-85) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|)) (-15 -3960 (|#1| (-1 (-2 (|:| -3862 |#2|) (|:| |entry| |#3|)) (-2 (|:| -3862 |#2|) (|:| |entry| |#3|))) |#1|))) (-1108 |#2| |#3|) (-1014) (-1014)) (T -1107)) NIL ((-2570 (((-85) $ $) 19 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3601 (($) 105 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 104 T ELT)) (-2199 (((-1186) $ |#1| |#1|) 93 (|has| $ (-6 -3998)) ELT)) (-3790 ((|#2| $ |#1| |#2|) 81 (|has| $ (-6 -3998)) ELT)) (-1571 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 48 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3712 (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 56 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-2232 (((-3 |#2| #1="failed") |#1| $) 64 T ELT)) (-3726 (($) 7 T CONST)) (-1354 (($ $) 58 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT)) (-3407 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 50 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 49 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT) (((-3 |#2| #1#) |#1| $) 65 T ELT)) (-3408 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 57 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) ELT) (($ (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 55 (|has| $ (-318 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) ELT)) (-3844 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 120 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 117 T ELT) (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 116 T ELT)) (-1577 ((|#2| $ |#1| |#2|) 80 (|has| $ (-6 -3998)) ELT)) (-3114 ((|#2| $ |#1|) 82 T ELT)) (-2201 ((|#1| $) 90 (|has| |#1| (-757)) ELT)) (-2610 (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 29 (|has| $ (-6 -3997)) ELT) (((-584 |#2|) $) 73 (|has| $ (-6 -3997)) ELT) (((-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 115 T ELT)) (-3247 (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 27 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3997))) ELT) (((-85) |#2| $) 75 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3997))) ELT) (((-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 119 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT)) (-2202 ((|#1| $) 89 (|has| |#1| (-757)) ELT)) (-3328 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 33 T ELT) (($ (-1 |#2| |#2|) $) 69 (|has| $ (-6 -3998)) ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 107 (|has| $ (-6 -3998)) ELT)) (-3960 (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 34 T ELT) (($ (-1 |#2| |#2|) $) 68 T ELT) (($ (-1 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 106 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 103 T ELT)) (-3244 (((-1074) $) 22 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-2233 (((-584 |#1|) $) 66 T ELT)) (-2234 (((-85) |#1| $) 67 T ELT)) (-1275 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 42 T ELT)) (-3611 (($ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 43 T ELT)) (-2204 (((-584 |#1|) $) 87 T ELT)) (-2205 (((-85) |#1| $) 86 T ELT)) (-3245 (((-1034) $) 21 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014)) (|has| |#2| (-1014)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-3803 ((|#2| $) 91 (|has| |#1| (-757)) ELT)) (-1355 (((-3 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) "failed") (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 54 T ELT)) (-2200 (($ $ |#2|) 92 (|has| $ (-6 -3998)) ELT)) (-1276 (((-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 44 T ELT)) (-1948 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 31 (|has| $ (-6 -3997)) ELT) (((-85) (-1 (-85) |#2|) $) 71 (|has| $ (-6 -3997)) ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 113 T ELT)) (-3770 (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 26 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 25 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 24 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 23 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 |#2|) (-584 |#2|)) 79 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ |#2| |#2|) 78 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-249 |#2|)) 77 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-249 |#2|))) 76 (-12 (|has| |#2| (-260 |#2|)) (|has| |#2| (-1014))) ELT) (($ $ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 111 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) 110 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 109 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT) (($ $ (-584 (-249 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))))) 108 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-260 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-1014))) ELT)) (-1223 (((-85) $ $) 11 T ELT)) (-2203 (((-85) |#2| $) 88 (-12 (|has| $ (-318 |#2|)) (|has| |#2| (-72))) ELT)) (-2206 (((-584 |#2|) $) 85 T ELT)) (-3405 (((-85) $) 8 T ELT)) (-3567 (($) 9 T ELT)) (-3802 ((|#2| $ |#1|) 84 T ELT) ((|#2| $ |#1| |#2|) 83 T ELT)) (-1467 (($) 52 T ELT) (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 51 T ELT)) (-1947 (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 30 (|has| $ (-6 -3997)) ELT) (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 28 (-12 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| $ (-6 -3997))) ELT) (((-695) |#2| $) 74 (-12 (|has| |#2| (-72)) (|has| $ (-6 -3997))) ELT) (((-695) (-1 (-85) |#2|) $) 72 (|has| $ (-6 -3997)) ELT) (((-695) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) $) 118 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) ELT) (((-695) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 114 T ELT)) (-3402 (($ $) 10 T ELT)) (-3974 (((-474) $) 59 (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-554 (-474))) ELT)) (-3532 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 53 T ELT)) (-3948 (((-773) $) 17 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773))) (|has| |#2| (-553 (-773))) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-553 (-773)))) ELT)) (-1266 (((-85) $ $) 20 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-1277 (($ (-584 (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)))) 45 T ELT)) (-1949 (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 32 (|has| $ (-6 -3997)) ELT) (((-85) (-1 (-85) |#2|) $) 70 (|has| $ (-6 -3997)) ELT) (((-85) (-1 (-85) (-2 (|:| -3862 |#1|) (|:| |entry| |#2|))) $) 112 T ELT)) (-3058 (((-85) $ $) 18 (OR (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72)) (|has| |#2| (-72)) (|has| (-2 (|:| -3862 |#1|) (|:| |entry| |#2|)) (-72))) ELT)) (-3959 (((-695) $) 6 T ELT))) @@ -4049,4 +4049,4 @@ NIL NIL NIL NIL -((-3 2819818 2819823 2819828 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2819803 2819808 2819813 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2819788 2819793 2819798 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2819773 2819778 2819783 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1210 2818752 2819691 2819768 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1209 2817967 2818146 2818365 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1208 2809126 2810995 2812929 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1207 2808514 2808667 2808856 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1206 2807976 2808279 2808392 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1205 2805536 2807438 2807641 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1204 2802300 2803953 2804524 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1203 2799557 2801287 2801341 "XPOLYC" 2801626 XPOLYC (NIL T T) -9 NIL 2801739 NIL) (-1202 2797076 2799061 2799264 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1201 2793324 2795935 2796323 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1200 2788171 2789804 2789858 "XFALG" 2792003 XFALG (NIL T T) -9 NIL 2792787 NIL) (-1199 2783327 2786060 2786102 "XF" 2786720 XF (NIL T) -9 NIL 2787116 NIL) (-1198 2783045 2783155 2783322 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1197 2782272 2782394 2782598 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1196 2780014 2782172 2782267 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1195 2778595 2779390 2779432 "XALG" 2779437 XALG (NIL T) -9 NIL 2779546 NIL) (-1194 2772427 2777005 2777483 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1193 2770670 2771672 2771993 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1192 2770269 2770541 2770610 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1191 2769756 2770059 2770152 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1190 2768833 2769043 2769338 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1189 2767129 2767592 2768054 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1188 2766018 2766603 2766645 "VSPACE" 2766781 VSPACE (NIL T) -9 NIL 2766855 NIL) (-1187 2765889 2765922 2766013 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1186 2765732 2765786 2765854 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1185 2762715 2763510 2764247 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1184 2753813 2756414 2758587 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1183 2747390 2749281 2750860 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1182 2745874 2746269 2746675 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1181 2744701 2744982 2745298 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1180 2740116 2744528 2744620 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1179 2733479 2737789 2737832 "VECTCAT" 2738820 VECTCAT (NIL T) -9 NIL 2739404 NIL) (-1178 2732758 2733084 2733474 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1177 2732252 2732494 2732614 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1176 2732185 2732190 2732220 "UTYPE" 2732225 UTYPE (NIL) -9 NIL NIL NIL) (-1175 2731172 2731348 2731609 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1174 2729023 2729531 2730055 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1173 2718905 2724875 2724917 "UTSCAT" 2726015 UTSCAT (NIL T) -9 NIL 2726772 NIL) (-1172 2716970 2717913 2718900 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1171 2716644 2716693 2716824 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1170 2708355 2714840 2715319 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1169 2702412 2705163 2705206 "URAGG" 2707276 URAGG (NIL T) -9 NIL 2707998 NIL) (-1168 2700427 2701389 2702407 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1167 2696134 2699403 2699865 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1166 2688563 2696058 2696129 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1165 2677214 2684701 2684762 "UPXSCCA" 2685330 UPXSCCA (NIL T T) -9 NIL 2685562 NIL) (-1164 2676935 2677037 2677209 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1163 2665487 2672699 2672741 "UPXSCAT" 2673381 UPXSCAT (NIL T) -9 NIL 2673989 NIL) (-1162 2665000 2665085 2665262 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1161 2656686 2664591 2664853 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2655581 2655851 2656201 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1159 2648284 2651769 2651823 "UPSCAT" 2652892 UPSCAT (NIL T T) -9 NIL 2653656 NIL) (-1158 2647704 2647956 2648279 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1157 2647378 2647427 2647558 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1156 2631508 2640462 2640504 "UPOLYC" 2642582 UPOLYC (NIL T) -9 NIL 2643802 NIL) (-1155 2625563 2628411 2631503 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1154 2624999 2625124 2625287 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1153 2624633 2624720 2624859 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1152 2623446 2623713 2624017 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1151 2622779 2622909 2623094 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1150 2622371 2622446 2622593 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1149 2613135 2622137 2622265 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1148 2612497 2612634 2612839 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1147 2611098 2611945 2612221 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1146 2610327 2610524 2610749 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1145 2597137 2610251 2610322 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1144 2576943 2590178 2590239 "ULSCCAT" 2590870 ULSCCAT (NIL T T) -9 NIL 2591157 NIL) (-1143 2576278 2576564 2576938 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1142 2564650 2571784 2571826 "ULSCAT" 2572679 ULSCAT (NIL T) -9 NIL 2573409 NIL) (-1141 2564163 2564248 2564425 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1140 2546280 2563662 2563903 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1139 2545314 2546007 2546121 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2546232) (-1138 2544347 2545040 2545154 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2545265) (-1137 2543380 2544073 2544187 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2544298) (-1136 2542413 2543106 2543220 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2543331) (-1135 2540420 2541641 2541671 "UFD" 2541882 UFD (NIL) -9 NIL 2541995 NIL) (-1134 2540264 2540321 2540415 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1133 2539516 2539723 2539939 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1132 2537736 2538189 2538654 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1131 2537461 2537701 2537731 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1130 2537399 2537404 2537434 "TYPE" 2537439 TYPE (NIL) -9 NIL 2537446 NIL) (-1129 2536558 2536778 2537018 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1128 2535736 2536167 2536402 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1127 2533890 2534463 2535002 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1126 2532924 2533160 2533396 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1125 2521545 2525739 2525835 "TSETCAT" 2531050 TSETCAT (NIL T T T T) -9 NIL 2532551 NIL) (-1124 2517882 2519698 2521540 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1123 2512274 2517108 2517390 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1122 2507611 2508624 2509553 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1121 2507108 2507183 2507346 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1120 2505184 2505474 2505829 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1119 2504668 2504817 2504847 "TRIGCAT" 2505060 TRIGCAT (NIL) -9 NIL NIL NIL) (-1118 2504419 2504522 2504663 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1117 2501480 2503525 2503806 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1116 2500586 2501282 2501312 "TRANFUN" 2501347 TRANFUN (NIL) -9 NIL 2501413 NIL) (-1115 2500050 2500301 2500581 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1114 2499887 2499925 2499986 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1113 2499344 2499475 2499626 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1112 2498085 2498742 2498978 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1111 2497897 2497934 2498006 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1110 2496111 2496757 2497186 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1109 2494491 2494828 2495150 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1108 2483427 2492271 2492327 "TBAGG" 2492644 TBAGG (NIL T T) -9 NIL 2492854 NIL) (-1107 2478938 2481125 2483422 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1106 2478415 2478540 2478685 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1105 2477925 2478245 2478335 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1104 2477422 2477539 2477677 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1103 2468779 2477350 2477417 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1102 2464532 2465827 2467072 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1101 2463901 2464060 2464241 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1100 2461055 2461808 2462591 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1099 2460829 2461019 2461050 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1098 2459783 2460468 2460594 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2460780) (-1097 2459047 2459595 2459674 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2459734) (-1096 2455870 2457029 2457729 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1095 2453553 2454236 2454870 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1094 2449631 2450677 2451654 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1093 2446730 2449286 2449515 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1092 2446326 2446413 2446535 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1091 2442950 2444424 2445243 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1090 2435910 2442147 2442440 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1089 2427596 2435501 2435763 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1088 2426875 2427014 2427231 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1087 2426559 2426624 2426735 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1086 2417282 2426271 2426396 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1085 2416012 2416310 2416665 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1084 2415417 2415495 2415686 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1083 2397569 2414916 2415157 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1082 2397168 2397440 2397509 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1081 2396504 2396785 2396925 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1080 2391106 2392365 2393318 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1079 2390638 2390738 2390902 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1078 2385749 2387031 2388178 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1077 2380207 2381678 2382989 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1076 2373122 2375186 2376977 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1075 2364114 2373060 2373117 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1074 2359099 2363828 2363943 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1073 2358686 2358769 2358913 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1072 2357837 2358038 2358273 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1071 2357577 2357635 2357728 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1070 2350611 2355782 2356388 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1069 2349787 2349992 2350223 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1068 2349032 2349403 2349550 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1067 2348520 2348762 2348792 "STEP" 2348886 STEP (NIL) -9 NIL 2348957 NIL) (-1066 2339867 2348438 2348515 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1065 2334376 2338665 2338708 "STAGG" 2339135 STAGG (NIL T) -9 NIL 2339309 NIL) (-1064 2332755 2333503 2334371 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1063 2330976 2332582 2332674 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1062 2330256 2330795 2330825 "SRING" 2330830 SRING (NIL) -9 NIL 2330850 NIL) (-1061 2323152 2328794 2329233 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1060 2316926 2318365 2319869 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1059 2309600 2314221 2314251 "SRAGG" 2315550 SRAGG (NIL) -9 NIL 2316154 NIL) (-1058 2308897 2309217 2309595 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1057 2302997 2308219 2308642 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1056 2297050 2300365 2301101 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1055 2293479 2294298 2294935 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1054 2292454 2292759 2292789 "SPFCAT" 2293233 SPFCAT (NIL) -9 NIL NIL NIL) (-1053 2291391 2291643 2291907 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1052 2282149 2284423 2284453 "SPADXPT" 2289090 SPADXPT (NIL) -9 NIL 2291214 NIL) (-1051 2281951 2281997 2282066 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1050 2279607 2281915 2281946 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1049 2271281 2273370 2273412 "SPACEC" 2277727 SPACEC (NIL T) -9 NIL 2279532 NIL) (-1048 2269110 2271228 2271276 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1047 2268046 2268235 2268525 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1046 2266450 2266783 2267194 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1045 2265715 2265949 2266210 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1044 2261895 2262855 2263850 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1043 2258253 2258952 2259681 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1042 2252295 2257575 2257671 "SNTSCAT" 2257676 SNTSCAT (NIL T T T T) -9 NIL 2257746 NIL) (-1041 2246116 2250936 2251326 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1040 2239888 2246035 2246111 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1039 2238320 2238651 2239049 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1038 2229952 2234886 2234988 "SMATCAT" 2236331 SMATCAT (NIL NIL T T T) -9 NIL 2236879 NIL) (-1037 2227793 2228777 2229947 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1036 2225954 2227251 2227294 "SMAGG" 2227379 SMAGG (NIL T) -9 NIL 2227454 NIL) (-1035 2223573 2225121 2225164 "SKAGG" 2225425 SKAGG (NIL T) -9 NIL 2225561 NIL) (-1034 2219619 2223393 2223504 "SINT" NIL SINT (NIL) -8 NIL NIL 2223545) (-1033 2219429 2219473 2219539 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1032 2218504 2218736 2219004 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1031 2217508 2217670 2217946 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1030 2216854 2217194 2217317 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1029 2216200 2216507 2216647 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1028 2214311 2214803 2215309 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1027 2207797 2214230 2214306 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1026 2207300 2207537 2207567 "SGROUP" 2207660 SGROUP (NIL) -9 NIL 2207722 NIL) (-1025 2207190 2207222 2207295 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1024 2206828 2206868 2206909 "SGPOPC" 2206914 SGPOPC (NIL T) -9 NIL 2207115 NIL) (-1023 2206362 2206639 2206745 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1022 2203785 2204554 2205276 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1021 2197926 2203206 2203302 "SFRTCAT" 2203307 SFRTCAT (NIL T T T T) -9 NIL 2203345 NIL) (-1020 2192318 2193431 2194558 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1019 2186494 2187655 2188819 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1018 2185466 2186368 2186489 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1017 2181074 2181969 2182064 "SEXCAT" 2184677 SEXCAT (NIL T T T T T) -9 NIL 2185228 NIL) (-1016 2180047 2181001 2181069 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1015 2178438 2179023 2179325 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1014 2177961 2178146 2178176 "SETCAT" 2178293 SETCAT (NIL) -9 NIL 2178377 NIL) (-1013 2177793 2177857 2177956 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1012 2174301 2176247 2176290 "SETAGG" 2177158 SETAGG (NIL T) -9 NIL 2177496 NIL) (-1011 2173907 2174059 2174296 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1010 2171152 2173854 2173902 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1009 2170618 2170928 2171028 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1008 2169745 2170111 2170172 "SEGXCAT" 2170458 SEGXCAT (NIL T T) -9 NIL 2170578 NIL) (-1007 2168670 2168938 2168981 "SEGCAT" 2169503 SEGCAT (NIL T) -9 NIL 2169724 NIL) (-1006 2168350 2168415 2168528 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1005 2167416 2167886 2168094 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1004 2166994 2167273 2167349 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1003 2166359 2166495 2166699 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1002 2165425 2166172 2166354 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1001 2164678 2165373 2165420 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1000 2156163 2164545 2164673 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-999 2155023 2155313 2155630 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-998 2154329 2154541 2154729 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-997 2153679 2153836 2154012 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-996 2153252 2153483 2153511 "SASTCAT" 2153516 SASTCAT (NIL) -9 NIL 2153529 NIL) (-995 2152719 2153144 2153218 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-994 2152322 2152363 2152534 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-993 2151953 2151994 2152151 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-992 2145034 2151870 2151948 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-991 2143684 2144013 2144409 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-990 2142445 2142806 2143106 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-989 2142069 2142290 2142371 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-988 2139529 2140163 2140616 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-987 2139368 2139401 2139469 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-986 2138859 2139162 2139253 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-985 2134487 2135355 2136266 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-984 2123562 2128842 2128936 "RSETCAT" 2132992 RSETCAT (NIL T T T T) -9 NIL 2134080 NIL) (-983 2122100 2122742 2123557 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-982 2115874 2117319 2118826 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-981 2113756 2114313 2114385 "RRCC" 2115458 RRCC (NIL T T) -9 NIL 2115799 NIL) (-980 2113281 2113480 2113751 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-979 2112751 2113061 2113159 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-978 2085303 2096016 2096080 "RPOLCAT" 2106554 RPOLCAT (NIL T T T) -9 NIL 2109699 NIL) (-977 2079402 2082225 2085298 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-976 2075569 2079150 2079288 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-975 2073897 2074636 2074892 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-974 2069540 2072352 2072380 "RNS" 2072642 RNS (NIL) -9 NIL 2072894 NIL) (-973 2068443 2068930 2069467 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-972 2067561 2067962 2068162 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-971 2066699 2067261 2067289 "RNG" 2067349 RNG (NIL) -9 NIL 2067403 NIL) (-970 2066588 2066622 2066694 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-969 2065850 2066355 2066395 "RMODULE" 2066400 RMODULE (NIL T) -9 NIL 2066426 NIL) (-968 2064789 2064895 2065225 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-967 2061680 2064379 2064672 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-966 2054369 2056814 2056926 "RMATCAT" 2060231 RMATCAT (NIL NIL NIL T T T) -9 NIL 2061197 NIL) (-965 2053886 2054065 2054364 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-964 2053454 2053665 2053706 "RLINSET" 2053767 RLINSET (NIL T) -9 NIL 2053811 NIL) (-963 2053099 2053180 2053306 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-962 2051945 2052676 2052704 "RING" 2052759 RING (NIL) -9 NIL 2052851 NIL) (-961 2051790 2051846 2051940 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-960 2050844 2051111 2051367 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-959 2042049 2050472 2050673 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-958 2041274 2041785 2041824 "RGBCSPC" 2041881 RGBCSPC (NIL T) -9 NIL 2041932 NIL) (-957 2040308 2040794 2040833 "RGBCMDL" 2041061 RGBCMDL (NIL T) -9 NIL 2041175 NIL) (-956 2040020 2040089 2040190 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-955 2039783 2039824 2039919 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-954 2038207 2038637 2039017 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-953 2035794 2036462 2037130 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-952 2035344 2035442 2035602 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-951 2034966 2035064 2035105 "RETRACT" 2035236 RETRACT (NIL T) -9 NIL 2035323 NIL) (-950 2034846 2034877 2034961 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-949 2034448 2034720 2034787 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-948 2032928 2033819 2034016 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-947 2032619 2032680 2032776 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-946 2032362 2032403 2032508 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-945 2032097 2032138 2032247 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-944 2027168 2028619 2029834 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-943 2024267 2025025 2025833 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-942 2022236 2022858 2023458 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-941 2015145 2020787 2021223 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-940 2014457 2014737 2014886 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-939 2013942 2014057 2014222 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-938 2009535 2013345 2013566 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-937 2008767 2008966 2009179 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-936 2006057 2006895 2007777 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-935 2002639 2003675 2004734 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-934 2002475 2002528 2002556 "REAL" 2002561 REAL (NIL) -9 NIL 2002596 NIL) (-933 2001965 2002269 2002360 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-932 2001445 2001523 2001728 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-931 2000678 2000870 2001081 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-930 1999566 1999863 2000230 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-929 1997833 1998303 1998836 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-928 1996755 1997032 1997419 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-927 1995582 1995891 1996310 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-926 1988930 1992442 1992470 "RCFIELD" 1993747 RCFIELD (NIL) -9 NIL 1994477 NIL) (-925 1987548 1988160 1988857 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-924 1983816 1985646 1985687 "RCAGG" 1986750 RCAGG (NIL T) -9 NIL 1987209 NIL) (-923 1983543 1983653 1983811 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-922 1982988 1983117 1983278 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-921 1982605 1982684 1982803 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-920 1982020 1982170 1982320 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-919 1981802 1981852 1981923 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-918 1974244 1980920 1981228 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-917 1963946 1974111 1974239 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-916 1963580 1963673 1963701 "RADCAT" 1963858 RADCAT (NIL) -9 NIL NIL NIL) (-915 1963418 1963478 1963575 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-914 1961582 1963249 1963338 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-913 1961263 1961312 1961439 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-912 1953550 1957634 1957674 "QUATCAT" 1958452 QUATCAT (NIL T) -9 NIL 1959216 NIL) (-911 1950800 1952080 1953456 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-910 1946640 1950750 1950795 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-909 1944054 1945655 1945696 "QUAGG" 1946071 QUAGG (NIL T) -9 NIL 1946247 NIL) (-908 1943656 1943928 1943995 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-907 1942662 1943292 1943455 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-906 1942343 1942392 1942519 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-905 1931943 1938112 1938152 "QFCAT" 1938810 QFCAT (NIL T) -9 NIL 1939803 NIL) (-904 1928827 1930266 1931849 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-903 1928373 1928507 1928637 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-902 1922569 1923730 1924892 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-901 1921988 1922168 1922400 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-900 1919810 1920338 1920761 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-899 1918709 1918951 1919268 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-898 1917070 1917268 1917621 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-897 1912826 1914042 1914083 "PTRANFN" 1915967 PTRANFN (NIL T) -9 NIL NIL NIL) (-896 1911473 1911818 1912139 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-895 1911166 1911229 1911336 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-894 1905500 1909925 1909965 "PTCAT" 1910257 PTCAT (NIL T) -9 NIL 1910410 NIL) (-893 1905193 1905234 1905358 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-892 1904072 1904388 1904722 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-891 1892951 1895512 1897821 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-890 1886112 1888734 1888828 "PSETCAT" 1891802 PSETCAT (NIL T T T T) -9 NIL 1892611 NIL) (-889 1884562 1885296 1886107 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-888 1883881 1884076 1884104 "PSCURVE" 1884372 PSCURVE (NIL) -9 NIL 1884539 NIL) (-887 1879483 1881303 1881367 "PSCAT" 1882202 PSCAT (NIL T T T) -9 NIL 1882441 NIL) (-886 1878797 1879079 1879478 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-885 1877194 1878109 1878372 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-884 1876685 1876988 1877079 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-883 1867705 1870127 1872315 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-882 1865475 1866986 1867026 "PRQAGG" 1867209 PRQAGG (NIL T) -9 NIL 1867312 NIL) (-881 1864648 1865094 1865122 "PROPLOG" 1865261 PROPLOG (NIL) -9 NIL 1865375 NIL) (-880 1864323 1864386 1864509 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-879 1863759 1863898 1864070 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-878 1862007 1862770 1863067 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-877 1861559 1861691 1861819 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-876 1856000 1860499 1861319 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-875 1855829 1855867 1855926 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-874 1855268 1855408 1855559 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-873 1853736 1854155 1854621 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-872 1853453 1853514 1853542 "PRIMCAT" 1853666 PRIMCAT (NIL) -9 NIL NIL NIL) (-871 1852624 1852820 1853048 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-870 1848803 1852574 1852619 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-869 1848502 1848564 1848675 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-868 1845638 1848151 1848384 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-867 1845089 1845246 1845274 "PPCURVE" 1845479 PPCURVE (NIL) -9 NIL 1845615 NIL) (-866 1844702 1844947 1845030 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-865 1842458 1842879 1843471 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-864 1841901 1841965 1842198 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-863 1838621 1839107 1839718 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-862 1824212 1830341 1830405 "POLYCAT" 1833890 POLYCAT (NIL T T T) -9 NIL 1835767 NIL) (-861 1819722 1821869 1824207 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-860 1819379 1819453 1819572 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-859 1819072 1819135 1819242 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-858 1812435 1818805 1818964 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-857 1811322 1811585 1811861 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-856 1809926 1810239 1810569 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-855 1805387 1809876 1809921 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-854 1803875 1804286 1804661 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-853 1802632 1802941 1803337 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-852 1802303 1802387 1802504 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-851 1801882 1801957 1802131 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-850 1801368 1801464 1801624 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-849 1800840 1800960 1801114 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-848 1799735 1799953 1800330 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-847 1799346 1799431 1799583 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-846 1798897 1798979 1799160 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-845 1798589 1798670 1798783 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-844 1798102 1798177 1798385 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-843 1797450 1797578 1797780 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-842 1796812 1796946 1797109 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-841 1796116 1796298 1796479 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-840 1795839 1795913 1796007 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-839 1792407 1793596 1794512 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-838 1791491 1791692 1791927 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-837 1787056 1788440 1789582 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-836 1766977 1771864 1776711 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-835 1766717 1766770 1766873 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-834 1766158 1766292 1766472 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-833 1764167 1765388 1765416 "PID" 1765613 PID (NIL) -9 NIL 1765740 NIL) (-832 1763955 1763998 1764073 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-831 1763142 1763802 1763889 "PI" NIL PI (NIL) -8 NIL NIL 1763929) (-830 1762594 1762745 1762921 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-829 1758922 1759880 1760785 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-828 1757286 1757575 1757941 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-827 1756728 1756843 1757004 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-826 1753269 1755597 1755950 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-825 1751875 1752155 1752480 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-824 1750640 1750894 1751242 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-823 1749350 1749577 1749929 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-822 1746360 1747920 1747948 "PFECAT" 1748541 PFECAT (NIL) -9 NIL 1748918 NIL) (-821 1745983 1746148 1746355 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-820 1744807 1745089 1745390 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-819 1742989 1743376 1743806 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-818 1738959 1742915 1742984 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-817 1734862 1736009 1736876 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-816 1732794 1733883 1733924 "PERMCAT" 1734323 PERMCAT (NIL T) -9 NIL 1734620 NIL) (-815 1732490 1732537 1732660 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-814 1728939 1730620 1731265 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-813 1726467 1728694 1728815 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-812 1725336 1725599 1725640 "PDSPC" 1726173 PDSPC (NIL T) -9 NIL 1726418 NIL) (-811 1724703 1724969 1725331 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-810 1723338 1724331 1724372 "PDRING" 1724377 PDRING (NIL T) -9 NIL 1724404 NIL) (-809 1722048 1722837 1722890 "PDMOD" 1722895 PDMOD (NIL T T) -9 NIL 1722998 NIL) (-808 1721141 1721353 1721602 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-807 1720746 1720813 1720867 "PDDOM" 1721032 PDDOM (NIL T T) -9 NIL 1721112 NIL) (-806 1720598 1720634 1720741 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-805 1720384 1720423 1720512 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-804 1718701 1719455 1719754 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-803 1718390 1718453 1718562 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-802 1716528 1716958 1717409 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-801 1710148 1711977 1713269 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-800 1709779 1709852 1709984 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-799 1707481 1708161 1708642 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-798 1705685 1706113 1706516 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-797 1705131 1705379 1705420 "PATMAB" 1705527 PATMAB (NIL T) -9 NIL 1705610 NIL) (-796 1703778 1704182 1704439 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-795 1703316 1703447 1703488 "PATAB" 1703493 PATAB (NIL T) -9 NIL 1703665 NIL) (-794 1701859 1702296 1702719 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-793 1701537 1701612 1701714 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-792 1701226 1701289 1701398 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-791 1701031 1701077 1701144 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-790 1700709 1700784 1700886 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-789 1700398 1700461 1700570 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-788 1700089 1700159 1700256 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-787 1699778 1699841 1699950 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-786 1698939 1699318 1699497 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-785 1698546 1698644 1698763 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-784 1697514 1697939 1698158 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-783 1696179 1696833 1697193 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-782 1689269 1695583 1695777 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-781 1681690 1688767 1688951 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-780 1678415 1680330 1680370 "PADICCT" 1680951 PADICCT (NIL NIL) -9 NIL 1681233 NIL) (-779 1676405 1678365 1678410 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-778 1675567 1675777 1676043 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-777 1674909 1675052 1675256 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-776 1673290 1674317 1674595 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-775 1672814 1673073 1673170 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-774 1671873 1672551 1672723 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-773 1662295 1665164 1667363 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-772 1661687 1662001 1662127 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-771 1660964 1661159 1661187 "OUTBCON" 1661505 OUTBCON (NIL) -9 NIL 1661671 NIL) (-770 1660672 1660802 1660959 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-769 1660053 1660198 1660359 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-768 1659424 1659851 1659940 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-767 1658839 1659254 1659282 "OSGROUP" 1659287 OSGROUP (NIL) -9 NIL 1659309 NIL) (-766 1657803 1658064 1658349 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-765 1655072 1657678 1657798 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-764 1652213 1654823 1654949 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-763 1650231 1650759 1651319 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-762 1643573 1646113 1646153 "OREPCAT" 1648474 OREPCAT (NIL T) -9 NIL 1649576 NIL) (-761 1641599 1642533 1643568 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-760 1640796 1641067 1641095 "ORDTYPE" 1641400 ORDTYPE (NIL) -9 NIL 1641558 NIL) (-759 1640330 1640541 1640791 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-758 1639792 1640168 1640325 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-757 1639286 1639649 1639677 "ORDSET" 1639682 ORDSET (NIL) -9 NIL 1639704 NIL) (-756 1637851 1638873 1638901 "ORDRING" 1638906 ORDRING (NIL) -9 NIL 1638934 NIL) (-755 1637099 1637656 1637684 "ORDMON" 1637689 ORDMON (NIL) -9 NIL 1637710 NIL) (-754 1636403 1636565 1636757 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-753 1635614 1636122 1636150 "ORDFIN" 1636215 ORDFIN (NIL) -9 NIL 1636289 NIL) (-752 1635008 1635147 1635333 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-751 1631683 1633976 1634382 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-750 1631090 1631445 1631550 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-749 1630898 1630943 1631009 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-748 1630199 1630475 1630516 "OPERCAT" 1630727 OPERCAT (NIL T) -9 NIL 1630823 NIL) (-747 1630011 1630078 1630194 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-746 1627377 1628813 1629309 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-745 1626798 1626925 1627099 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-744 1623699 1625937 1626303 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-743 1620583 1623092 1623132 "OMSAGG" 1623193 OMSAGG (NIL T) -9 NIL 1623257 NIL) (-742 1618995 1620254 1620422 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-741 1617191 1618432 1618460 "OINTDOM" 1618465 OINTDOM (NIL) -9 NIL 1618486 NIL) (-740 1614621 1616193 1616522 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-739 1613875 1614571 1614616 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-738 1611077 1613716 1613870 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-737 1602614 1610948 1611072 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-736 1596071 1602505 1602609 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-735 1595043 1595280 1595553 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-734 1592677 1593347 1594051 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-733 1588454 1589414 1590437 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-732 1587962 1588050 1588244 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-731 1585411 1585993 1586666 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-730 1582806 1583314 1583910 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-729 1579803 1580342 1580988 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-728 1579158 1579266 1579524 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-727 1578316 1578441 1578662 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-726 1574600 1575396 1576309 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-725 1574040 1574135 1574357 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-724 1573721 1573770 1573897 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-723 1570324 1573520 1573639 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-722 1569484 1570106 1570134 "OCAMON" 1570139 OCAMON (NIL) -9 NIL 1570160 NIL) (-721 1563696 1566510 1566550 "OC" 1567645 OC (NIL T) -9 NIL 1568501 NIL) (-720 1561696 1562622 1563602 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-719 1561112 1561530 1561558 "OASGP" 1561563 OASGP (NIL) -9 NIL 1561583 NIL) (-718 1560175 1560824 1560852 "OAMONS" 1560892 OAMONS (NIL) -9 NIL 1560935 NIL) (-717 1559320 1559901 1559929 "OAMON" 1559986 OAMON (NIL) -9 NIL 1560037 NIL) (-716 1559216 1559248 1559315 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-715 1557967 1558741 1558769 "OAGROUP" 1558915 OAGROUP (NIL) -9 NIL 1559007 NIL) (-714 1557758 1557845 1557962 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-713 1557498 1557554 1557642 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-712 1552560 1554123 1555650 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-711 1549255 1550289 1551324 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-710 1548365 1548598 1548816 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-709 1537226 1540254 1542702 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-708 1531369 1536649 1536743 "NTSCAT" 1536748 NTSCAT (NIL T T T T) -9 NIL 1536786 NIL) (-707 1530710 1530889 1531082 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-706 1530403 1530466 1530573 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-705 1518070 1528023 1528833 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-704 1507079 1517935 1518065 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-703 1505799 1506124 1506481 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-702 1504635 1504899 1505257 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-701 1503802 1503935 1504151 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-700 1502120 1502439 1502845 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-699 1501833 1501867 1501991 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-698 1501652 1501687 1501756 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-697 1501428 1501618 1501647 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-696 1500992 1501059 1501236 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-695 1499278 1500355 1500610 "NNI" NIL NNI (NIL) -8 NIL NIL 1500957) (-694 1498006 1498343 1498707 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-693 1496983 1497235 1497537 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-692 1496070 1496635 1496676 "NETCLT" 1496847 NETCLT (NIL T) -9 NIL 1496928 NIL) (-691 1494974 1495241 1495522 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-690 1494773 1494816 1494891 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-689 1493304 1493692 1494112 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-688 1491937 1492903 1492931 "NASRING" 1493041 NASRING (NIL) -9 NIL 1493121 NIL) (-687 1491782 1491838 1491932 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-686 1490711 1491389 1491417 "NARNG" 1491534 NARNG (NIL) -9 NIL 1491625 NIL) (-685 1490487 1490572 1490706 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-684 1489253 1490007 1490047 "NAALG" 1490126 NAALG (NIL T) -9 NIL 1490187 NIL) (-683 1489123 1489158 1489248 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-682 1484102 1485287 1486473 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-681 1483497 1483584 1483768 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-680 1475507 1480001 1480053 "MTSCAT" 1481113 MTSCAT (NIL T T) -9 NIL 1481627 NIL) (-679 1475273 1475333 1475425 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-678 1475099 1475138 1475198 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-677 1472243 1474631 1474672 "MSETAGG" 1474677 MSETAGG (NIL T) -9 NIL 1474711 NIL) (-676 1468613 1471286 1471607 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-675 1464887 1466710 1467450 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-674 1464524 1464597 1464726 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-673 1464177 1464218 1464362 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-672 1462042 1462379 1462810 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-671 1455440 1461941 1462037 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-670 1454965 1455006 1455214 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-669 1454524 1454573 1454756 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1453798 1453891 1454110 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1452415 1452776 1453166 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-666 1451936 1452003 1452042 "MONOPC" 1452102 MONOPC (NIL T) -9 NIL 1452321 NIL) (-665 1451387 1451723 1451851 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-664 1450529 1450908 1450936 "MONOID" 1451154 MONOID (NIL) -9 NIL 1451298 NIL) (-663 1450188 1450338 1450524 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-662 1439126 1445996 1446055 "MONOGEN" 1446729 MONOGEN (NIL T T) -9 NIL 1447185 NIL) (-661 1437138 1438024 1439007 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-660 1435852 1436396 1436424 "MONADWU" 1436815 MONADWU (NIL) -9 NIL 1437050 NIL) (-659 1435400 1435600 1435847 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-658 1434677 1434978 1435006 "MONAD" 1435213 MONAD (NIL) -9 NIL 1435325 NIL) (-657 1434444 1434540 1434672 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-656 1432834 1433604 1433883 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-655 1431968 1432495 1432535 "MODULE" 1432540 MODULE (NIL T) -9 NIL 1432578 NIL) (-654 1431647 1431773 1431963 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-653 1429358 1430244 1430558 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-652 1426537 1427954 1428467 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-651 1425171 1425745 1426021 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-650 1414390 1423836 1424249 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-649 1411346 1413390 1413659 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-648 1410430 1410797 1410987 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-647 1409999 1410048 1410227 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-646 1407824 1408820 1408860 "MLO" 1409277 MLO (NIL T) -9 NIL 1409517 NIL) (-645 1405705 1406232 1406827 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-644 1405173 1405269 1405423 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-643 1404843 1404919 1405042 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-642 1404055 1404241 1404469 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-641 1403548 1403664 1403820 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-640 1402920 1403034 1403219 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-639 1401947 1402220 1402497 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-638 1401380 1401468 1401639 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-637 1398538 1399417 1400296 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-636 1397205 1397553 1397906 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-635 1394144 1396310 1396351 "MDAGG" 1396608 MDAGG (NIL T) -9 NIL 1396753 NIL) (-634 1393418 1393582 1393782 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-633 1392496 1392782 1393012 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-632 1390593 1391170 1391731 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-631 1386391 1390183 1390430 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-630 1382740 1383509 1384243 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-629 1381493 1381662 1381991 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-628 1371016 1374580 1374656 "MATCAT" 1379644 MATCAT (NIL T T T) -9 NIL 1381090 NIL) (-627 1368297 1369603 1371011 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-626 1366698 1367058 1367442 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-625 1365831 1366028 1366250 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-624 1364582 1364908 1365235 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-623 1363744 1364146 1364322 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-622 1363413 1363477 1363600 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-621 1363061 1363134 1363248 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-620 1362596 1362711 1362853 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-619 1360805 1361573 1361874 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-618 1360299 1360601 1360691 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-617 1354104 1358614 1358655 "LZSTAGG" 1359432 LZSTAGG (NIL T) -9 NIL 1359722 NIL) (-616 1351223 1352657 1354099 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-615 1348610 1349576 1350059 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-614 1348191 1348470 1348544 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-613 1340400 1348052 1348186 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-612 1339763 1339908 1340136 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-611 1337247 1337945 1338657 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-610 1335359 1335682 1336130 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-609 1328798 1334409 1334450 "LSAGG" 1334512 LSAGG (NIL T) -9 NIL 1334590 NIL) (-608 1326492 1327591 1328793 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-607 1323972 1325841 1326090 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-606 1323639 1323730 1323853 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-605 1323310 1323389 1323417 "LOGIC" 1323528 LOGIC (NIL) -9 NIL 1323610 NIL) (-604 1323205 1323234 1323305 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-603 1322524 1322682 1322875 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-602 1321309 1321558 1321909 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-601 1317131 1319930 1319970 "LODOCAT" 1320402 LODOCAT (NIL T) -9 NIL 1320613 NIL) (-600 1316924 1317000 1317126 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-599 1313924 1316801 1316919 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-598 1311022 1313874 1313919 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-597 1308109 1310952 1311017 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-596 1307162 1307337 1307639 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-595 1305294 1306424 1306677 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-594 1300675 1303453 1303494 "LNAGG" 1304356 LNAGG (NIL T) -9 NIL 1304791 NIL) (-593 1300062 1300329 1300670 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-592 1296634 1297575 1298212 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-591 1295896 1296401 1296441 "LMODULE" 1296446 LMODULE (NIL T) -9 NIL 1296472 NIL) (-590 1293365 1295632 1295755 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-589 1292933 1293144 1293185 "LLINSET" 1293246 LLINSET (NIL T) -9 NIL 1293290 NIL) (-588 1292609 1292869 1292928 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-587 1292208 1292288 1292427 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-586 1290659 1291007 1291406 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-585 1289830 1290026 1290254 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-584 1283183 1289086 1289340 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-583 1282760 1282993 1283034 "LINSET" 1283039 LINSET (NIL T) -9 NIL 1283072 NIL) (-582 1281661 1282383 1282550 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-581 1279927 1280682 1280722 "LINEXP" 1281208 LINEXP (NIL T) -9 NIL 1281481 NIL) (-580 1278549 1279536 1279717 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-579 1277376 1277648 1277950 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-578 1276589 1277178 1277288 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-577 1274139 1274861 1275611 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-576 1272769 1273066 1273457 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-575 1271562 1272164 1272204 "LIECAT" 1272344 LIECAT (NIL T) -9 NIL 1272495 NIL) (-574 1271436 1271469 1271557 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-573 1265692 1271126 1271354 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-572 1256141 1265368 1265524 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-571 1252593 1253542 1254477 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-570 1251217 1252125 1252153 "LFCAT" 1252360 LFCAT (NIL) -9 NIL 1252499 NIL) (-569 1249456 1249786 1250131 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-568 1246973 1247638 1248319 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-567 1243985 1244963 1245466 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-566 1243476 1243779 1243870 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-565 1242183 1242507 1242907 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-564 1241449 1241534 1241760 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-563 1236452 1240017 1240553 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-562 1236077 1236127 1236287 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-561 1234848 1235621 1235661 "LALG" 1235722 LALG (NIL T) -9 NIL 1235780 NIL) (-560 1234631 1234708 1234843 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-559 1232484 1233899 1234150 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-558 1232313 1232343 1232384 "KVTFROM" 1232446 KVTFROM (NIL T) -9 NIL NIL NIL) (-557 1231129 1231844 1232033 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-556 1230958 1230988 1231029 "KRCFROM" 1231091 KRCFROM (NIL T) -9 NIL NIL NIL) (-555 1230060 1230257 1230552 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-554 1229889 1229919 1229960 "KONVERT" 1230022 KONVERT (NIL T) -9 NIL NIL NIL) (-553 1229718 1229748 1229789 "KOERCE" 1229851 KOERCE (NIL T) -9 NIL NIL NIL) (-552 1229288 1229381 1229513 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-551 1227341 1228235 1228607 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-550 1219203 1225125 1225179 "KDAGG" 1225555 KDAGG (NIL T T) -9 NIL 1225781 NIL) (-549 1218668 1218900 1219198 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-548 1211599 1218460 1218606 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-547 1211249 1211531 1211594 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-546 1210219 1210718 1210967 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-545 1209345 1209794 1209999 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-544 1208209 1208701 1209001 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-543 1207491 1207890 1208051 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-542 1207201 1207437 1207486 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-541 1201456 1206891 1207119 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-540 1200874 1201207 1201327 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-539 1197101 1199057 1199111 "IXAGG" 1200032 IXAGG (NIL T T) -9 NIL 1200489 NIL) (-538 1196307 1196678 1197096 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-537 1195274 1195549 1195812 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-536 1193936 1194143 1194436 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-535 1192887 1193109 1193392 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-534 1192562 1192625 1192748 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-533 1191824 1192196 1192370 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-532 1189800 1191100 1191374 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-531 1179348 1185117 1186274 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-530 1178593 1178745 1178981 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-529 1178084 1178387 1178478 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-528 1177377 1177468 1177681 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-527 1176509 1176734 1176974 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-526 1174922 1175303 1175731 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-525 1174707 1174751 1174827 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-524 1173557 1173854 1174149 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-523 1172830 1173181 1173332 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-522 1172033 1172164 1172377 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-521 1170188 1170685 1171229 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-520 1167269 1168537 1169226 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-519 1167094 1167134 1167194 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-518 1163092 1167020 1167089 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-517 1161095 1163031 1163087 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-516 1160466 1160765 1160895 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-515 1159919 1160207 1160339 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-514 1159000 1159625 1159751 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-513 1158410 1158904 1158932 "IOBCON" 1158937 IOBCON (NIL) -9 NIL 1158958 NIL) (-512 1157981 1158045 1158227 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-511 1150025 1152396 1154721 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-510 1147136 1147919 1148783 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-509 1146813 1146910 1147027 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-508 1144255 1146749 1146808 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-507 1142367 1142896 1143463 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-506 1141869 1141983 1142123 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-505 1140253 1140659 1141121 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-504 1138032 1138626 1139237 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-503 1135405 1136015 1136735 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-502 1134809 1134967 1135175 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-501 1134328 1134414 1134602 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-500 1132533 1133054 1133511 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-499 1125615 1127268 1128997 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-498 1124981 1125143 1125316 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-497 1122854 1123318 1123862 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-496 1120980 1121930 1121958 "INTDOM" 1122257 INTDOM (NIL) -9 NIL 1122462 NIL) (-495 1120533 1120735 1120975 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-494 1116340 1118812 1118866 "INTCAT" 1119662 INTCAT (NIL T) -9 NIL 1119978 NIL) (-493 1115905 1116025 1116152 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-492 1114745 1114917 1115223 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-491 1114318 1114414 1114571 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-490 1105654 1114225 1114313 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-489 1104952 1105507 1105572 "INT8" NIL INT8 (NIL) -8 NIL NIL 1105606) (-488 1104249 1104804 1104869 "INT64" NIL INT64 (NIL) -8 NIL NIL 1104903) (-487 1103546 1104101 1104166 "INT32" NIL INT32 (NIL) -8 NIL NIL 1104200) (-486 1102843 1103398 1103463 "INT16" NIL INT16 (NIL) -8 NIL NIL 1103497) (-485 1099306 1102762 1102838 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-484 1093363 1096846 1096874 "INS" 1097804 INS (NIL) -9 NIL 1098463 NIL) (-483 1091425 1092343 1093290 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-482 1090484 1090707 1090982 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-481 1089698 1089839 1090036 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-480 1088688 1088829 1089066 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-479 1087840 1088004 1088264 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-478 1087120 1087235 1087423 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-477 1085859 1086128 1086452 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-476 1085139 1085280 1085463 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-475 1084802 1084874 1084972 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-474 1081880 1083366 1083889 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-473 1081479 1081586 1081700 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-472 1080635 1081280 1081381 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-471 1079485 1079753 1080074 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-470 1078475 1079415 1079480 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-469 1078100 1078180 1078297 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-468 1077014 1077559 1077763 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-467 1073109 1074164 1075107 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-466 1071963 1072286 1072314 "INBCON" 1072827 INBCON (NIL) -9 NIL 1073093 NIL) (-465 1071417 1071682 1071958 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-464 1070911 1071213 1071303 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-463 1070368 1070677 1070782 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-462 1069208 1069347 1069662 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-461 1067632 1067899 1068236 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-460 1062475 1067563 1067627 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-459 1061855 1062189 1062304 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-458 1056965 1061293 1061479 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-457 1055995 1056887 1056960 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-456 1055567 1055644 1055698 "IEVALAB" 1055905 IEVALAB (NIL T T) -9 NIL NIL NIL) (-455 1055322 1055402 1055562 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-454 1054707 1054934 1055091 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-453 1053700 1054627 1054702 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-452 1052763 1053620 1053695 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-451 1051845 1052492 1052629 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-450 1050208 1050779 1050830 "IDPC" 1051336 IDPC (NIL T T) -9 NIL 1051649 NIL) (-449 1049496 1050130 1050203 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-448 1048666 1049418 1049491 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-447 1048359 1048572 1048632 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-446 1048063 1048103 1048142 "IDEMOPC" 1048147 IDEMOPC (NIL T) -9 NIL 1048284 NIL) (-445 1045134 1046015 1046907 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-444 1038760 1040037 1041076 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-443 1038022 1038152 1038351 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-442 1037195 1037694 1037832 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-441 1035584 1035915 1036306 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-440 1031648 1035540 1035579 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-439 1028906 1029530 1030225 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-438 1027132 1027612 1028145 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-437 1025006 1027038 1027127 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-436 1021166 1024944 1025001 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-435 1014745 1020130 1020598 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-434 1014313 1014376 1014549 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-433 1013805 1013954 1013982 "HYPCAT" 1014189 HYPCAT (NIL) -9 NIL NIL NIL) (-432 1013461 1013614 1013800 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-431 1013074 1013319 1013402 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-430 1012907 1012956 1012997 "HOMOTOP" 1013002 HOMOTOP (NIL T) -9 NIL 1013035 NIL) (-429 1009667 1010983 1011024 "HOAGG" 1011896 HOAGG (NIL T) -9 NIL 1012586 NIL) (-428 1009294 1009441 1009662 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-427 1002494 1009019 1009167 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-426 1001429 1001687 1001950 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-425 1000364 1001294 1001424 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-424 998622 1000197 1000285 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-423 997937 998289 998422 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-422 991437 997870 997932 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-421 984576 991173 991324 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-420 984029 984186 984349 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-419 975382 983946 984024 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-418 974873 975176 975267 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-417 972423 974660 974839 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-416 968090 972306 972418 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-415 959420 967987 968085 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-414 951357 958789 959044 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-413 950381 950890 950918 "GROUP" 951121 GROUP (NIL) -9 NIL 951255 NIL) (-412 949924 950125 950376 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-411 948596 948935 949322 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-410 947418 947775 947826 "GRMOD" 948355 GRMOD (NIL T T) -9 NIL 948521 NIL) (-409 947237 947285 947413 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-408 943360 944571 945571 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-407 942082 942406 942721 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-406 941635 941763 941904 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-405 940708 941207 941258 "GRALG" 941411 GRALG (NIL T T) -9 NIL 941501 NIL) (-404 940427 940528 940703 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-403 937429 940120 940285 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-402 936842 936905 937162 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-401 932696 933592 934117 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-400 931871 932073 932311 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-399 926874 927801 928820 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-398 926622 926679 926768 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-397 926104 926193 926358 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-396 925613 925654 925867 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-395 924414 924697 925001 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-394 917689 924104 924265 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-393 907472 912479 913583 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-392 905524 906627 906655 "GCDDOM" 906910 GCDDOM (NIL) -9 NIL 907067 NIL) (-391 905147 905304 905519 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-390 895940 898410 900798 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-389 894075 894400 894818 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-388 893016 893205 893472 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-387 891887 892094 892398 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-386 891350 891492 891640 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-385 889962 890310 890623 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-384 888507 888828 889150 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-383 886133 886489 886894 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-382 879385 881046 882624 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-381 879037 879258 879326 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-380 878661 878882 878963 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-379 876758 877441 877901 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-378 875351 875658 876050 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-377 874006 874365 874689 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-376 873309 873433 873620 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-375 872283 872549 872896 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-374 869941 870471 870953 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-373 869524 869584 869753 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-372 867824 868738 869041 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-371 866972 867106 867329 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-370 866143 866304 866531 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 862377 865038 865079 "FSAGG" 865449 FSAGG (NIL T) -9 NIL 865710 NIL) (-368 860731 861490 862282 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-367 858687 858983 859527 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-366 857734 857916 858216 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-365 857415 857464 857591 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-364 837571 847072 847113 "FS" 850983 FS (NIL T) -9 NIL 853261 NIL) (-363 829802 833295 837274 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-362 829336 829463 829615 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-361 823859 827017 827057 "FRNAALG" 828377 FRNAALG (NIL T) -9 NIL 828975 NIL) (-360 820600 821851 823109 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-359 820281 820330 820457 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-358 818768 819325 819619 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-357 818054 818147 818434 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-356 815888 816654 816970 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-355 814997 815440 815481 "FRETRCT" 815486 FRETRCT (NIL T) -9 NIL 815657 NIL) (-354 814370 814648 814992 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-353 811114 812634 812693 "FRAMALG" 813575 FRAMALG (NIL T T) -9 NIL 813867 NIL) (-352 809710 810261 810891 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-351 809403 809466 809573 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-350 803044 809208 809398 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-349 802737 802800 802907 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-348 795045 799616 800944 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-347 788823 792326 792354 "FPS" 793473 FPS (NIL) -9 NIL 794029 NIL) (-346 788380 788513 788677 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-345 785190 787233 787261 "FPC" 787486 FPC (NIL) -9 NIL 787628 NIL) (-344 785036 785088 785185 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-343 783813 784522 784563 "FPATMAB" 784568 FPATMAB (NIL T) -9 NIL 784720 NIL) (-342 782243 782839 783186 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-341 781818 781876 782049 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-340 780321 781216 781390 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-339 778936 779441 779469 "FNCAT" 779926 FNCAT (NIL) -9 NIL 780183 NIL) (-338 778393 778903 778931 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-337 776980 778342 778388 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-336 773568 774926 774967 "FMONCAT" 776184 FMONCAT (NIL T) -9 NIL 776788 NIL) (-335 770426 771504 771557 "FMCAT" 772738 FMCAT (NIL T T) -9 NIL 773230 NIL) (-334 769126 770249 770348 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-333 768174 768974 769121 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-332 766361 766813 767307 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-331 764296 764832 765410 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-330 757682 762633 763247 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-329 756163 757264 757304 "FLINEXP" 757309 FLINEXP (NIL T) -9 NIL 757402 NIL) (-328 755572 755831 756158 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-327 754787 754946 755167 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-326 751670 752749 752801 "FLALG" 754028 FLALG (NIL T T) -9 NIL 754495 NIL) (-325 750841 751002 751229 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-324 744515 748246 748287 "FLAGG" 749538 FLAGG (NIL T) -9 NIL 750183 NIL) (-323 743623 744027 744510 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-322 740184 741448 741507 "FINRALG" 742635 FINRALG (NIL T T) -9 NIL 743143 NIL) (-321 739575 739840 740179 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-320 738873 739169 739197 "FINITE" 739393 FINITE (NIL) -9 NIL 739500 NIL) (-319 738781 738807 738868 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-318 735704 737031 737072 "FINAGG" 737977 FINAGG (NIL T) -9 NIL 738442 NIL) (-317 734735 735200 735699 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-316 726696 729287 729327 "FINAALG" 732979 FINAALG (NIL T) -9 NIL 734417 NIL) (-315 722963 724208 725331 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 721515 721934 721988 "FILECAT" 722672 FILECAT (NIL T T) -9 NIL 722888 NIL) (-313 720866 721340 721443 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 718114 719992 720020 "FIELD" 720060 FIELD (NIL) -9 NIL 720140 NIL) (-311 717139 717600 718109 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 715143 716089 716435 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 714386 714567 714786 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 709656 714324 714381 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 709318 709385 709520 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 708858 708900 709109 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 705538 706415 707192 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 700822 705470 705533 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 695501 700311 700501 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 689982 694782 695040 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 684189 689433 689644 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 683212 683422 683737 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 678652 681357 681385 "FFIELDC" 682004 FFIELDC (NIL) -9 NIL 682379 NIL) (-298 677721 678161 678647 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 677336 677394 677518 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 675480 676003 676520 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 670574 675279 675380 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 665674 670363 670470 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 660340 665465 665573 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 659794 659843 660078 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 638369 649403 649489 "FFCAT" 654639 FFCAT (NIL T T T) -9 NIL 656075 NIL) (-290 634609 635835 637141 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 629452 634540 634604 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 628344 628813 628854 "FEVALAB" 628938 FEVALAB (NIL T) -9 NIL 629199 NIL) (-287 627749 628001 628339 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 624576 625487 625602 "FDIVCAT" 627169 FDIVCAT (NIL T T T T) -9 NIL 627605 NIL) (-285 624370 624402 624571 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 623677 623770 624047 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 622163 623161 623364 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 621256 621640 621842 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 620378 620867 621007 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 611965 616608 616648 "FAXF" 618449 FAXF (NIL T) -9 NIL 619139 NIL) (-279 609881 610685 611500 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 605048 609403 609577 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 599506 601929 601981 "FAMR" 602992 FAMR (NIL T T) -9 NIL 603451 NIL) (-276 598705 599070 599501 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 597726 598647 598700 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 595320 596199 596252 "FAMONC" 597193 FAMONC (NIL T T) -9 NIL 597578 NIL) (-273 593876 595178 595315 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 591956 592317 592719 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 591233 591430 591652 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 583093 590680 590879 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 581112 581682 582268 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 578014 578656 579376 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 573171 573878 574683 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 572860 572923 573032 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 557653 571909 572335 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 548180 556973 557261 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 547674 547976 548066 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 547450 547640 547669 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 547139 547207 547320 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 546656 546798 546839 "EVALAB" 547009 EVALAB (NIL T) -9 NIL 547113 NIL) (-259 546284 546430 546651 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 543327 544922 544950 "EUCDOM" 545504 EUCDOM (NIL) -9 NIL 545853 NIL) (-257 542254 542747 543322 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 541979 542035 542135 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 541667 541731 541840 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 535438 537338 537366 "ES" 540108 ES (NIL) -9 NIL 541492 NIL) (-253 531953 533485 535277 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 531301 531454 531630 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 522660 531231 531296 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 522349 522412 522521 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 515976 519101 520534 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 512279 513375 514468 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 511108 511458 511763 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 509993 510724 510752 "ENTIRER" 510757 ENTIRER (NIL) -9 NIL 510801 NIL) (-245 509882 509916 509988 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 506515 508312 508661 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 505607 505818 505872 "ELTAGG" 506252 ELTAGG (NIL T T) -9 NIL 506463 NIL) (-242 505387 505461 505602 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 505133 505168 505222 "ELTAB" 505306 ELTAB (NIL T T) -9 NIL 505358 NIL) (-240 504384 504554 504753 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 504108 504182 504210 "ELEMFUN" 504315 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 504008 504035 504103 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 498850 502033 502074 "ELAGG" 503007 ELAGG (NIL T) -9 NIL 503468 NIL) (-236 497648 498186 498845 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 497066 497233 497389 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 495979 496298 496577 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 489372 491370 492197 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 483351 485347 486157 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 481165 481571 482042 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 472165 474078 475619 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 471278 471779 471928 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 469976 470650 470690 "DVARCAT" 470973 DVARCAT (NIL T) -9 NIL 471113 NIL) (-227 469395 469659 469971 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 461462 469263 469390 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 459800 460591 460632 "DSEXT" 460995 DSEXT (NIL T) -9 NIL 461289 NIL) (-224 458605 459129 459795 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 458329 458394 458492 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 454480 455696 456827 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 450126 451481 452545 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 448801 449162 449548 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 448487 448546 448664 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 447462 447760 448050 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 447047 447122 447272 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 439460 441572 443687 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 434977 435996 437075 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 431601 433604 433645 "DQAGG" 434274 DQAGG (NIL T) -9 NIL 434547 NIL) (-213 418144 425784 425866 "DPOLCAT" 427703 DPOLCAT (NIL T T T T) -9 NIL 428246 NIL) (-212 414552 416200 418139 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 407603 414450 414547 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 400563 407432 407598 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 400156 400416 400505 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 399570 400018 400098 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 398856 399181 399332 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 391995 398592 398743 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 389744 391061 391101 "DMEXT" 391106 DMEXT (NIL T) -9 NIL 391281 NIL) (-204 389400 389462 389606 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 383032 388885 389075 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 379760 381855 381896 "DLAGG" 382446 DLAGG (NIL T) -9 NIL 382675 NIL) (-201 378111 378982 379010 "DIVRING" 379102 DIVRING (NIL) -9 NIL 379185 NIL) (-200 377562 377806 378106 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 375990 376407 376813 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 375027 375248 375513 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 368547 374959 375022 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 356892 363307 363360 "DIRPCAT" 363616 DIRPCAT (NIL NIL T) -9 NIL 364491 NIL) (-195 354898 355668 356555 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 354345 354511 354697 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 351183 353222 353263 "DIOPS" 353683 DIOPS (NIL T) -9 NIL 353911 NIL) (-192 350843 350987 351178 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 349850 350596 350624 "DIOID" 350629 DIOID (NIL) -9 NIL 350651 NIL) (-190 348678 349507 349535 "DIFRING" 349540 DIFRING (NIL) -9 NIL 349561 NIL) (-189 348314 348412 348440 "DIFFSPC" 348559 DIFFSPC (NIL) -9 NIL 348634 NIL) (-188 348055 348157 348309 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 346958 347583 347623 "DIFFMOD" 347628 DIFFMOD (NIL T) -9 NIL 347725 NIL) (-186 346642 346699 346740 "DIFFDOM" 346861 DIFFDOM (NIL T) -9 NIL 346929 NIL) (-185 346523 346553 346637 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 344196 345717 345757 "DIFEXT" 345762 DIFEXT (NIL T) -9 NIL 345914 NIL) (-183 341639 343678 343719 "DIAGG" 343724 DIAGG (NIL T) -9 NIL 343744 NIL) (-182 341195 341385 341634 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 336433 340385 340662 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 332891 333944 334954 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 327441 332045 332372 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 326007 326299 326674 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 323127 324379 324775 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 320911 322958 323047 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 320294 320439 320621 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 317612 318336 319136 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 315721 316179 316741 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 315104 315437 315551 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 308304 314829 314977 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 306224 306734 307238 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 305863 305912 306063 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 305122 305684 305775 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 303146 303588 303948 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 302438 302727 302873 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 301889 302035 302187 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 299251 300044 300771 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 298690 298836 299007 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 296762 297073 297440 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 296319 296574 296675 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 295520 295903 295931 "CTORCAT" 296112 CTORCAT (NIL) -9 NIL 296224 NIL) (-159 295223 295357 295515 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 294716 294973 295081 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 294132 294563 294636 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 293591 293708 293861 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 289985 290741 291496 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 289476 289779 289870 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 288695 288904 289132 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 288199 288304 288508 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 287952 287986 288092 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 284891 285653 286371 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 284410 284552 284691 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 280303 282873 283365 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 280177 280204 280232 "CONDUIT" 280269 CONDUIT (NIL) -9 NIL NIL NIL) (-146 279056 279787 279815 "COMRING" 279820 COMRING (NIL) -9 NIL 279870 NIL) (-145 278221 278588 278766 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 277917 277958 278086 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 277610 277673 277780 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 266452 277560 277605 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 265913 266052 266212 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 265666 265707 265805 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 247097 259347 259387 "COMPCAT" 260388 COMPCAT (NIL T) -9 NIL 261730 NIL) (-138 239635 243148 246741 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 239394 239428 239530 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 239224 239263 239321 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 238805 239084 239158 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 238382 238623 238710 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 237577 237825 237853 "COMBOPC" 238191 COMBOPC (NIL) -9 NIL 238366 NIL) (-132 236641 236893 237135 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 233573 234257 234880 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 232453 232904 233139 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 231944 232247 232338 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 231631 231684 231809 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 231101 231411 231509 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 227621 228691 229771 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 225916 226901 227139 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 222829 224552 224593 "CLAGG" 225156 CLAGG (NIL T) -9 NIL 225536 NIL) (-123 222387 222577 222824 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 222016 222107 222247 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 219953 220460 221008 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 218914 219645 219673 "CHARZ" 219678 CHARZ (NIL) -9 NIL 219692 NIL) (-119 218708 218754 218832 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 217547 218310 218338 "CHARNZ" 218399 CHARNZ (NIL) -9 NIL 218447 NIL) (-117 215025 216122 216645 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 214733 214812 214840 "CFCAT" 214951 CFCAT (NIL) -9 NIL NIL NIL) (-115 214076 214205 214387 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 210344 213489 213769 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 209722 209909 210086 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 209250 209669 209717 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 208723 209032 209129 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 208214 208517 208608 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 207463 207623 207844 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 203563 204820 205528 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 201929 202960 203211 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 201510 201789 201863 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 200944 201197 201225 "CACHSET" 201357 CACHSET (NIL) -9 NIL 201435 NIL) (-104 200296 200711 200739 "CABMON" 200789 CABMON (NIL) -9 NIL 200845 NIL) (-103 199826 200090 200200 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 195351 199494 199655 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 194321 195025 195160 "BYTE" NIL BYTE (NIL) -8 NIL NIL 195323) (-100 191860 194088 194194 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 189370 191614 191722 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 186638 188772 188811 "BTCAT" 188878 BTCAT (NIL T) -9 NIL 188959 NIL) (-97 186389 186487 186633 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 181753 185581 185607 "BTAGG" 185718 BTAGG (NIL) -9 NIL 185826 NIL) (-95 181384 181545 181748 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 178536 180876 181066 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 177806 177958 178136 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 174401 176512 176551 "BRAGG" 177192 BRAGG (NIL T) -9 NIL 177449 NIL) (-91 173356 173851 174396 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 165890 172861 173042 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 163882 165842 165885 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 163615 163651 163762 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 161854 162287 162735 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 157820 159236 160126 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 156696 157587 157709 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 156282 156439 156465 "BOOLE" 156573 BOOLE (NIL) -9 NIL 156654 NIL) (-83 156075 156156 156277 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 155213 155740 155790 "BMODULE" 155795 BMODULE (NIL T T) -9 NIL 155859 NIL) (-81 151125 155070 155139 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 150938 150978 151017 "BINOPC" 151022 BINOPC (NIL T) -9 NIL 151067 NIL) (-79 150480 150753 150855 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 150001 150145 150283 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 143207 149731 149876 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 141009 142427 142466 "BGAGG" 142722 BGAGG (NIL T) -9 NIL 142849 NIL) (-75 140878 140916 141004 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 139729 139930 140215 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 136457 138909 139214 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 136042 136135 136161 "BASTYPE" 136332 BASTYPE (NIL) -9 NIL 136428 NIL) (-71 135812 135908 136037 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 135327 135415 135565 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 134226 134901 135086 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 133974 133979 134005 "ATTREG" 134010 ATTREG (NIL) -9 NIL NIL NIL) (-67 133579 133851 133916 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 133079 133228 133254 "ATRIG" 133455 ATRIG (NIL) -9 NIL NIL NIL) (-65 132934 132987 133074 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 132504 132735 132761 "ASTCAT" 132766 ASTCAT (NIL) -9 NIL 132796 NIL) (-63 132303 132380 132499 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 130526 132136 132224 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 129333 129646 130011 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 127185 129263 129328 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 126376 126567 126788 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 122262 126107 126221 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 116574 118578 118653 "ARR2CAT" 121165 ARR2CAT (NIL T T T) -9 NIL 121886 NIL) (-56 115535 116017 116569 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 114903 115274 115396 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 113835 114003 114299 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 113536 113590 113708 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 112919 113065 113221 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 112324 112614 112734 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 109892 111053 111376 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 109417 109677 109773 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 103112 108479 108921 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 98646 100309 100359 "AMR" 101097 AMR (NIL T T) -9 NIL 101694 NIL) (-46 98000 98280 98641 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 79598 97934 97995 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 76001 79274 79443 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 73011 73671 74278 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 72390 72503 72687 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 68802 69427 70019 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 58291 68495 68645 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 57608 57762 57940 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 56321 57116 57154 "ALGEBRA" 57159 ALGEBRA (NIL T) -9 NIL 57199 NIL) (-37 56107 56184 56316 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34047 53214 53266 "ALAGG" 53401 ALAGG (NIL T T) -9 NIL 53559 NIL) (-35 33547 33696 33722 "AHYP" 33923 AHYP (NIL) -9 NIL NIL NIL) (-34 32843 33024 33050 "AGG" 33331 AGG (NIL) -9 NIL 33518 NIL) (-33 32686 32744 32838 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30825 31285 31685 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30320 30623 30712 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29690 29985 30141 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17248 26527 26565 "ACFS" 27172 ACFS (NIL T) -9 NIL 27411 NIL) (-28 15871 16481 17243 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11423 13802 13828 "ACF" 14707 ACF (NIL) -9 NIL 15119 NIL) (-26 10519 10925 11418 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10021 10261 10287 "ABELSG" 10379 ABELSG (NIL) -9 NIL 10444 NIL) (-24 9919 9950 10016 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9074 9448 9474 "ABELMON" 9699 ABELMON (NIL) -9 NIL 9832 NIL) (-22 8756 8896 9069 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 7968 8451 8477 "ABELGRP" 8549 ABELGRP (NIL) -9 NIL 8624 NIL) (-20 7521 7717 7963 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6748 6787 "A1AGG" 6792 A1AGG (NIL T) -9 NIL 6826 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file +((-3 2819808 2819813 2819818 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 2819793 2819798 2819803 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 2819778 2819783 2819788 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 2819763 2819768 2819773 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1210 2818742 2819681 2819758 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1209 2817957 2818136 2818355 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1208 2809116 2810985 2812919 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1207 2808504 2808657 2808846 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1206 2807966 2808269 2808382 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1205 2805526 2807428 2807631 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1204 2802290 2803943 2804514 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1203 2799547 2801277 2801331 "XPOLYC" 2801616 XPOLYC (NIL T T) -9 NIL 2801729 NIL) (-1202 2797066 2799051 2799254 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1201 2793314 2795925 2796313 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1200 2788161 2789794 2789848 "XFALG" 2791993 XFALG (NIL T T) -9 NIL 2792777 NIL) (-1199 2783317 2786050 2786092 "XF" 2786710 XF (NIL T) -9 NIL 2787106 NIL) (-1198 2783035 2783145 2783312 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1197 2782262 2782384 2782588 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1196 2780004 2782162 2782257 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1195 2778585 2779380 2779422 "XALG" 2779427 XALG (NIL T) -9 NIL 2779536 NIL) (-1194 2772417 2776995 2777473 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1193 2770660 2771662 2771983 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1192 2770259 2770531 2770600 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1191 2769746 2770049 2770142 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1190 2768823 2769033 2769328 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1189 2767119 2767582 2768044 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1188 2766008 2766593 2766635 "VSPACE" 2766771 VSPACE (NIL T) -9 NIL 2766845 NIL) (-1187 2765879 2765912 2766003 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1186 2765722 2765776 2765844 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1185 2762705 2763500 2764237 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1184 2753803 2756404 2758577 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1183 2747380 2749271 2750850 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1182 2745864 2746259 2746665 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1181 2744691 2744972 2745288 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1180 2740106 2744518 2744610 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1179 2733469 2737779 2737822 "VECTCAT" 2738810 VECTCAT (NIL T) -9 NIL 2739394 NIL) (-1178 2732748 2733074 2733464 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1177 2732242 2732484 2732604 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1176 2732175 2732180 2732210 "UTYPE" 2732215 UTYPE (NIL) -9 NIL NIL NIL) (-1175 2731162 2731338 2731599 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1174 2729013 2729521 2730045 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1173 2718895 2724865 2724907 "UTSCAT" 2726005 UTSCAT (NIL T) -9 NIL 2726762 NIL) (-1172 2716960 2717903 2718890 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1171 2716634 2716683 2716814 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1170 2708345 2714830 2715309 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1169 2702402 2705153 2705196 "URAGG" 2707266 URAGG (NIL T) -9 NIL 2707988 NIL) (-1168 2700417 2701379 2702397 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1167 2696124 2699393 2699855 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1166 2688553 2696048 2696119 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1165 2677204 2684691 2684752 "UPXSCCA" 2685320 UPXSCCA (NIL T T) -9 NIL 2685552 NIL) (-1164 2676925 2677027 2677199 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1163 2665477 2672689 2672731 "UPXSCAT" 2673371 UPXSCAT (NIL T) -9 NIL 2673979 NIL) (-1162 2664990 2665075 2665252 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1161 2656676 2664581 2664843 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1160 2655571 2655841 2656191 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1159 2648274 2651759 2651813 "UPSCAT" 2652882 UPSCAT (NIL T T) -9 NIL 2653646 NIL) (-1158 2647694 2647946 2648269 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1157 2647368 2647417 2647548 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1156 2631498 2640452 2640494 "UPOLYC" 2642572 UPOLYC (NIL T) -9 NIL 2643792 NIL) (-1155 2625553 2628401 2631493 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1154 2624989 2625114 2625277 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1153 2624623 2624710 2624849 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1152 2623436 2623703 2624007 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1151 2622769 2622899 2623084 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1150 2622361 2622436 2622583 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1149 2613125 2622127 2622255 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1148 2612487 2612624 2612829 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1147 2611088 2611935 2612211 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1146 2610317 2610514 2610739 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1145 2597127 2610241 2610312 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1144 2576933 2590168 2590229 "ULSCCAT" 2590860 ULSCCAT (NIL T T) -9 NIL 2591147 NIL) (-1143 2576268 2576554 2576928 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1142 2564640 2571774 2571816 "ULSCAT" 2572669 ULSCAT (NIL T) -9 NIL 2573399 NIL) (-1141 2564153 2564238 2564415 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1140 2546270 2563652 2563893 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1139 2545304 2545997 2546111 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2546222) (-1138 2544337 2545030 2545144 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2545255) (-1137 2543370 2544063 2544177 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2544288) (-1136 2542403 2543096 2543210 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2543321) (-1135 2540410 2541631 2541661 "UFD" 2541872 UFD (NIL) -9 NIL 2541985 NIL) (-1134 2540254 2540311 2540405 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1133 2539506 2539713 2539929 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1132 2537726 2538179 2538644 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1131 2537451 2537691 2537721 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1130 2537389 2537394 2537424 "TYPE" 2537429 TYPE (NIL) -9 NIL 2537436 NIL) (-1129 2536548 2536768 2537008 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1128 2535726 2536157 2536392 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1127 2533880 2534453 2534992 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1126 2532914 2533150 2533386 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1125 2521535 2525729 2525825 "TSETCAT" 2531040 TSETCAT (NIL T T T T) -9 NIL 2532541 NIL) (-1124 2517872 2519688 2521530 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1123 2512264 2517098 2517380 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1122 2507601 2508614 2509543 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1121 2507098 2507173 2507336 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1120 2505174 2505464 2505819 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1119 2504658 2504807 2504837 "TRIGCAT" 2505050 TRIGCAT (NIL) -9 NIL NIL NIL) (-1118 2504409 2504512 2504653 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1117 2501470 2503515 2503796 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1116 2500576 2501272 2501302 "TRANFUN" 2501337 TRANFUN (NIL) -9 NIL 2501403 NIL) (-1115 2500040 2500291 2500571 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1114 2499877 2499915 2499976 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1113 2499334 2499465 2499616 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1112 2498075 2498732 2498968 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1111 2497887 2497924 2497996 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1110 2496101 2496747 2497176 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1109 2494481 2494818 2495140 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1108 2483417 2492261 2492317 "TBAGG" 2492634 TBAGG (NIL T T) -9 NIL 2492844 NIL) (-1107 2478927 2481115 2483412 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1106 2478404 2478529 2478674 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1105 2477914 2478234 2478324 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1104 2477411 2477528 2477666 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1103 2468768 2477339 2477406 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1102 2464521 2465816 2467061 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1101 2463890 2464049 2464230 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1100 2461044 2461797 2462580 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1099 2460818 2461008 2461039 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1098 2459772 2460457 2460583 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2460769) (-1097 2459036 2459584 2459663 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2459723) (-1096 2455859 2457018 2457718 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1095 2453542 2454225 2454859 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1094 2449620 2450666 2451643 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1093 2446719 2449275 2449504 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1092 2446315 2446402 2446524 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1091 2442939 2444413 2445232 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1090 2435899 2442136 2442429 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1089 2427585 2435490 2435752 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1088 2426864 2427003 2427220 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1087 2426548 2426613 2426724 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1086 2417271 2426260 2426385 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1085 2416001 2416299 2416654 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1084 2415406 2415484 2415675 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1083 2397558 2414905 2415146 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1082 2397157 2397429 2397498 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1081 2396493 2396774 2396914 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1080 2391095 2392354 2393307 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1079 2390627 2390727 2390891 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1078 2385738 2387020 2388167 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1077 2380196 2381667 2382978 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1076 2373111 2375175 2376966 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1075 2364103 2373049 2373106 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1074 2359088 2363817 2363932 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1073 2358675 2358758 2358902 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1072 2357826 2358027 2358262 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1071 2357566 2357624 2357717 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1070 2350600 2355771 2356377 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1069 2349776 2349981 2350212 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1068 2349021 2349392 2349539 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1067 2348509 2348751 2348781 "STEP" 2348875 STEP (NIL) -9 NIL 2348946 NIL) (-1066 2339856 2348427 2348504 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1065 2334365 2338654 2338697 "STAGG" 2339124 STAGG (NIL T) -9 NIL 2339298 NIL) (-1064 2332744 2333492 2334360 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1063 2330965 2332571 2332663 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1062 2330245 2330784 2330814 "SRING" 2330819 SRING (NIL) -9 NIL 2330839 NIL) (-1061 2323141 2328783 2329222 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1060 2316915 2318354 2319858 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1059 2309589 2314210 2314240 "SRAGG" 2315539 SRAGG (NIL) -9 NIL 2316143 NIL) (-1058 2308886 2309206 2309584 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1057 2302986 2308208 2308631 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1056 2297039 2300354 2301090 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1055 2293468 2294287 2294924 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1054 2292443 2292748 2292778 "SPFCAT" 2293222 SPFCAT (NIL) -9 NIL NIL NIL) (-1053 2291380 2291632 2291896 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1052 2282138 2284412 2284442 "SPADXPT" 2289079 SPADXPT (NIL) -9 NIL 2291203 NIL) (-1051 2281940 2281986 2282055 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1050 2279596 2281904 2281935 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1049 2271270 2273359 2273401 "SPACEC" 2277716 SPACEC (NIL T) -9 NIL 2279521 NIL) (-1048 2269099 2271217 2271265 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1047 2268035 2268224 2268514 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1046 2266439 2266772 2267183 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1045 2265704 2265938 2266199 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1044 2261884 2262844 2263839 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1043 2258242 2258941 2259670 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1042 2252284 2257564 2257660 "SNTSCAT" 2257665 SNTSCAT (NIL T T T T) -9 NIL 2257735 NIL) (-1041 2246105 2250925 2251315 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1040 2239877 2246024 2246100 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1039 2238309 2238640 2239038 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1038 2229941 2234875 2234977 "SMATCAT" 2236320 SMATCAT (NIL NIL T T T) -9 NIL 2236868 NIL) (-1037 2227782 2228766 2229936 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1036 2225943 2227240 2227283 "SMAGG" 2227368 SMAGG (NIL T) -9 NIL 2227443 NIL) (-1035 2223562 2225110 2225153 "SKAGG" 2225414 SKAGG (NIL T) -9 NIL 2225550 NIL) (-1034 2219608 2223382 2223493 "SINT" NIL SINT (NIL) -8 NIL NIL 2223534) (-1033 2219418 2219462 2219528 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1032 2218493 2218725 2218993 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1031 2217497 2217659 2217935 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1030 2216843 2217183 2217306 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1029 2216189 2216496 2216636 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1028 2214300 2214792 2215298 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1027 2207786 2214219 2214295 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1026 2207289 2207526 2207556 "SGROUP" 2207649 SGROUP (NIL) -9 NIL 2207711 NIL) (-1025 2207179 2207211 2207284 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1024 2206817 2206857 2206898 "SGPOPC" 2206903 SGPOPC (NIL T) -9 NIL 2207104 NIL) (-1023 2206351 2206628 2206734 "SGPOP" NIL SGPOP (NIL T) -8 NIL NIL NIL) (-1022 2203774 2204543 2205265 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1021 2197915 2203195 2203291 "SFRTCAT" 2203296 SFRTCAT (NIL T T T T) -9 NIL 2203334 NIL) (-1020 2192307 2193420 2194547 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1019 2186483 2187644 2188808 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1018 2185455 2186357 2186478 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1017 2181063 2181958 2182053 "SEXCAT" 2184666 SEXCAT (NIL T T T T T) -9 NIL 2185217 NIL) (-1016 2180036 2180990 2181058 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1015 2178427 2179012 2179314 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1014 2177950 2178135 2178165 "SETCAT" 2178282 SETCAT (NIL) -9 NIL 2178366 NIL) (-1013 2177782 2177846 2177945 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1012 2174290 2176236 2176279 "SETAGG" 2177147 SETAGG (NIL T) -9 NIL 2177485 NIL) (-1011 2173896 2174048 2174285 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1010 2171141 2173843 2173891 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1009 2170607 2170917 2171017 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1008 2169734 2170100 2170161 "SEGXCAT" 2170447 SEGXCAT (NIL T T) -9 NIL 2170567 NIL) (-1007 2168659 2168927 2168970 "SEGCAT" 2169492 SEGCAT (NIL T) -9 NIL 2169713 NIL) (-1006 2168339 2168404 2168517 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1005 2167405 2167875 2168083 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1004 2166983 2167262 2167338 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1003 2166348 2166484 2166688 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1002 2165414 2166161 2166343 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1001 2164667 2165362 2165409 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1000 2156152 2164534 2164662 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-999 2155012 2155302 2155619 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-998 2154318 2154530 2154718 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-997 2153668 2153825 2154001 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-996 2153241 2153472 2153500 "SASTCAT" 2153505 SASTCAT (NIL) -9 NIL 2153518 NIL) (-995 2152708 2153133 2153207 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-994 2152311 2152352 2152523 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-993 2151942 2151983 2152140 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-992 2145023 2151859 2151937 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-991 2143673 2144002 2144398 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-990 2142434 2142795 2143095 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-989 2142058 2142279 2142360 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-988 2139518 2140152 2140605 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-987 2139357 2139390 2139458 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-986 2138848 2139151 2139242 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-985 2134476 2135344 2136255 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-984 2123551 2128831 2128925 "RSETCAT" 2132981 RSETCAT (NIL T T T T) -9 NIL 2134069 NIL) (-983 2122089 2122731 2123546 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-982 2115863 2117308 2118815 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-981 2113745 2114302 2114374 "RRCC" 2115447 RRCC (NIL T T) -9 NIL 2115788 NIL) (-980 2113270 2113469 2113740 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-979 2112740 2113050 2113148 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-978 2085292 2096005 2096069 "RPOLCAT" 2106543 RPOLCAT (NIL T T T) -9 NIL 2109688 NIL) (-977 2079391 2082214 2085287 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-976 2075558 2079139 2079277 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-975 2073886 2074625 2074881 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-974 2069529 2072341 2072369 "RNS" 2072631 RNS (NIL) -9 NIL 2072883 NIL) (-973 2068432 2068919 2069456 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-972 2067550 2067951 2068151 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-971 2066688 2067250 2067278 "RNG" 2067338 RNG (NIL) -9 NIL 2067392 NIL) (-970 2066577 2066611 2066683 "RNG-" NIL RNG- (NIL T) -7 NIL NIL NIL) (-969 2065839 2066344 2066384 "RMODULE" 2066389 RMODULE (NIL T) -9 NIL 2066415 NIL) (-968 2064778 2064884 2065214 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-967 2061669 2064368 2064661 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-966 2054358 2056803 2056915 "RMATCAT" 2060220 RMATCAT (NIL NIL NIL T T T) -9 NIL 2061186 NIL) (-965 2053875 2054054 2054353 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-964 2053443 2053654 2053695 "RLINSET" 2053756 RLINSET (NIL T) -9 NIL 2053800 NIL) (-963 2053088 2053169 2053295 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-962 2051934 2052665 2052693 "RING" 2052748 RING (NIL) -9 NIL 2052840 NIL) (-961 2051779 2051835 2051929 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-960 2050833 2051100 2051356 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-959 2042038 2050461 2050662 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-958 2041263 2041774 2041813 "RGBCSPC" 2041870 RGBCSPC (NIL T) -9 NIL 2041921 NIL) (-957 2040297 2040783 2040822 "RGBCMDL" 2041050 RGBCMDL (NIL T) -9 NIL 2041164 NIL) (-956 2040009 2040078 2040179 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-955 2039772 2039813 2039908 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-954 2038196 2038626 2039006 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-953 2035783 2036451 2037119 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-952 2035333 2035431 2035591 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-951 2034955 2035053 2035094 "RETRACT" 2035225 RETRACT (NIL T) -9 NIL 2035312 NIL) (-950 2034835 2034866 2034950 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-949 2034437 2034709 2034776 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-948 2032917 2033808 2034005 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-947 2032608 2032669 2032765 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-946 2032351 2032392 2032497 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-945 2032086 2032127 2032236 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-944 2027157 2028608 2029823 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-943 2024256 2025014 2025822 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-942 2022225 2022847 2023447 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-941 2015134 2020776 2021212 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-940 2014446 2014726 2014875 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-939 2013931 2014046 2014211 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-938 2009524 2013334 2013555 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-937 2008756 2008955 2009168 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-936 2006046 2006884 2007766 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-935 2002628 2003664 2004723 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-934 2002464 2002517 2002545 "REAL" 2002550 REAL (NIL) -9 NIL 2002585 NIL) (-933 2001954 2002258 2002349 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-932 2001434 2001512 2001717 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-931 2000667 2000859 2001070 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-930 1999555 1999852 2000219 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-929 1997822 1998292 1998825 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-928 1996744 1997021 1997408 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-927 1995571 1995880 1996299 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-926 1988919 1992431 1992459 "RCFIELD" 1993736 RCFIELD (NIL) -9 NIL 1994466 NIL) (-925 1987537 1988149 1988846 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-924 1983805 1985635 1985676 "RCAGG" 1986739 RCAGG (NIL T) -9 NIL 1987198 NIL) (-923 1983532 1983642 1983800 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-922 1982977 1983106 1983267 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-921 1982594 1982673 1982792 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-920 1982009 1982159 1982309 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-919 1981791 1981841 1981912 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-918 1974233 1980909 1981217 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-917 1963935 1974100 1974228 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-916 1963569 1963662 1963690 "RADCAT" 1963847 RADCAT (NIL) -9 NIL NIL NIL) (-915 1963407 1963467 1963564 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-914 1961571 1963238 1963327 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-913 1961252 1961301 1961428 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-912 1953539 1957623 1957663 "QUATCAT" 1958441 QUATCAT (NIL T) -9 NIL 1959205 NIL) (-911 1950789 1952069 1953445 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-910 1946629 1950739 1950784 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-909 1944043 1945644 1945685 "QUAGG" 1946060 QUAGG (NIL T) -9 NIL 1946236 NIL) (-908 1943645 1943917 1943984 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-907 1942651 1943281 1943444 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-906 1942332 1942381 1942508 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-905 1931932 1938101 1938141 "QFCAT" 1938799 QFCAT (NIL T) -9 NIL 1939792 NIL) (-904 1928816 1930255 1931838 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-903 1928362 1928496 1928626 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-902 1922558 1923719 1924881 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-901 1921977 1922157 1922389 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-900 1919799 1920327 1920750 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-899 1918698 1918940 1919257 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-898 1917059 1917257 1917610 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-897 1912815 1914031 1914072 "PTRANFN" 1915956 PTRANFN (NIL T) -9 NIL NIL NIL) (-896 1911462 1911807 1912128 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-895 1911155 1911218 1911325 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-894 1905489 1909914 1909954 "PTCAT" 1910246 PTCAT (NIL T) -9 NIL 1910399 NIL) (-893 1905182 1905223 1905347 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-892 1904061 1904377 1904711 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-891 1892940 1895501 1897810 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-890 1886101 1888723 1888817 "PSETCAT" 1891791 PSETCAT (NIL T T T T) -9 NIL 1892600 NIL) (-889 1884551 1885285 1886096 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-888 1883870 1884065 1884093 "PSCURVE" 1884361 PSCURVE (NIL) -9 NIL 1884528 NIL) (-887 1879472 1881292 1881356 "PSCAT" 1882191 PSCAT (NIL T T T) -9 NIL 1882430 NIL) (-886 1878786 1879068 1879467 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-885 1877183 1878098 1878361 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-884 1876674 1876977 1877068 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-883 1867694 1870116 1872304 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-882 1865464 1866975 1867015 "PRQAGG" 1867198 PRQAGG (NIL T) -9 NIL 1867301 NIL) (-881 1864637 1865083 1865111 "PROPLOG" 1865250 PROPLOG (NIL) -9 NIL 1865364 NIL) (-880 1864312 1864375 1864498 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-879 1863748 1863887 1864059 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-878 1861996 1862759 1863056 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-877 1861548 1861680 1861808 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-876 1855989 1860488 1861308 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-875 1855818 1855856 1855915 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-874 1855257 1855397 1855548 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-873 1853725 1854144 1854610 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-872 1853442 1853503 1853531 "PRIMCAT" 1853655 PRIMCAT (NIL) -9 NIL NIL NIL) (-871 1852613 1852809 1853037 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-870 1848792 1852563 1852608 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-869 1848491 1848553 1848664 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-868 1845627 1848140 1848373 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-867 1845078 1845235 1845263 "PPCURVE" 1845468 PPCURVE (NIL) -9 NIL 1845604 NIL) (-866 1844691 1844936 1845019 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-865 1842447 1842868 1843460 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-864 1841890 1841954 1842187 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-863 1838610 1839096 1839707 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-862 1824201 1830330 1830394 "POLYCAT" 1833879 POLYCAT (NIL T T T) -9 NIL 1835756 NIL) (-861 1819711 1821858 1824196 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-860 1819368 1819442 1819561 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-859 1819061 1819124 1819231 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-858 1812424 1818794 1818953 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-857 1811311 1811574 1811850 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-856 1809915 1810228 1810558 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-855 1805376 1809865 1809910 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-854 1803864 1804275 1804650 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-853 1802621 1802930 1803326 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-852 1802292 1802376 1802493 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-851 1801871 1801946 1802120 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-850 1801357 1801453 1801613 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-849 1800829 1800949 1801103 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-848 1799724 1799942 1800319 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-847 1799335 1799420 1799572 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-846 1798886 1798968 1799149 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-845 1798578 1798659 1798772 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-844 1798091 1798166 1798374 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-843 1797439 1797567 1797769 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-842 1796801 1796935 1797098 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-841 1796105 1796287 1796468 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-840 1795828 1795902 1795996 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-839 1792396 1793585 1794501 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-838 1791480 1791681 1791916 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-837 1787045 1788429 1789571 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-836 1766966 1771853 1776700 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-835 1766706 1766759 1766862 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-834 1766147 1766281 1766461 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-833 1764156 1765377 1765405 "PID" 1765602 PID (NIL) -9 NIL 1765729 NIL) (-832 1763944 1763987 1764062 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-831 1763131 1763791 1763878 "PI" NIL PI (NIL) -8 NIL NIL 1763918) (-830 1762583 1762734 1762910 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-829 1758911 1759869 1760774 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-828 1757275 1757564 1757930 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-827 1756717 1756832 1756993 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-826 1753258 1755586 1755939 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-825 1751864 1752144 1752469 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-824 1750629 1750883 1751231 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-823 1749339 1749566 1749918 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-822 1746349 1747909 1747937 "PFECAT" 1748530 PFECAT (NIL) -9 NIL 1748907 NIL) (-821 1745972 1746137 1746344 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-820 1744796 1745078 1745379 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-819 1742978 1743365 1743795 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-818 1738948 1742904 1742973 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-817 1734851 1735998 1736865 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-816 1732783 1733872 1733913 "PERMCAT" 1734312 PERMCAT (NIL T) -9 NIL 1734609 NIL) (-815 1732479 1732526 1732649 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-814 1728928 1730609 1731254 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-813 1726456 1728683 1728804 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-812 1725325 1725588 1725629 "PDSPC" 1726162 PDSPC (NIL T) -9 NIL 1726407 NIL) (-811 1724692 1724958 1725320 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-810 1723327 1724320 1724361 "PDRING" 1724366 PDRING (NIL T) -9 NIL 1724393 NIL) (-809 1722037 1722826 1722879 "PDMOD" 1722884 PDMOD (NIL T T) -9 NIL 1722987 NIL) (-808 1721130 1721342 1721591 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-807 1720735 1720802 1720856 "PDDOM" 1721021 PDDOM (NIL T T) -9 NIL 1721101 NIL) (-806 1720587 1720623 1720730 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-805 1720373 1720412 1720501 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-804 1718690 1719444 1719743 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-803 1718379 1718442 1718551 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-802 1716517 1716947 1717398 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-801 1710137 1711966 1713258 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-800 1709768 1709841 1709973 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-799 1707470 1708150 1708631 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-798 1705674 1706102 1706505 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-797 1705120 1705368 1705409 "PATMAB" 1705516 PATMAB (NIL T) -9 NIL 1705599 NIL) (-796 1703767 1704171 1704428 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-795 1703305 1703436 1703477 "PATAB" 1703482 PATAB (NIL T) -9 NIL 1703654 NIL) (-794 1701848 1702285 1702708 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-793 1701526 1701601 1701703 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-792 1701215 1701278 1701387 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-791 1701020 1701066 1701133 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-790 1700698 1700773 1700875 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-789 1700387 1700450 1700559 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-788 1700078 1700148 1700245 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-787 1699767 1699830 1699939 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-786 1698928 1699307 1699486 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-785 1698535 1698633 1698752 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-784 1697503 1697928 1698147 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-783 1696168 1696822 1697182 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-782 1689258 1695572 1695766 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-781 1681679 1688756 1688940 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-780 1678404 1680319 1680359 "PADICCT" 1680940 PADICCT (NIL NIL) -9 NIL 1681222 NIL) (-779 1676394 1678354 1678399 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-778 1675556 1675766 1676032 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-777 1674898 1675041 1675245 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-776 1673279 1674306 1674584 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-775 1672803 1673062 1673159 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-774 1671862 1672540 1672712 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-773 1662284 1665153 1667352 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-772 1661676 1661990 1662116 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-771 1660953 1661148 1661176 "OUTBCON" 1661494 OUTBCON (NIL) -9 NIL 1661660 NIL) (-770 1660661 1660791 1660948 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-769 1660042 1660187 1660348 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-768 1659413 1659840 1659929 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-767 1658828 1659243 1659271 "OSGROUP" 1659276 OSGROUP (NIL) -9 NIL 1659298 NIL) (-766 1657792 1658053 1658338 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-765 1655061 1657667 1657787 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-764 1652202 1654812 1654938 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-763 1650220 1650748 1651308 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-762 1643562 1646102 1646142 "OREPCAT" 1648463 OREPCAT (NIL T) -9 NIL 1649565 NIL) (-761 1641588 1642522 1643557 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-760 1640785 1641056 1641084 "ORDTYPE" 1641389 ORDTYPE (NIL) -9 NIL 1641547 NIL) (-759 1640319 1640530 1640780 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-758 1639781 1640157 1640314 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-757 1639275 1639638 1639666 "ORDSET" 1639671 ORDSET (NIL) -9 NIL 1639693 NIL) (-756 1637840 1638862 1638890 "ORDRING" 1638895 ORDRING (NIL) -9 NIL 1638923 NIL) (-755 1637088 1637645 1637673 "ORDMON" 1637678 ORDMON (NIL) -9 NIL 1637699 NIL) (-754 1636392 1636554 1636746 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-753 1635603 1636111 1636139 "ORDFIN" 1636204 ORDFIN (NIL) -9 NIL 1636278 NIL) (-752 1634997 1635136 1635322 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-751 1631672 1633965 1634371 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-750 1631079 1631434 1631539 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-749 1630887 1630932 1630998 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-748 1630188 1630464 1630505 "OPERCAT" 1630716 OPERCAT (NIL T) -9 NIL 1630812 NIL) (-747 1630000 1630067 1630183 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-746 1627366 1628802 1629298 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-745 1626787 1626914 1627088 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-744 1623688 1625926 1626292 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-743 1620572 1623081 1623121 "OMSAGG" 1623182 OMSAGG (NIL T) -9 NIL 1623246 NIL) (-742 1618984 1620243 1620411 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-741 1617180 1618421 1618449 "OINTDOM" 1618454 OINTDOM (NIL) -9 NIL 1618475 NIL) (-740 1614610 1616182 1616511 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-739 1613864 1614560 1614605 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-738 1611066 1613705 1613859 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-737 1602603 1610937 1611061 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-736 1596060 1602494 1602598 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-735 1595032 1595269 1595542 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-734 1592666 1593336 1594040 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-733 1588443 1589403 1590426 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-732 1587951 1588039 1588233 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-731 1585400 1585982 1586655 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-730 1582795 1583303 1583899 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-729 1579792 1580331 1580977 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-728 1579147 1579255 1579513 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-727 1578305 1578430 1578651 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-726 1574589 1575385 1576298 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-725 1574029 1574124 1574346 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-724 1573710 1573759 1573886 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-723 1570313 1573509 1573628 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-722 1569473 1570095 1570123 "OCAMON" 1570128 OCAMON (NIL) -9 NIL 1570149 NIL) (-721 1563685 1566499 1566539 "OC" 1567634 OC (NIL T) -9 NIL 1568490 NIL) (-720 1561685 1562611 1563591 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-719 1561101 1561519 1561547 "OASGP" 1561552 OASGP (NIL) -9 NIL 1561572 NIL) (-718 1560164 1560813 1560841 "OAMONS" 1560881 OAMONS (NIL) -9 NIL 1560924 NIL) (-717 1559309 1559890 1559918 "OAMON" 1559975 OAMON (NIL) -9 NIL 1560026 NIL) (-716 1559205 1559237 1559304 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-715 1557956 1558730 1558758 "OAGROUP" 1558904 OAGROUP (NIL) -9 NIL 1558996 NIL) (-714 1557747 1557834 1557951 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-713 1557487 1557543 1557631 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-712 1552549 1554112 1555639 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-711 1549244 1550278 1551313 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-710 1548354 1548587 1548805 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-709 1537215 1540243 1542691 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-708 1531358 1536638 1536732 "NTSCAT" 1536737 NTSCAT (NIL T T T T) -9 NIL 1536775 NIL) (-707 1530699 1530878 1531071 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-706 1530392 1530455 1530562 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-705 1518059 1528012 1528822 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-704 1507068 1517924 1518054 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-703 1505788 1506113 1506470 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-702 1504624 1504888 1505246 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-701 1503791 1503924 1504140 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-700 1502109 1502428 1502834 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-699 1501822 1501856 1501980 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-698 1501641 1501676 1501745 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-697 1501417 1501607 1501636 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-696 1500981 1501048 1501225 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-695 1499267 1500344 1500599 "NNI" NIL NNI (NIL) -8 NIL NIL 1500946) (-694 1497995 1498332 1498696 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-693 1496972 1497224 1497526 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-692 1496059 1496624 1496665 "NETCLT" 1496836 NETCLT (NIL T) -9 NIL 1496917 NIL) (-691 1494963 1495230 1495511 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-690 1494762 1494805 1494880 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-689 1493293 1493681 1494101 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-688 1491926 1492892 1492920 "NASRING" 1493030 NASRING (NIL) -9 NIL 1493110 NIL) (-687 1491771 1491827 1491921 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-686 1490700 1491378 1491406 "NARNG" 1491523 NARNG (NIL) -9 NIL 1491614 NIL) (-685 1490476 1490561 1490695 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-684 1489242 1489996 1490036 "NAALG" 1490115 NAALG (NIL T) -9 NIL 1490176 NIL) (-683 1489112 1489147 1489237 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-682 1484091 1485276 1486462 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-681 1483486 1483573 1483757 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-680 1475496 1479990 1480042 "MTSCAT" 1481102 MTSCAT (NIL T T) -9 NIL 1481616 NIL) (-679 1475262 1475322 1475414 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-678 1475088 1475127 1475187 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-677 1472232 1474620 1474661 "MSETAGG" 1474666 MSETAGG (NIL T) -9 NIL 1474700 NIL) (-676 1468602 1471275 1471596 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-675 1464876 1466699 1467439 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-674 1464513 1464586 1464715 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-673 1464166 1464207 1464351 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-672 1462031 1462368 1462799 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-671 1455429 1461930 1462026 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-670 1454954 1454995 1455203 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-669 1454513 1454562 1454745 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-668 1453787 1453880 1454099 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-667 1452404 1452765 1453155 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-666 1451925 1451992 1452031 "MONOPC" 1452091 MONOPC (NIL T) -9 NIL 1452310 NIL) (-665 1451376 1451712 1451840 "MONOP" NIL MONOP (NIL T) -8 NIL NIL NIL) (-664 1450518 1450897 1450925 "MONOID" 1451143 MONOID (NIL) -9 NIL 1451287 NIL) (-663 1450177 1450327 1450513 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-662 1439115 1445985 1446044 "MONOGEN" 1446718 MONOGEN (NIL T T) -9 NIL 1447174 NIL) (-661 1437127 1438013 1438996 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-660 1435841 1436385 1436413 "MONADWU" 1436804 MONADWU (NIL) -9 NIL 1437039 NIL) (-659 1435389 1435589 1435836 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-658 1434666 1434967 1434995 "MONAD" 1435202 MONAD (NIL) -9 NIL 1435314 NIL) (-657 1434433 1434529 1434661 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-656 1432823 1433593 1433872 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-655 1431957 1432484 1432524 "MODULE" 1432529 MODULE (NIL T) -9 NIL 1432567 NIL) (-654 1431636 1431762 1431952 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-653 1429347 1430233 1430547 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-652 1426526 1427943 1428456 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-651 1425160 1425734 1426010 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-650 1414379 1423825 1424238 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-649 1411335 1413379 1413648 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-648 1410419 1410786 1410976 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-647 1409988 1410037 1410216 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-646 1407813 1408809 1408849 "MLO" 1409266 MLO (NIL T) -9 NIL 1409506 NIL) (-645 1405694 1406221 1406816 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-644 1405162 1405258 1405412 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-643 1404832 1404908 1405031 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-642 1404044 1404230 1404458 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-641 1403537 1403653 1403809 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-640 1402909 1403023 1403208 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-639 1401936 1402209 1402486 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-638 1401369 1401457 1401628 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-637 1398527 1399406 1400285 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-636 1397194 1397542 1397895 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-635 1394133 1396299 1396340 "MDAGG" 1396597 MDAGG (NIL T) -9 NIL 1396742 NIL) (-634 1393407 1393571 1393771 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-633 1392485 1392771 1393001 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-632 1390582 1391159 1391720 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-631 1386380 1390172 1390419 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-630 1382729 1383498 1384232 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-629 1381482 1381651 1381980 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-628 1371005 1374569 1374645 "MATCAT" 1379633 MATCAT (NIL T T T) -9 NIL 1381079 NIL) (-627 1368286 1369592 1371000 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-626 1366687 1367047 1367431 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-625 1365820 1366017 1366239 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-624 1364571 1364897 1365224 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-623 1363733 1364135 1364311 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-622 1363402 1363466 1363589 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-621 1363050 1363123 1363237 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-620 1362585 1362700 1362842 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-619 1360794 1361562 1361863 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-618 1360288 1360590 1360680 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-617 1354093 1358603 1358644 "LZSTAGG" 1359421 LZSTAGG (NIL T) -9 NIL 1359711 NIL) (-616 1351212 1352646 1354088 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-615 1348599 1349565 1350048 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-614 1348180 1348459 1348533 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-613 1340389 1348041 1348175 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-612 1339752 1339897 1340125 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-611 1337236 1337934 1338646 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-610 1335348 1335671 1336119 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-609 1328787 1334398 1334439 "LSAGG" 1334501 LSAGG (NIL T) -9 NIL 1334579 NIL) (-608 1326481 1327580 1328782 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-607 1323961 1325830 1326079 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-606 1323628 1323719 1323842 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-605 1323299 1323378 1323406 "LOGIC" 1323517 LOGIC (NIL) -9 NIL 1323599 NIL) (-604 1323194 1323223 1323294 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-603 1322513 1322671 1322864 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-602 1321298 1321547 1321898 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-601 1317120 1319919 1319959 "LODOCAT" 1320391 LODOCAT (NIL T) -9 NIL 1320602 NIL) (-600 1316913 1316989 1317115 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-599 1313913 1316790 1316908 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-598 1311011 1313863 1313908 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-597 1308098 1310941 1311006 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-596 1307151 1307326 1307628 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-595 1305283 1306413 1306666 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-594 1300664 1303442 1303483 "LNAGG" 1304345 LNAGG (NIL T) -9 NIL 1304780 NIL) (-593 1300051 1300318 1300659 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-592 1296623 1297564 1298201 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-591 1295885 1296390 1296430 "LMODULE" 1296435 LMODULE (NIL T) -9 NIL 1296461 NIL) (-590 1293354 1295621 1295744 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-589 1292922 1293133 1293174 "LLINSET" 1293235 LLINSET (NIL T) -9 NIL 1293279 NIL) (-588 1292598 1292858 1292917 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-587 1292197 1292277 1292416 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-586 1290648 1290996 1291395 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-585 1289819 1290015 1290243 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-584 1283172 1289075 1289329 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-583 1282749 1282982 1283023 "LINSET" 1283028 LINSET (NIL T) -9 NIL 1283061 NIL) (-582 1281650 1282372 1282539 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-581 1279916 1280671 1280711 "LINEXP" 1281197 LINEXP (NIL T) -9 NIL 1281470 NIL) (-580 1278538 1279525 1279706 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-579 1277365 1277637 1277939 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-578 1276578 1277167 1277277 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-577 1274128 1274850 1275600 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-576 1272758 1273055 1273446 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-575 1271551 1272153 1272193 "LIECAT" 1272333 LIECAT (NIL T) -9 NIL 1272484 NIL) (-574 1271425 1271458 1271546 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-573 1265681 1271115 1271343 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-572 1256130 1265357 1265513 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-571 1252582 1253531 1254466 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-570 1251206 1252114 1252142 "LFCAT" 1252349 LFCAT (NIL) -9 NIL 1252488 NIL) (-569 1249445 1249775 1250120 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-568 1246962 1247627 1248308 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-567 1243974 1244952 1245455 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-566 1243465 1243768 1243859 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-565 1242172 1242496 1242896 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-564 1241438 1241523 1241749 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-563 1236441 1240006 1240542 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-562 1236066 1236116 1236276 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-561 1234837 1235610 1235650 "LALG" 1235711 LALG (NIL T) -9 NIL 1235769 NIL) (-560 1234620 1234697 1234832 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-559 1232473 1233888 1234139 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-558 1232302 1232332 1232373 "KVTFROM" 1232435 KVTFROM (NIL T) -9 NIL NIL NIL) (-557 1231118 1231833 1232022 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-556 1230947 1230977 1231018 "KRCFROM" 1231080 KRCFROM (NIL T) -9 NIL NIL NIL) (-555 1230049 1230246 1230541 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-554 1229878 1229908 1229949 "KONVERT" 1230011 KONVERT (NIL T) -9 NIL NIL NIL) (-553 1229707 1229737 1229778 "KOERCE" 1229840 KOERCE (NIL T) -9 NIL NIL NIL) (-552 1229277 1229370 1229502 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-551 1227330 1228224 1228596 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-550 1219192 1225114 1225168 "KDAGG" 1225544 KDAGG (NIL T T) -9 NIL 1225770 NIL) (-549 1218657 1218889 1219187 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-548 1211588 1218449 1218595 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-547 1211238 1211520 1211583 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-546 1210208 1210707 1210956 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-545 1209334 1209783 1209988 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-544 1208198 1208690 1208990 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-543 1207480 1207879 1208040 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-542 1207190 1207426 1207475 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-541 1201445 1206880 1207108 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-540 1200863 1201196 1201316 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-539 1197090 1199046 1199100 "IXAGG" 1200021 IXAGG (NIL T T) -9 NIL 1200478 NIL) (-538 1196296 1196667 1197085 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-537 1195263 1195538 1195801 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-536 1193925 1194132 1194425 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-535 1192876 1193098 1193381 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-534 1192551 1192614 1192737 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-533 1191813 1192185 1192359 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-532 1189789 1191089 1191363 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-531 1179337 1185106 1186263 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-530 1178582 1178734 1178970 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-529 1178073 1178376 1178467 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-528 1177366 1177457 1177670 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-527 1176498 1176723 1176963 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-526 1174911 1175292 1175720 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-525 1174696 1174740 1174816 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-524 1173546 1173843 1174138 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-523 1172819 1173170 1173321 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-522 1172022 1172153 1172366 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-521 1170177 1170674 1171218 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-520 1167258 1168526 1169215 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-519 1167083 1167123 1167183 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-518 1163081 1167009 1167078 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-517 1161084 1163020 1163076 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-516 1160455 1160754 1160884 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-515 1159908 1160196 1160328 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-514 1158989 1159614 1159740 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-513 1158399 1158893 1158921 "IOBCON" 1158926 IOBCON (NIL) -9 NIL 1158947 NIL) (-512 1157970 1158034 1158216 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-511 1150014 1152385 1154710 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-510 1147125 1147908 1148772 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-509 1146802 1146899 1147016 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-508 1144244 1146738 1146797 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-507 1142356 1142885 1143452 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-506 1141858 1141972 1142112 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-505 1140242 1140648 1141110 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-504 1138021 1138615 1139226 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-503 1135394 1136004 1136724 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-502 1134798 1134956 1135164 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-501 1134317 1134403 1134591 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-500 1132522 1133043 1133500 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-499 1125604 1127257 1128986 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-498 1124970 1125132 1125305 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-497 1122843 1123307 1123851 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-496 1120969 1121919 1121947 "INTDOM" 1122246 INTDOM (NIL) -9 NIL 1122451 NIL) (-495 1120522 1120724 1120964 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-494 1116329 1118801 1118855 "INTCAT" 1119651 INTCAT (NIL T) -9 NIL 1119967 NIL) (-493 1115894 1116014 1116141 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-492 1114734 1114906 1115212 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-491 1114307 1114403 1114560 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-490 1105643 1114214 1114302 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-489 1104941 1105496 1105561 "INT8" NIL INT8 (NIL) -8 NIL NIL 1105595) (-488 1104238 1104793 1104858 "INT64" NIL INT64 (NIL) -8 NIL NIL 1104892) (-487 1103535 1104090 1104155 "INT32" NIL INT32 (NIL) -8 NIL NIL 1104189) (-486 1102832 1103387 1103452 "INT16" NIL INT16 (NIL) -8 NIL NIL 1103486) (-485 1099295 1102751 1102827 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-484 1093352 1096835 1096863 "INS" 1097793 INS (NIL) -9 NIL 1098452 NIL) (-483 1091414 1092332 1093279 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-482 1090473 1090696 1090971 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-481 1089687 1089828 1090025 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-480 1088677 1088818 1089055 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-479 1087829 1087993 1088253 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-478 1087109 1087224 1087412 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-477 1085848 1086117 1086441 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-476 1085128 1085269 1085452 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-475 1084791 1084863 1084961 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-474 1081869 1083355 1083878 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-473 1081468 1081575 1081689 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-472 1080624 1081269 1081370 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-471 1079474 1079742 1080063 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-470 1078464 1079404 1079469 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-469 1078089 1078169 1078286 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-468 1077003 1077548 1077752 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-467 1073098 1074153 1075096 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-466 1071952 1072275 1072303 "INBCON" 1072816 INBCON (NIL) -9 NIL 1073082 NIL) (-465 1071406 1071671 1071947 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-464 1070900 1071202 1071292 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-463 1070357 1070666 1070771 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-462 1069197 1069336 1069651 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-461 1067621 1067888 1068225 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-460 1062464 1067552 1067616 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-459 1061844 1062178 1062293 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-458 1056954 1061282 1061468 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-457 1055984 1056876 1056949 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-456 1055556 1055633 1055687 "IEVALAB" 1055894 IEVALAB (NIL T T) -9 NIL NIL NIL) (-455 1055311 1055391 1055551 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-454 1054696 1054923 1055080 "IDPT" NIL IDPT (NIL T T) -8 NIL NIL NIL) (-453 1053689 1054616 1054691 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-452 1052752 1053609 1053684 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-451 1051834 1052481 1052618 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-450 1050197 1050768 1050819 "IDPC" 1051325 IDPC (NIL T T) -9 NIL 1051638 NIL) (-449 1049485 1050119 1050192 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-448 1048655 1049407 1049480 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-447 1048348 1048561 1048621 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-446 1048052 1048092 1048131 "IDEMOPC" 1048136 IDEMOPC (NIL T) -9 NIL 1048273 NIL) (-445 1045123 1046004 1046896 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-444 1038749 1040026 1041065 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-443 1038011 1038141 1038340 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-442 1037184 1037683 1037821 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-441 1035573 1035904 1036295 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-440 1031637 1035529 1035568 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-439 1028895 1029519 1030214 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-438 1027121 1027601 1028134 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-437 1024995 1027027 1027116 "IARRAY2" NIL IARRAY2 (NIL T T T) -8 NIL NIL NIL) (-436 1021155 1024933 1024990 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-435 1014734 1020119 1020587 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-434 1014302 1014365 1014538 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-433 1013794 1013943 1013971 "HYPCAT" 1014178 HYPCAT (NIL) -9 NIL NIL NIL) (-432 1013450 1013603 1013789 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-431 1013063 1013308 1013391 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-430 1012896 1012945 1012986 "HOMOTOP" 1012991 HOMOTOP (NIL T) -9 NIL 1013024 NIL) (-429 1009656 1010972 1011013 "HOAGG" 1011885 HOAGG (NIL T) -9 NIL 1012575 NIL) (-428 1009283 1009430 1009651 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-427 1002483 1009008 1009156 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-426 1001418 1001676 1001939 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-425 1000353 1001283 1001413 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-424 998611 1000186 1000274 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-423 997926 998278 998411 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-422 991426 997859 997921 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-421 984565 991162 991313 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-420 984018 984175 984338 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-419 975371 983935 984013 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-418 974862 975165 975256 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-417 972412 974649 974828 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-416 968079 972295 972407 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-415 959409 967976 968074 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-414 951346 958778 959033 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-413 950370 950879 950907 "GROUP" 951110 GROUP (NIL) -9 NIL 951244 NIL) (-412 949913 950114 950365 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-411 948585 948924 949311 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-410 947407 947764 947815 "GRMOD" 948344 GRMOD (NIL T T) -9 NIL 948510 NIL) (-409 947226 947274 947402 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-408 943349 944560 945560 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-407 942071 942395 942710 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-406 941624 941752 941893 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-405 940697 941196 941247 "GRALG" 941400 GRALG (NIL T T) -9 NIL 941490 NIL) (-404 940416 940517 940692 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-403 937418 940109 940274 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-402 936831 936894 937151 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-401 932685 933581 934106 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-400 931860 932062 932300 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-399 926863 927790 928809 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-398 926611 926668 926757 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-397 926093 926182 926347 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-396 925602 925643 925856 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-395 924403 924686 924990 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-394 917678 924093 924254 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-393 907461 912468 913572 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-392 905513 906616 906644 "GCDDOM" 906899 GCDDOM (NIL) -9 NIL 907056 NIL) (-391 905136 905293 905508 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-390 895929 898399 900787 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-389 894064 894389 894807 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-388 893005 893194 893461 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-387 891876 892083 892387 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-386 891339 891481 891629 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-385 889951 890299 890612 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-384 888496 888817 889139 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-383 886122 886478 886883 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-382 879374 881035 882613 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-381 879026 879247 879315 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-380 878650 878871 878952 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-379 876747 877430 877890 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-378 875340 875647 876039 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-377 873995 874354 874678 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-376 873298 873422 873609 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-375 872272 872538 872885 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-374 869930 870460 870942 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-373 869513 869573 869742 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-372 867813 868727 869030 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-371 866961 867095 867318 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-370 866132 866293 866520 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-369 862366 865027 865068 "FSAGG" 865438 FSAGG (NIL T) -9 NIL 865699 NIL) (-368 860720 861479 862271 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-367 858676 858972 859516 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-366 857723 857905 858205 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-365 857404 857453 857580 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-364 837560 847061 847102 "FS" 850972 FS (NIL T) -9 NIL 853250 NIL) (-363 829791 833284 837263 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-362 829325 829452 829604 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-361 823848 827006 827046 "FRNAALG" 828366 FRNAALG (NIL T) -9 NIL 828964 NIL) (-360 820589 821840 823098 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-359 820270 820319 820446 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-358 818757 819314 819608 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-357 818043 818136 818423 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-356 815877 816643 816959 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-355 814986 815429 815470 "FRETRCT" 815475 FRETRCT (NIL T) -9 NIL 815646 NIL) (-354 814359 814637 814981 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-353 811103 812623 812682 "FRAMALG" 813564 FRAMALG (NIL T T) -9 NIL 813856 NIL) (-352 809699 810250 810880 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-351 809392 809455 809562 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-350 803033 809197 809387 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-349 802726 802789 802896 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-348 795034 799605 800933 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-347 788812 792315 792343 "FPS" 793462 FPS (NIL) -9 NIL 794018 NIL) (-346 788369 788502 788666 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-345 785179 787222 787250 "FPC" 787475 FPC (NIL) -9 NIL 787617 NIL) (-344 785025 785077 785174 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-343 783802 784511 784552 "FPATMAB" 784557 FPATMAB (NIL T) -9 NIL 784709 NIL) (-342 782232 782828 783175 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-341 781807 781865 782038 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-340 780310 781205 781379 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-339 778925 779430 779458 "FNCAT" 779915 FNCAT (NIL) -9 NIL 780172 NIL) (-338 778382 778892 778920 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-337 776969 778331 778377 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-336 773557 774915 774956 "FMONCAT" 776173 FMONCAT (NIL T) -9 NIL 776777 NIL) (-335 770415 771493 771546 "FMCAT" 772727 FMCAT (NIL T T) -9 NIL 773219 NIL) (-334 769115 770238 770337 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-333 768163 768963 769110 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-332 766350 766802 767296 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-331 764285 764821 765399 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-330 757671 762622 763236 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-329 756152 757253 757293 "FLINEXP" 757298 FLINEXP (NIL T) -9 NIL 757391 NIL) (-328 755561 755820 756147 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-327 754776 754935 755156 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-326 751659 752738 752790 "FLALG" 754017 FLALG (NIL T T) -9 NIL 754484 NIL) (-325 750830 750991 751218 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-324 744504 748235 748276 "FLAGG" 749527 FLAGG (NIL T) -9 NIL 750172 NIL) (-323 743612 744016 744499 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-322 740173 741437 741496 "FINRALG" 742624 FINRALG (NIL T T) -9 NIL 743132 NIL) (-321 739564 739829 740168 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-320 738862 739158 739186 "FINITE" 739382 FINITE (NIL) -9 NIL 739489 NIL) (-319 738770 738796 738857 "FINITE-" NIL FINITE- (NIL T) -7 NIL NIL NIL) (-318 735704 737031 737072 "FINAGG" 737977 FINAGG (NIL T) -9 NIL 738431 NIL) (-317 734735 735200 735699 "FINAGG-" NIL FINAGG- (NIL T T) -7 NIL NIL NIL) (-316 726696 729287 729327 "FINAALG" 732979 FINAALG (NIL T) -9 NIL 734417 NIL) (-315 722963 724208 725331 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-314 721515 721934 721988 "FILECAT" 722672 FILECAT (NIL T T) -9 NIL 722888 NIL) (-313 720866 721340 721443 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-312 718114 719992 720020 "FIELD" 720060 FIELD (NIL) -9 NIL 720140 NIL) (-311 717139 717600 718109 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-310 715143 716089 716435 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-309 714386 714567 714786 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-308 709656 714324 714381 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-307 709318 709385 709520 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-306 708858 708900 709109 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-305 705538 706415 707192 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-304 700822 705470 705533 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-303 695501 700311 700501 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-302 689982 694782 695040 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-301 684189 689433 689644 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-300 683212 683422 683737 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-299 678652 681357 681385 "FFIELDC" 682004 FFIELDC (NIL) -9 NIL 682379 NIL) (-298 677721 678161 678647 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-297 677336 677394 677518 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-296 675480 676003 676520 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-295 670574 675279 675380 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-294 665674 670363 670470 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-293 660340 665465 665573 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-292 659794 659843 660078 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-291 638369 649403 649489 "FFCAT" 654639 FFCAT (NIL T T T) -9 NIL 656075 NIL) (-290 634609 635835 637141 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-289 629452 634540 634604 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-288 628344 628813 628854 "FEVALAB" 628938 FEVALAB (NIL T) -9 NIL 629199 NIL) (-287 627749 628001 628339 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-286 624576 625487 625602 "FDIVCAT" 627169 FDIVCAT (NIL T T T T) -9 NIL 627605 NIL) (-285 624370 624402 624571 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-284 623677 623770 624047 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-283 622163 623161 623364 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-282 621256 621640 621842 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-281 620378 620867 621007 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-280 611965 616608 616648 "FAXF" 618449 FAXF (NIL T) -9 NIL 619139 NIL) (-279 609881 610685 611500 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-278 605048 609403 609577 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-277 599506 601929 601981 "FAMR" 602992 FAMR (NIL T T) -9 NIL 603451 NIL) (-276 598705 599070 599501 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-275 597726 598647 598700 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-274 595320 596199 596252 "FAMONC" 597193 FAMONC (NIL T T) -9 NIL 597578 NIL) (-273 593876 595178 595315 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-272 591956 592317 592719 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-271 591233 591430 591652 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-270 583093 590680 590879 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-269 581112 581682 582268 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-268 578014 578656 579376 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-267 573171 573878 574683 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-266 572860 572923 573032 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-265 557653 571909 572335 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-264 548180 556973 557261 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-263 547674 547976 548066 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-262 547450 547640 547669 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-261 547139 547207 547320 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-260 546656 546798 546839 "EVALAB" 547009 EVALAB (NIL T) -9 NIL 547113 NIL) (-259 546284 546430 546651 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-258 543327 544922 544950 "EUCDOM" 545504 EUCDOM (NIL) -9 NIL 545853 NIL) (-257 542254 542747 543322 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-256 541979 542035 542135 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-255 541667 541731 541840 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-254 535438 537338 537366 "ES" 540108 ES (NIL) -9 NIL 541492 NIL) (-253 531953 533485 535277 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-252 531301 531454 531630 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-251 522660 531231 531296 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-250 522349 522412 522521 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-249 515976 519101 520534 "EQ" NIL EQ (NIL T) -8 NIL NIL NIL) (-248 512279 513375 514468 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-247 511108 511458 511763 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-246 509993 510724 510752 "ENTIRER" 510757 ENTIRER (NIL) -9 NIL 510801 NIL) (-245 509882 509916 509988 "ENTIRER-" NIL ENTIRER- (NIL T) -7 NIL NIL NIL) (-244 506515 508312 508661 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-243 505607 505818 505872 "ELTAGG" 506252 ELTAGG (NIL T T) -9 NIL 506463 NIL) (-242 505387 505461 505602 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-241 505133 505168 505222 "ELTAB" 505306 ELTAB (NIL T T) -9 NIL 505358 NIL) (-240 504384 504554 504753 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-239 504108 504182 504210 "ELEMFUN" 504315 ELEMFUN (NIL) -9 NIL NIL NIL) (-238 504008 504035 504103 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-237 498850 502033 502074 "ELAGG" 503007 ELAGG (NIL T) -9 NIL 503468 NIL) (-236 497648 498186 498845 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-235 497066 497233 497389 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-234 495979 496298 496577 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-233 489372 491370 492197 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-232 483351 485347 486157 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-231 481165 481571 482042 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-230 472165 474078 475619 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-229 471278 471779 471928 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-228 469976 470650 470690 "DVARCAT" 470973 DVARCAT (NIL T) -9 NIL 471113 NIL) (-227 469395 469659 469971 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-226 461462 469263 469390 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-225 459800 460591 460632 "DSEXT" 460995 DSEXT (NIL T) -9 NIL 461289 NIL) (-224 458605 459129 459795 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-223 458329 458394 458492 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-222 454480 455696 456827 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-221 450126 451481 452545 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-220 448801 449162 449548 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-219 448487 448546 448664 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-218 447462 447760 448050 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-217 447047 447122 447272 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-216 439460 441572 443687 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-215 434977 435996 437075 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-214 431601 433604 433645 "DQAGG" 434274 DQAGG (NIL T) -9 NIL 434547 NIL) (-213 418144 425784 425866 "DPOLCAT" 427703 DPOLCAT (NIL T T T T) -9 NIL 428246 NIL) (-212 414552 416200 418139 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-211 407603 414450 414547 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-210 400563 407432 407598 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-209 400156 400416 400505 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-208 399570 400018 400098 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-207 398856 399181 399332 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-206 391995 398592 398743 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-205 389744 391061 391101 "DMEXT" 391106 DMEXT (NIL T) -9 NIL 391281 NIL) (-204 389400 389462 389606 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-203 383032 388885 389075 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-202 379760 381855 381896 "DLAGG" 382446 DLAGG (NIL T) -9 NIL 382675 NIL) (-201 378111 378982 379010 "DIVRING" 379102 DIVRING (NIL) -9 NIL 379185 NIL) (-200 377562 377806 378106 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-199 375990 376407 376813 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-198 375027 375248 375513 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-197 368547 374959 375022 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-196 356892 363307 363360 "DIRPCAT" 363616 DIRPCAT (NIL NIL T) -9 NIL 364491 NIL) (-195 354898 355668 356555 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-194 354345 354511 354697 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-193 351183 353222 353263 "DIOPS" 353683 DIOPS (NIL T) -9 NIL 353911 NIL) (-192 350843 350987 351178 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-191 349850 350596 350624 "DIOID" 350629 DIOID (NIL) -9 NIL 350651 NIL) (-190 348678 349507 349535 "DIFRING" 349540 DIFRING (NIL) -9 NIL 349561 NIL) (-189 348314 348412 348440 "DIFFSPC" 348559 DIFFSPC (NIL) -9 NIL 348634 NIL) (-188 348055 348157 348309 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-187 346958 347583 347623 "DIFFMOD" 347628 DIFFMOD (NIL T) -9 NIL 347725 NIL) (-186 346642 346699 346740 "DIFFDOM" 346861 DIFFDOM (NIL T) -9 NIL 346929 NIL) (-185 346523 346553 346637 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-184 344196 345717 345757 "DIFEXT" 345762 DIFEXT (NIL T) -9 NIL 345914 NIL) (-183 341639 343678 343719 "DIAGG" 343724 DIAGG (NIL T) -9 NIL 343744 NIL) (-182 341195 341385 341634 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-181 336433 340385 340662 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-180 332891 333944 334954 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-179 327441 332045 332372 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-178 326007 326299 326674 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-177 323127 324379 324775 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-176 320911 322958 323047 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-175 320294 320439 320621 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-174 317612 318336 319136 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-173 315721 316179 316741 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-172 315104 315437 315551 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-171 308304 314829 314977 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-170 306224 306734 307238 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-169 305863 305912 306063 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-168 305122 305684 305775 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-167 303146 303588 303948 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-166 302438 302727 302873 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-165 301889 302035 302187 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-164 299251 300044 300771 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-163 298690 298836 299007 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-162 296762 297073 297440 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-161 296319 296574 296675 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-160 295520 295903 295931 "CTORCAT" 296112 CTORCAT (NIL) -9 NIL 296224 NIL) (-159 295223 295357 295515 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-158 294716 294973 295081 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-157 294132 294563 294636 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-156 293591 293708 293861 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-155 289985 290741 291496 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-154 289476 289779 289870 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-153 288695 288904 289132 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-152 288199 288304 288508 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-151 287952 287986 288092 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-150 284891 285653 286371 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-149 284410 284552 284691 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-148 280303 282873 283365 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-147 280177 280204 280232 "CONDUIT" 280269 CONDUIT (NIL) -9 NIL NIL NIL) (-146 279056 279787 279815 "COMRING" 279820 COMRING (NIL) -9 NIL 279870 NIL) (-145 278221 278588 278766 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-144 277917 277958 278086 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-143 277610 277673 277780 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-142 266452 277560 277605 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-141 265913 266052 266212 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-140 265666 265707 265805 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-139 247097 259347 259387 "COMPCAT" 260388 COMPCAT (NIL T) -9 NIL 261730 NIL) (-138 239635 243148 246741 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-137 239394 239428 239530 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-136 239224 239263 239321 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-135 238805 239084 239158 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-134 238382 238623 238710 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-133 237577 237825 237853 "COMBOPC" 238191 COMBOPC (NIL) -9 NIL 238366 NIL) (-132 236641 236893 237135 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-131 233573 234257 234880 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-130 232453 232904 233139 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-129 231944 232247 232338 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-128 231631 231684 231809 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-127 231101 231411 231509 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-126 227621 228691 229771 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-125 225916 226901 227139 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-124 222829 224552 224593 "CLAGG" 225156 CLAGG (NIL T) -9 NIL 225536 NIL) (-123 222387 222577 222824 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-122 222016 222107 222247 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-121 219953 220460 221008 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-120 218914 219645 219673 "CHARZ" 219678 CHARZ (NIL) -9 NIL 219692 NIL) (-119 218708 218754 218832 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-118 217547 218310 218338 "CHARNZ" 218399 CHARNZ (NIL) -9 NIL 218447 NIL) (-117 215025 216122 216645 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-116 214733 214812 214840 "CFCAT" 214951 CFCAT (NIL) -9 NIL NIL NIL) (-115 214076 214205 214387 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-114 210344 213489 213769 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-113 209722 209909 210086 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-112 209250 209669 209717 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-111 208723 209032 209129 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-110 208214 208517 208608 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-109 207463 207623 207844 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-108 203563 204820 205528 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-107 201929 202960 203211 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-106 201510 201789 201863 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-105 200944 201197 201225 "CACHSET" 201357 CACHSET (NIL) -9 NIL 201435 NIL) (-104 200296 200711 200739 "CABMON" 200789 CABMON (NIL) -9 NIL 200845 NIL) (-103 199826 200090 200200 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-102 195351 199494 199655 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-101 194321 195025 195160 "BYTE" NIL BYTE (NIL) -8 NIL NIL 195323) (-100 191860 194088 194194 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-99 189370 191614 191722 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-98 186638 188772 188811 "BTCAT" 188878 BTCAT (NIL T) -9 NIL 188959 NIL) (-97 186389 186487 186633 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-96 181753 185581 185607 "BTAGG" 185718 BTAGG (NIL) -9 NIL 185826 NIL) (-95 181384 181545 181748 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-94 178536 180876 181066 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-93 177806 177958 178136 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-92 174401 176512 176551 "BRAGG" 177192 BRAGG (NIL T) -9 NIL 177449 NIL) (-91 173356 173851 174396 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-90 165890 172861 173042 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-89 163882 165842 165885 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-88 163615 163651 163762 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-87 161854 162287 162735 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-86 157820 159236 160126 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-85 156696 157587 157709 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-84 156282 156439 156465 "BOOLE" 156573 BOOLE (NIL) -9 NIL 156654 NIL) (-83 156075 156156 156277 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-82 155213 155740 155790 "BMODULE" 155795 BMODULE (NIL T T) -9 NIL 155859 NIL) (-81 151125 155070 155139 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-80 150938 150978 151017 "BINOPC" 151022 BINOPC (NIL T) -9 NIL 151067 NIL) (-79 150480 150753 150855 "BINOP" NIL BINOP (NIL T) -8 NIL NIL NIL) (-78 150001 150145 150283 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-77 143207 149731 149876 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-76 141009 142427 142466 "BGAGG" 142722 BGAGG (NIL T) -9 NIL 142849 NIL) (-75 140878 140916 141004 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-74 139729 139930 140215 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-73 136457 138909 139214 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-72 136042 136135 136161 "BASTYPE" 136332 BASTYPE (NIL) -9 NIL 136428 NIL) (-71 135812 135908 136037 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-70 135327 135415 135565 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-69 134226 134901 135086 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-68 133974 133979 134005 "ATTREG" 134010 ATTREG (NIL) -9 NIL NIL NIL) (-67 133579 133851 133916 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-66 133079 133228 133254 "ATRIG" 133455 ATRIG (NIL) -9 NIL NIL NIL) (-65 132934 132987 133074 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-64 132504 132735 132761 "ASTCAT" 132766 ASTCAT (NIL) -9 NIL 132796 NIL) (-63 132303 132380 132499 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-62 130526 132136 132224 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-61 129333 129646 130011 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-60 127185 129263 129328 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 126376 126567 126788 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 122262 126107 126221 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 116574 118578 118653 "ARR2CAT" 121165 ARR2CAT (NIL T T T) -9 NIL 121886 NIL) (-56 115535 116017 116569 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 114903 115274 115396 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 113835 114003 114299 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 113536 113590 113708 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 112919 113065 113221 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 112324 112614 112734 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 109892 111053 111376 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 109417 109677 109773 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 103112 108479 108921 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 98646 100309 100359 "AMR" 101097 AMR (NIL T T) -9 NIL 101694 NIL) (-46 98000 98280 98641 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 79598 97934 97995 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 76001 79274 79443 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 73011 73671 74278 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 72390 72503 72687 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 68802 69427 70019 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 58291 68495 68645 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 57608 57762 57940 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 56321 57116 57154 "ALGEBRA" 57159 ALGEBRA (NIL T) -9 NIL 57199 NIL) (-37 56107 56184 56316 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34047 53214 53266 "ALAGG" 53401 ALAGG (NIL T T) -9 NIL 53559 NIL) (-35 33547 33696 33722 "AHYP" 33923 AHYP (NIL) -9 NIL NIL NIL) (-34 32843 33024 33050 "AGG" 33331 AGG (NIL) -9 NIL 33518 NIL) (-33 32686 32744 32838 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30825 31285 31685 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30320 30623 30712 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29690 29985 30141 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17248 26527 26565 "ACFS" 27172 ACFS (NIL T) -9 NIL 27411 NIL) (-28 15871 16481 17243 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11423 13802 13828 "ACF" 14707 ACF (NIL) -9 NIL 15119 NIL) (-26 10519 10925 11418 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10021 10261 10287 "ABELSG" 10379 ABELSG (NIL) -9 NIL 10444 NIL) (-24 9919 9950 10016 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9074 9448 9474 "ABELMON" 9699 ABELMON (NIL) -9 NIL 9832 NIL) (-22 8756 8896 9069 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 7968 8451 8477 "ABELGRP" 8549 ABELGRP (NIL) -9 NIL 8624 NIL) (-20 7521 7717 7963 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3036 6748 6787 "A1AGG" 6792 A1AGG (NIL T) -9 NIL 6826 NIL) (-18 30 1483 3031 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 6c899c33..c03e5ea0 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,5 +1,5 @@ -(631296 . 3577897420) +(631296 . 3577905060) (((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1180 *4)) (-4 *4 (-13 (-962) (-581 (-485)))) (-5 *2 (-1180 (-350 (-485)))) (-5 *1 (-1209 *4))))) |