diff options
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r-- | src/share/algebra/browse.daase | 762 |
1 files changed, 381 insertions, 381 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index cb82cb8b..91aa82b0 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2241087 . 3422100676) +(2241088 . 3424116440) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}."))) @@ -46,13 +46,13 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4252 . T) (-4250 . T) (-4249 . T) ((-4257 "*") . T) (-4248 . T) (-4253 . T) (-4247 . T) (-1355 . T)) +((-4252 . T) (-4250 . T) (-4249 . T) ((-4257 "*") . T) (-4248 . T) (-4253 . T) (-4247 . T) (-1324 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) NIL NIL -(-31 R -3855) +(-31 R -3837) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL ((|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) @@ -62,7 +62,7 @@ NIL ((|HasAttribute| |#1| (QUOTE -4255))) (-33) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects."))) -((-1355 . T)) +((-1324 . T)) NIL (-34) ((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}."))) @@ -70,7 +70,7 @@ NIL NIL (-35 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4255 . T) (-4256 . T) (-1355 . T)) +((-4255 . T) (-4256 . T) (-1324 . T)) NIL (-36 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra."))) @@ -84,11 +84,11 @@ NIL ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an."))) NIL NIL -(-39 -3855 UP UPUP -3694) +(-39 -3837 UP UPUP -4179) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4248 |has| (-385 |#2|) (-341)) (-4253 |has| (-385 |#2|) (-341)) (-4247 |has| (-385 |#2|) (-341)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3316 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3316 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3316 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3316 (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341))))) -(-40 R -3855) +((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3204 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3204 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3204 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3204 (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341))))) +(-40 R -3837) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -408) (|devaluate| |#1|))))) @@ -107,7 +107,7 @@ NIL (-44 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) ((-4255 . T) (-4256 . T)) -((-3316 (-12 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3631) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3631) (|devaluate| |#2|))))))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3631) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2348) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2348) (|devaluate| |#2|))))))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2348) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) (-45 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL @@ -140,7 +140,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-53 |Base| R -3855) +(-53 |Base| R -3837) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression."))) NIL NIL @@ -150,7 +150,7 @@ NIL NIL (-55 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4255 . T) (-4256 . T) (-1355 . T)) +((-4255 . T) (-4256 . T) (-1324 . T)) NIL (-56 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}."))) @@ -159,64 +159,64 @@ NIL (-57 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-58 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) -(-59 -3823) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +(-59 -3245) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-60 -3823) +(-60 -3245) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-61 -3823) +(-61 -3245) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-62 -3823) +(-62 -3245) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-63 -3823) +(-63 -3245) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-64 -3823) +(-64 -3245) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-65 -3823) +(-65 -3245) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3823) +(-66 -3245) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-67 -3823) +(-67 -3245) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-68 -3823) +(-68 -3245) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3823) +(-69 -3245) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-70 -3823) +(-70 -3245) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-71 -3823) +(-71 -3245) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-72 -3823) +(-72 -3245) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL @@ -228,55 +228,55 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -3823) +(-75 -3245) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-76 -3823) +(-76 -3245) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-77 -3823) +(-77 -3245) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3823) +(-78 -3245) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-79 -3823) +(-79 -3245) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3823) +(-80 -3245) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3823) +(-81 -3245) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-82 -3823) +(-82 -3245) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3823) +(-83 -3245) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3823) +(-84 -3245) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3823) +(-85 -3245) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3823) +(-86 -3245) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-87 -3823) +(-87 -3245) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -287,7 +287,7 @@ NIL (-89 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-90 S) ((|constructor| (NIL "Category for the inverse trigonometric functions.")) (|atan| (($ $) "\\spad{atan(x)} returns the arc-tangent of \\spad{x}.")) (|asin| (($ $) "\\spad{asin(x)} returns the arc-sine of \\spad{x}.")) (|asec| (($ $) "\\spad{asec(x)} returns the arc-secant of \\spad{x}.")) (|acsc| (($ $) "\\spad{acsc(x)} returns the arc-cosecant of \\spad{x}.")) (|acot| (($ $) "\\spad{acot(x)} returns the arc-cotangent of \\spad{x}.")) (|acos| (($ $) "\\spad{acos(x)} returns the arc-cosine of \\spad{x}."))) NIL @@ -323,7 +323,7 @@ NIL (-98 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-99 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL @@ -338,12 +338,12 @@ NIL NIL (-102 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4256 . T) (-1355 . T)) +((-4256 . T) (-1324 . T)) NIL (-103) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3316 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136))))) +((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3204 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136))))) (-104) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -372,7 +372,7 @@ NIL ((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}."))) NIL NIL -(-111 -3855 UP) +(-111 -3837 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL @@ -383,14 +383,14 @@ NIL (-113 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| (-112 |#1|) (QUOTE (-844))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-138))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-112 |#1|) (QUOTE (-953))) (|HasCategory| (-112 |#1|) (QUOTE (-762))) (-3316 (|HasCategory| (-112 |#1|) (QUOTE (-762))) (|HasCategory| (-112 |#1|) (QUOTE (-789)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-1067))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-213))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-286))) (|HasCategory| (-112 |#1|) (QUOTE (-510))) (|HasCategory| (-112 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-844)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))))) +((|HasCategory| (-112 |#1|) (QUOTE (-844))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-138))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-112 |#1|) (QUOTE (-953))) (|HasCategory| (-112 |#1|) (QUOTE (-762))) (-3204 (|HasCategory| (-112 |#1|) (QUOTE (-762))) (|HasCategory| (-112 |#1|) (QUOTE (-789)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-1067))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-112 |#1|) (QUOTE (-213))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -112) (|devaluate| |#1|)) (LIST (QUOTE -112) (|devaluate| |#1|)))) (|HasCategory| (-112 |#1|) (QUOTE (-286))) (|HasCategory| (-112 |#1|) (QUOTE (-510))) (|HasCategory| (-112 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-112 |#1|) (QUOTE (-844)))) (|HasCategory| (-112 |#1|) (QUOTE (-136))))) (-114 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL ((|HasAttribute| |#1| (QUOTE -4256))) (-115 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) -((-1355 . T)) +((-1324 . T)) NIL (-116 UP) ((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive."))) @@ -399,14 +399,14 @@ NIL (-117 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-118 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) NIL NIL (-119) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (^ (($ $) "\\spad{^ b} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}."))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL (-120 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -414,20 +414,20 @@ NIL NIL (-121 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4255 . T) (-4256 . T) (-1355 . T)) +((-4255 . T) (-4256 . T) (-1324 . T)) NIL (-122 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-123 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-124) ((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes."))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125)))))) (-3316 (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-125) (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1020)))) (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1020))) (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125)))))) (-3204 (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-125) (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1020)))) (|HasCategory| (-125) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-125) (QUOTE (-1020))) (-12 (|HasCategory| (-125) (QUOTE (-1020))) (|HasCategory| (-125) (LIST (QUOTE -288) (QUOTE (-125))))) (|HasCategory| (-125) (LIST (QUOTE -566) (QUOTE (-798))))) (-125) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256."))) NIL @@ -444,11 +444,11 @@ NIL ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative."))) (((-4257 "*") . T)) NIL -(-129 |minix| -3540 S T$) +(-129 |minix| -1388 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL -(-130 |minix| -3540 R) +(-130 |minix| -1388 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL @@ -459,7 +459,7 @@ NIL (-132) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) ((-4255 . T) (-4245 . T) (-4256 . T)) -((-3316 (-12 (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-346))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798))))) (-133 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL @@ -484,7 +484,7 @@ NIL ((|constructor| (NIL "Rings of Characteristic Zero."))) ((-4252 . T)) NIL -(-139 -3855 UP UPUP) +(-139 -3837 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}."))) NIL NIL @@ -498,7 +498,7 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasAttribute| |#1| (QUOTE -4255))) (-142 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) -((-1355 . T)) +((-1324 . T)) NIL (-143 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) @@ -516,7 +516,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-147 R -3855) +(-147 R -3837) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -546,7 +546,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasAttribute| |#2| (QUOTE -4251)) (|HasAttribute| |#2| (QUOTE -4254)) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-789)))) (-154 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4248 -3316 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4251 |has| |#1| (-6 -4251)) (-4254 |has| |#1| (-6 -4254)) (-1399 . T) (-1355 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) +((-4248 -3204 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4251 |has| |#1| (-6 -4251)) (-4254 |has| |#1| (-6 -4254)) (-1368 . T) (-1324 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-155 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -558,8 +558,8 @@ NIL NIL (-157 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4248 -3316 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4251 |has| |#1| (-6 -4251)) (-4254 |has| |#1| (-6 -4254)) (-1399 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-346)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-770)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-953)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-844))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-844))))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-510))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasAttribute| |#1| (QUOTE -4251)) (|HasAttribute| |#1| (QUOTE -4254)) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-327))))) +((-4248 -3204 (|has| |#1| (-517)) (-12 (|has| |#1| (-286)) (|has| |#1| (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4251 |has| |#1| (-6 -4251)) (-4254 |has| |#1| (-6 -4254)) (-1368 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) +((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-346)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-770)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-953)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-1113)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-844))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-844))))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-1113)))) (|HasCategory| |#1| (QUOTE (-510))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-213))) (-12 (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasAttribute| |#1| (QUOTE -4251)) (|HasAttribute| |#1| (QUOTE -4254)) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-327))))) (-158 R S CS) ((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern"))) NIL @@ -608,7 +608,7 @@ NIL ((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor"))) NIL NIL -(-170 R -3855) +(-170 R -3837) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -712,19 +712,19 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}"))) NIL NIL -(-196 -3855 UP UPUP R) +(-196 -3837 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-197 -3855 FP) +(-197 -3837 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-198) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3316 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136))))) -(-199 R -3855) +((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3204 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136))))) +(-199 R -3837) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -739,18 +739,18 @@ NIL (-202 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-203 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) ((-4252 . T)) NIL -(-204 R -3855) +(-204 R -3837) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-205) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-1391 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) +((-1360 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-206) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}"))) @@ -759,14 +759,14 @@ NIL (-207 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4257 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4257 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-208 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-209 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4256 . T) (-1355 . T)) +((-4256 . T) (-1324 . T)) NIL (-210 S R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}."))) @@ -790,28 +790,28 @@ NIL ((|HasAttribute| |#1| (QUOTE -4255))) (-215 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4256 . T) (-1355 . T)) +((-4256 . T) (-1324 . T)) NIL (-216) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-217 S -3540 R) +(-217 S -1388 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL ((|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasAttribute| |#3| (QUOTE -4252)) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-1020)))) -(-218 -3540 R) +(-218 -1388 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4249 |has| |#2| (-977)) (-4250 |has| |#2| (-977)) (-4252 |has| |#2| (-6 -4252)) ((-4257 "*") |has| |#2| (-160)) (-4255 . T) (-1355 . T)) +((-4249 |has| |#2| (-977)) (-4250 |has| |#2| (-977)) (-4252 |has| |#2| (-6 -4252)) ((-4257 "*") |has| |#2| (-160)) (-4255 . T) (-1324 . T)) NIL -(-219 -3540 A B) +(-219 -1388 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-220 -3540 R) +(-220 -1388 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) ((-4249 |has| |#2| (-977)) (-4250 |has| |#2| (-977)) (-4252 |has| |#2| (-6 -4252)) ((-4257 "*") |has| |#2| (-160)) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3316 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3316 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3316 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3316 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3204 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3204 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3204 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3204 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (-221) ((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type."))) NIL @@ -826,12 +826,12 @@ NIL NIL (-224 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) -((-1355 . T)) +((-1324 . T)) NIL (-225 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}"))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-226 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL @@ -839,19 +839,19 @@ NIL (-227 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4257 "*") |has| |#2| (-160)) (-4248 |has| |#2| (-517)) (-4253 |has| |#2| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#2| (QUOTE (-844))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) +((|HasCategory| |#2| (QUOTE (-844))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) (-228) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}."))) NIL NIL (-229 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4252 -3316 (-3850 (|has| |#4| (-977)) (|has| |#4| (-213))) (-3850 (|has| |#4| (-977)) (|has| |#4| (-835 (-1091)))) (|has| |#4| (-6 -4252)) (-3850 (|has| |#4| (-977)) (|has| |#4| (-588 (-525))))) (-4249 |has| |#4| (-977)) (-4250 |has| |#4| (-977)) ((-4257 "*") |has| |#4| (-160)) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#4| (QUOTE (-341))) (-3316 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-977)))) (-3316 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341)))) (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (QUOTE (-735))) (-3316 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (QUOTE (-787)))) (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (QUOTE (-160))) (-3316 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3316 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-160)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-213)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-341)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-346)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-669)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-735)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-787)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-977)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1020))))) (-3316 (-12 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (-3316 (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-669))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3316 (|HasCategory| |#4| (QUOTE (-977))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1020)))) (-3316 (|HasAttribute| |#4| (QUOTE -4252)) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#4| (QUOTE (-126))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798))))) +((-4252 -3204 (-3833 (|has| |#4| (-977)) (|has| |#4| (-213))) (-3833 (|has| |#4| (-977)) (|has| |#4| (-835 (-1091)))) (|has| |#4| (-6 -4252)) (-3833 (|has| |#4| (-977)) (|has| |#4| (-588 (-525))))) (-4249 |has| |#4| (-977)) (-4250 |has| |#4| (-977)) ((-4257 "*") |has| |#4| (-160)) (-4255 . T)) +((-3204 (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#4| (QUOTE (-341))) (-3204 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-977)))) (-3204 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-341)))) (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (QUOTE (-735))) (-3204 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (QUOTE (-787)))) (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (QUOTE (-160))) (-3204 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3204 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-160)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-213)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-341)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-346)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-669)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-735)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-787)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-977)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1020))))) (-3204 (-12 (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-160))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-346))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-669))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-735))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-787))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (-3204 (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (|HasCategory| |#4| (QUOTE (-669))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3204 (|HasCategory| |#4| (QUOTE (-977))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#4| (QUOTE (-1020)))) (-3204 (|HasAttribute| |#4| (QUOTE -4252)) (-12 (|HasCategory| |#4| (QUOTE (-213))) (|HasCategory| |#4| (QUOTE (-977)))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#4| (QUOTE (-977))) (|HasCategory| |#4| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#4| (QUOTE (-126))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1020))) (|HasCategory| |#4| (LIST (QUOTE -288) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -566) (QUOTE (-798))))) (-230 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4252 -3316 (-3850 (|has| |#3| (-977)) (|has| |#3| (-213))) (-3850 (|has| |#3| (-977)) (|has| |#3| (-835 (-1091)))) (|has| |#3| (-6 -4252)) (-3850 (|has| |#3| (-977)) (|has| |#3| (-588 (-525))))) (-4249 |has| |#3| (-977)) (-4250 |has| |#3| (-977)) ((-4257 "*") |has| |#3| (-160)) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#3| (QUOTE (-341))) (-3316 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3316 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-735))) (-3316 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-160))) (-3316 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3316 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-669)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020))))) (-3316 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-3316 (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-669))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3316 (|HasCategory| |#3| (QUOTE (-977))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-3316 (|HasAttribute| |#3| (QUOTE -4252)) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798))))) +((-4252 -3204 (-3833 (|has| |#3| (-977)) (|has| |#3| (-213))) (-3833 (|has| |#3| (-977)) (|has| |#3| (-835 (-1091)))) (|has| |#3| (-6 -4252)) (-3833 (|has| |#3| (-977)) (|has| |#3| (-588 (-525))))) (-4249 |has| |#3| (-977)) (-4250 |has| |#3| (-977)) ((-4257 "*") |has| |#3| (-160)) (-4255 . T)) +((-3204 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#3| (QUOTE (-341))) (-3204 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3204 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-735))) (-3204 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-160))) (-3204 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3204 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-669)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020))))) (-3204 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-3204 (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-669))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3204 (|HasCategory| |#3| (QUOTE (-977))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-3204 (|HasAttribute| |#3| (QUOTE -4252)) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798))))) (-231 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL @@ -862,7 +862,7 @@ NIL NIL (-233 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4255 . T) (-4256 . T) (-1355 . T)) +((-4255 . T) (-4256 . T) (-1324 . T)) NIL (-234) ((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -903,7 +903,7 @@ NIL (-243 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-844))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#3| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) +((|HasCategory| |#1| (QUOTE (-844))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#3| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) (-244 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -948,11 +948,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-255 R -3855) +(-255 R -3837) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-256 R -3855) +(-256 R -3837) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -974,7 +974,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020)))) (-261 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4256 . T) (-1355 . T)) +((-4256 . T) (-1324 . T)) NIL (-262 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1000,7 +1000,7 @@ NIL ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-268 S R |Mod| -2787 -2727 |exactQuo|) +(-268 S R |Mod| -2054 -1423 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL @@ -1022,21 +1022,21 @@ NIL NIL (-273 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4252 -3316 (|has| |#1| (-977)) (|has| |#1| (-450))) (-4249 |has| |#1| (-977)) (-4250 |has| |#1| (-977))) -((|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-977)))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3316 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669)))) (|HasCategory| |#1| (QUOTE (-450))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1020)))) (-3316 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1032)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-281))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450)))) (-3316 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669)))) (-3316 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-977)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) +((-4252 -3204 (|has| |#1| (-977)) (|has| |#1| (-450))) (-4249 |has| |#1| (-977)) (-4250 |has| |#1| (-977))) +((|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-977)))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-977)))) (-3204 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669)))) (|HasCategory| |#1| (QUOTE (-450))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-1020)))) (-3204 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1032)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-281))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-450)))) (-3204 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669)))) (-3204 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-977)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25)))) (-274 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3631) (|devaluate| |#2|)))))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2348) (|devaluate| |#2|)))))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) (-275) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL NIL -(-276 -3855 S) +(-276 -3837 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-277 E -3855) +(-277 E -3837) ((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}."))) NIL NIL @@ -1084,7 +1084,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-289 -3855) +(-289 -3837) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1095,7 +1095,7 @@ NIL (-291 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-953))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (-3316 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-789)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-1067))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-213))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -288) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -265) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-286))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-510))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-789))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| $ (QUOTE (-136)))) (-3316 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| $ (QUOTE (-136)))))) +((|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-953))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (-3204 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-762))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-789)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-1067))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-213))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -288) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (LIST (QUOTE -265) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1159) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-286))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-510))) (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-789))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| $ (QUOTE (-136)))) (-3204 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-136))) (-12 (|HasCategory| (-1159 |#1| |#2| |#3| |#4|) (QUOTE (-844))) (|HasCategory| $ (QUOTE (-136)))))) (-292 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1106,9 +1106,9 @@ NIL NIL (-294 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4252 -3316 (-3850 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (-12 (|has| |#1| (-517)) (-3316 (-3850 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (|has| |#1| (-977)) (|has| |#1| (-450)))) (|has| |#1| (-977)) (|has| |#1| (-450))) (-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) ((-4257 "*") |has| |#1| (-517)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-517)) (-4247 |has| |#1| (-517))) -((-3316 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (-3316 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-3316 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1032)))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-3316 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1032)))) (-3316 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3316 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1032)))) (-3316 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3316 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-977)))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| $ (QUOTE (-977))) (|HasCategory| $ (LIST (QUOTE -968) (QUOTE (-525))))) -(-295 R -3855) +((-4252 -3204 (-3833 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (-12 (|has| |#1| (-517)) (-3204 (-3833 (|has| |#1| (-977)) (|has| |#1| (-588 (-525)))) (|has| |#1| (-977)) (|has| |#1| (-450)))) (|has| |#1| (-977)) (|has| |#1| (-450))) (-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) ((-4257 "*") |has| |#1| (-517)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-517)) (-4247 |has| |#1| (-517))) +((-3204 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (-3204 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-3204 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1032)))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (-3204 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1032)))) (-3204 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3204 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1032)))) (-3204 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))))) (-3204 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-977)))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1032))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| $ (QUOTE (-977))) (|HasCategory| $ (LIST (QUOTE -968) (QUOTE (-525))))) +(-295 R -3837) ((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}."))) NIL NIL @@ -1119,7 +1119,7 @@ NIL (-297 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1278) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2215) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2192) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1267) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4211) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2181) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) (-298 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1151,12 +1151,12 @@ NIL (-305 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) -(-306 S -3855) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +(-306 S -3837) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-346)))) -(-307 -3855) +(-307 -3837) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL @@ -1176,15 +1176,15 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}"))) NIL NIL -(-312 S -3855 UP UPUP R) +(-312 S -3837 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-313 -3855 UP UPUP R) +(-313 -3837 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-314 -3855 UP UPUP R) +(-314 -3837 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1204,26 +1204,26 @@ NIL ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) NIL NIL -(-319 S -3855 UP UPUP) +(-319 S -3837 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-341)))) -(-320 -3855 UP UPUP) +(-320 -3837 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.") (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) ((-4248 |has| (-385 |#2|) (-341)) (-4253 |has| (-385 |#2|) (-341)) (-4247 |has| (-385 |#2|) (-341)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-321 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136)))) +((-3204 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136)))) (-322 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +((-3204 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) (-323 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +((-3204 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) (-324 GF) ((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1240,31 +1240,31 @@ NIL ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL -(-328 R UP -3855) +(-328 R UP -3837) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-329 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136)))) +((-3204 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136)))) (-330 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +((-3204 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) (-331 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +((-3204 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) (-332 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136)))) +((-3204 (|HasCategory| (-845 |#1|) (QUOTE (-136))) (|HasCategory| (-845 |#1|) (QUOTE (-346)))) (|HasCategory| (-845 |#1|) (QUOTE (-138))) (|HasCategory| (-845 |#1|) (QUOTE (-346))) (|HasCategory| (-845 |#1|) (QUOTE (-136)))) (-333 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) -(-334 -3855 GF) +((-3204 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +(-334 -3837 GF) ((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL @@ -1272,14 +1272,14 @@ NIL ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-336 -3855 FP FPP) +(-336 -3837 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL (-337 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) +((-3204 (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-136)))) (-338 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}."))) NIL @@ -1334,7 +1334,7 @@ NIL ((|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020)))) (-351 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4255 . T) (-1355 . T)) +((-4255 . T) (-1324 . T)) NIL (-352 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) @@ -1358,7 +1358,7 @@ NIL NIL (-357) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4238 . T) (-4246 . T) (-1391 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) +((-4238 . T) (-4246 . T) (-1360 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-358 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}."))) @@ -1374,11 +1374,11 @@ NIL NIL (-361) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-1355 . T)) +((-1324 . T)) NIL (-362) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-1355 . T)) +((-1324 . T)) NIL (-363 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) @@ -1408,7 +1408,7 @@ NIL ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-370 -3855 UP UPUP R) +(-370 -3837 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1422,27 +1422,27 @@ NIL NIL (-373) ((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram."))) -((-1355 . T)) +((-1324 . T)) NIL (-374) ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-1355 . T)) +((-1324 . T)) NIL (-375) ((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}"))) NIL NIL -(-376 -3823 |returnType| -2199 |symbols|) +(-376 -3245 |returnType| -3587 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-377 -3855 UP) +(-377 -3837 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL (-378 R) ((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers)."))) -((-1355 . T)) +((-1324 . T)) NIL (-379 S) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) @@ -1458,7 +1458,7 @@ NIL ((|HasAttribute| |#1| (QUOTE -4238)) (|HasAttribute| |#1| (QUOTE -4246))) (-382) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-1391 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) +((-1360 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-383 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) @@ -1471,7 +1471,7 @@ NIL (-385 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) ((-4242 -12 (|has| |#1| (-6 -4253)) (|has| |#1| (-429)) (|has| |#1| (-6 -4242))) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-762))) (-3316 (|HasCategory| |#1| (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-789)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1067))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-510))) (-12 (|HasAttribute| |#1| (QUOTE -4253)) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-429)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) +((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-762))) (-3204 (|HasCategory| |#1| (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-789)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-1067))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-770)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-510))) (-12 (|HasAttribute| |#1| (QUOTE -4253)) (|HasAttribute| |#1| (QUOTE -4242)) (|HasCategory| |#1| (QUOTE (-429)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) (-386 S R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) NIL @@ -1492,11 +1492,11 @@ NIL ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}"))) NIL NIL -(-391 R -3855 UP A) +(-391 R -3837 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}."))) ((-4252 . T)) NIL -(-392 R -3855 UP A |ibasis|) +(-392 R -3837 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}."))) NIL ((|HasCategory| |#4| (LIST (QUOTE -968) (|devaluate| |#2|)))) @@ -1515,7 +1515,7 @@ NIL (-396 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) ((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -288) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -265) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1131))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-429)))) +((|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -288) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -265) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-1131))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-1131)))) (|HasCategory| |#1| (QUOTE (-953))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-429)))) (-397 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}."))) NIL @@ -1542,9 +1542,9 @@ NIL ((|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-346)))) (-403 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4255 . T) (-4245 . T) (-4256 . T) (-1355 . T)) +((-4255 . T) (-4245 . T) (-4256 . T) (-1324 . T)) NIL -(-404 R -3855) +(-404 R -3837) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL @@ -1552,7 +1552,7 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) ((-4242 -12 (|has| |#1| (-6 -4242)) (|has| |#2| (-6 -4242))) (-4249 . T) (-4250 . T) (-4252 . T)) ((-12 (|HasAttribute| |#1| (QUOTE -4242)) (|HasAttribute| |#2| (QUOTE -4242)))) -(-406 R -3855) +(-406 R -3837) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL @@ -1562,17 +1562,17 @@ NIL ((|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-1032))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-408 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4252 -3316 (|has| |#1| (-977)) (|has| |#1| (-450))) (-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) ((-4257 "*") |has| |#1| (-517)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-517)) (-4247 |has| |#1| (-517)) (-1355 . T)) +((-4252 -3204 (|has| |#1| (-977)) (|has| |#1| (-450))) (-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) ((-4257 "*") |has| |#1| (-517)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-517)) (-4247 |has| |#1| (-517)) (-1324 . T)) NIL -(-409 R -3855) +(-409 R -3837) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-410 R -3855) +(-410 R -3837) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-411 R -3855) +(-411 R -3837) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1580,7 +1580,7 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-413 R -3855 UP) +(-413 R -3837 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL ((|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-47))))) @@ -1598,17 +1598,17 @@ NIL NIL (-417) ((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) -((-1355 . T)) +((-1324 . T)) NIL (-418) ((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) -((-1355 . T)) +((-1324 . T)) NIL (-419 UP) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-420 R UP -3855) +(-420 R UP -3837) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1655,7 +1655,7 @@ NIL (-431 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4257 "*") |has| |#2| (-160)) (-4248 |has| |#2| (-517)) (-4253 |has| |#2| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#2| (QUOTE (-844))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) +((|HasCategory| |#2| (QUOTE (-844))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) (-432 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional."))) NIL @@ -1720,7 +1720,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-448 |lv| -3855 R) +(-448 |lv| -3837 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1735,11 +1735,11 @@ NIL (-451 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1278) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2215) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2192) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1267) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4211) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2181) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) (-452 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4256 . T)) -((-12 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3631) (|devaluate| |#2|)))))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2348) (|devaluate| |#2|)))))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) (-453 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) ((-4256 . T) (-4255 . T)) @@ -1751,7 +1751,7 @@ NIL (-455 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3631) (|devaluate| |#2|)))))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2348) (|devaluate| |#2|)))))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) (-456) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL @@ -1759,16 +1759,16 @@ NIL (-457 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4257 "*") |has| |#2| (-160)) (-4248 |has| |#2| (-517)) (-4253 |has| |#2| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#2| (QUOTE (-844))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) -(-458 -3540 S) +((|HasCategory| |#2| (QUOTE (-844))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) +(-458 -1388 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4249 |has| |#2| (-977)) (-4250 |has| |#2| (-977)) (-4252 |has| |#2| (-6 -4252)) ((-4257 "*") |has| |#2| (-160)) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3316 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3316 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3316 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3316 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3204 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3204 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3204 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3204 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (-459 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) -(-460 -3855 UP UPUP R) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +(-460 -3837 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1779,14 +1779,14 @@ NIL (-462) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3316 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136))))) +((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3204 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136))))) (-463 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL ((|HasAttribute| |#1| (QUOTE -4255)) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (-464 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) -((-1355 . T)) +((-1324 . T)) NIL (-465 S) ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) @@ -1796,7 +1796,7 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-467 -3855 UP |AlExt| |AlPol|) +(-467 -3837 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL @@ -1807,16 +1807,16 @@ NIL (-469 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type."))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-470 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-471 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented"))) NIL NIL -(-472 R UP -3855) +(-472 R UP -3837) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL @@ -1836,7 +1836,7 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}."))) NIL NIL -(-477 -3855 |Expon| |VarSet| |DPoly|) +(-477 -3837 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-1091))))) @@ -1883,19 +1883,19 @@ NIL (-488 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-489 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (|HasCategory| (-538 |#1|) (QUOTE (-136))) (|HasCategory| (-538 |#1|) (QUOTE (-346)))) (|HasCategory| (-538 |#1|) (QUOTE (-138))) (|HasCategory| (-538 |#1|) (QUOTE (-346))) (|HasCategory| (-538 |#1|) (QUOTE (-136)))) +((-3204 (|HasCategory| (-538 |#1|) (QUOTE (-136))) (|HasCategory| (-538 |#1|) (QUOTE (-346)))) (|HasCategory| (-538 |#1|) (QUOTE (-138))) (|HasCategory| (-538 |#1|) (QUOTE (-346))) (|HasCategory| (-538 |#1|) (QUOTE (-136)))) (-490 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-491 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-492 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL @@ -1907,7 +1907,7 @@ NIL (-494 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4257 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4257 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-495 GF) ((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}."))) NIL @@ -1920,7 +1920,7 @@ NIL ((|constructor| (NIL "converts entire exponents to OutputForm"))) NIL NIL -(-498 K -3855 |Par|) +(-498 K -3837 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -1940,7 +1940,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-503 K -3855 |Par|) +(-503 K -3837 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -1975,12 +1975,12 @@ NIL (-511 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3631) (|devaluate| |#2|)))))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) -(-512 R -3855) +((-12 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2348) (|devaluate| |#2|)))))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) +(-512 R -3837) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-513 R0 -3855 UP UPUP R) +(-513 R0 -3837 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -1990,7 +1990,7 @@ NIL NIL (-515 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-1391 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) +((-1360 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-516 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2000,7 +2000,7 @@ NIL ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) ((-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL -(-518 R -3855) +(-518 R -3837) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2012,7 +2012,7 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-521 R -3855 L) +(-521 R -3837 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -602) (|devaluate| |#2|)))) @@ -2020,11 +2020,11 @@ NIL ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-523 -3855 UP UPUP R) +(-523 -3837 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-524 -3855 UP) +(-524 -3837 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL @@ -2036,15 +2036,15 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-527 R -3855 L) +(-527 R -3837 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -602) (|devaluate| |#2|)))) -(-528 R -3855) +(-528 R -3837) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1055)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-578))))) -(-529 -3855 UP) +(-529 -3837 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2052,27 +2052,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-531 -3855) +(-531 -3837) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-532 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-1391 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) +((-1360 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-533) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists."))) NIL NIL -(-534 R -3855) +(-534 R -3837) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-263))) (|HasCategory| |#2| (QUOTE (-578))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-263)))) (|HasCategory| |#1| (QUOTE (-517)))) -(-535 -3855 UP) +(-535 -3837 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-536 R -3855) +(-536 R -3837) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2088,15 +2088,15 @@ NIL ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-540 R -3855) +(-540 R -3837) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}."))) NIL NIL -(-541 E -3855) +(-541 E -3837) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented"))) NIL NIL -(-542 -3855) +(-542 -3837) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) ((-4250 . T) (-4249 . T)) ((|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-1091))))) @@ -2123,7 +2123,7 @@ NIL (-548 |mn|) ((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings"))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (-3316 (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (-3204 (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798))))) (-549 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL @@ -2131,7 +2131,7 @@ NIL (-550 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))) (|HasCategory| (-525) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1278) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525)))))) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))) (|HasCategory| (-525) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1267) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525)))))) (-551 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) ((-4250 |has| |#1| (-517)) (-4249 |has| |#1| (-517)) ((-4257 "*") |has| |#1| (-517)) (-4248 |has| |#1| (-517)) (-4252 . T)) @@ -2144,7 +2144,7 @@ NIL ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented"))) NIL NIL -(-554 R -3855 FG) +(-554 R -3837 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL @@ -2155,14 +2155,14 @@ NIL (-556 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-557 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL ((|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-789))) (|HasAttribute| |#1| (QUOTE -4255)) (|HasCategory| |#3| (QUOTE (-1020)))) (-558 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) -((-1355 . T)) +((-1324 . T)) NIL (-559) ((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode."))) @@ -2170,19 +2170,19 @@ NIL NIL (-560 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4252 -3316 (-3850 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4250 . T) (-4249 . T)) -((-3316 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) +((-4252 -3204 (-3833 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4250 . T) (-4249 . T)) +((-3204 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-561 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -3631) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| (-1074) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -2348) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| (-1074) (QUOTE (-789))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (LIST (QUOTE -566) (QUOTE (-798))))) (-562 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL (-563 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4256 . T) (-1355 . T)) +((-4256 . T) (-1324 . T)) NIL (-564 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) @@ -2200,7 +2200,7 @@ NIL ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-568 -3855 UP) +(-568 -3837 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL @@ -2216,7 +2216,7 @@ NIL ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) ((-4249 . T) (-4250 . T) (-4252 . T)) ((|HasCategory| |#1| (QUOTE (-787)))) -(-572 R -3855) +(-572 R -3837) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform."))) NIL NIL @@ -2244,18 +2244,18 @@ NIL ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-579 R -3855) +(-579 R -3837) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-580 |lv| -3855) +(-580 |lv| -3837) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL (-581) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) ((-4256 . T)) -((-12 (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -3631) (QUOTE (-51))))))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-1074) (QUOTE (-789))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 (-51))) (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -2348) (QUOTE (-51))))))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-1074) (QUOTE (-789))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 (-51))) (LIST (QUOTE -566) (QUOTE (-798))))) (-582 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL @@ -2266,8 +2266,8 @@ NIL NIL (-584 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4252 -3316 (-3850 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4250 . T) (-4249 . T)) -((-3316 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) +((-4252 -3204 (-3833 (|has| |#2| (-345 |#1|)) (|has| |#1| (-517))) (-12 (|has| |#2| (-395 |#1|)) (|has| |#1| (-517)))) (-4250 . T) (-4249 . T)) +((-3204 (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (LIST (QUOTE -395) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -345) (|devaluate| |#1|)))) (-585 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}."))) NIL @@ -2279,7 +2279,7 @@ NIL (-587 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-1809 (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-341)))) +((-1796 (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-341)))) (-588 R) ((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}."))) ((-4252 . T)) @@ -2299,11 +2299,11 @@ NIL (-592 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list."))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-593 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-594 R) ((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}."))) NIL @@ -2318,9 +2318,9 @@ NIL ((|HasAttribute| |#1| (QUOTE -4256))) (-597 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) -((-1355 . T)) +((-1324 . T)) NIL -(-598 R -3855 L) +(-598 R -3837 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL @@ -2340,11 +2340,11 @@ NIL ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) ((-4249 . T) (-4250 . T) (-4252 . T)) NIL -(-603 -3855 UP) +(-603 -3837 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-604 A -3257) +(-604 A -2420) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4249 . T) (-4250 . T) (-4252 . T)) ((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341)))) @@ -2378,13 +2378,13 @@ NIL NIL (-612 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL -(-613 -3855) +(-613 -3837) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-614 -3855 |Row| |Col| M) +(-614 -3837 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL @@ -2395,7 +2395,7 @@ NIL (-616 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) ((-4252 . T) (-4255 . T) (-4249 . T) (-4250 . T)) -((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (-3316 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))) (-3316 (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-160)))) +((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (-3204 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517))) (-3204 (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-160)))) (-617 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL @@ -2406,12 +2406,12 @@ NIL NIL (-619 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}."))) -((-1355 . T)) +((-1324 . T)) NIL (-620 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms"))) NIL -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-977))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-621 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL @@ -2450,7 +2450,7 @@ NIL ((|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-517)))) (-630 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4255 . T) (-4256 . T) (-1355 . T)) +((-4255 . T) (-4256 . T) (-1324 . T)) NIL (-631 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) @@ -2459,12 +2459,12 @@ NIL (-632 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) ((-4255 . T) (-4256 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4257 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-517))) (|HasAttribute| |#1| (QUOTE (-4257 "*"))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-633 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-634 S -3855 FLAF FLAS) +(-634 S -3837 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL @@ -2474,11 +2474,11 @@ NIL NIL (-636) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4248 . T) (-4253 |has| (-641) (-341)) (-4247 |has| (-641) (-341)) (-1399 . T) (-4254 |has| (-641) (-6 -4254)) (-4251 |has| (-641) (-6 -4251)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| (-641) (QUOTE (-138))) (|HasCategory| (-641) (QUOTE (-136))) (|HasCategory| (-641) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-346))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-641) (QUOTE (-213))) (-3316 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (LIST (QUOTE -265) (QUOTE (-641)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -288) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-641) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (-3316 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-641) (QUOTE (-953))) (|HasCategory| (-641) (QUOTE (-1113))) (-12 (|HasCategory| (-641) (QUOTE (-934))) (|HasCategory| (-641) (QUOTE (-1113)))) (-3316 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-341))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-844))))) (-3316 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (-12 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-844)))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-844))))) (|HasCategory| (-641) (QUOTE (-510))) (-12 (|HasCategory| (-641) (QUOTE (-986))) (|HasCategory| (-641) (QUOTE (-1113)))) (|HasCategory| (-641) (QUOTE (-986))) (-3316 (|HasCategory| (-641) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844))) (-3316 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-341)))) (-3316 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-517)))) (-12 (|HasCategory| (-641) (QUOTE (-213))) (|HasCategory| (-641) (QUOTE (-341)))) (-12 (|HasCategory| (-641) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-789))) (|HasCategory| (-641) (QUOTE (-517))) (|HasAttribute| (-641) (QUOTE -4254)) (|HasAttribute| (-641) (QUOTE -4251)) (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-136)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-327))))) +((-4248 . T) (-4253 |has| (-641) (-341)) (-4247 |has| (-641) (-341)) (-1368 . T) (-4254 |has| (-641) (-6 -4254)) (-4251 |has| (-641) (-6 -4251)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) +((|HasCategory| (-641) (QUOTE (-138))) (|HasCategory| (-641) (QUOTE (-136))) (|HasCategory| (-641) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-346))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-641) (QUOTE (-213))) (-3204 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (LIST (QUOTE -265) (QUOTE (-641)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -288) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-641)))) (|HasCategory| (-641) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-641) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-641) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (-3204 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-327)))) (|HasCategory| (-641) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-641) (QUOTE (-953))) (|HasCategory| (-641) (QUOTE (-1113))) (-12 (|HasCategory| (-641) (QUOTE (-934))) (|HasCategory| (-641) (QUOTE (-1113)))) (-3204 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-341))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-844))))) (-3204 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (-12 (|HasCategory| (-641) (QUOTE (-341))) (|HasCategory| (-641) (QUOTE (-844)))) (-12 (|HasCategory| (-641) (QUOTE (-327))) (|HasCategory| (-641) (QUOTE (-844))))) (|HasCategory| (-641) (QUOTE (-510))) (-12 (|HasCategory| (-641) (QUOTE (-986))) (|HasCategory| (-641) (QUOTE (-1113)))) (|HasCategory| (-641) (QUOTE (-986))) (-3204 (|HasCategory| (-641) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844))) (-3204 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-341)))) (-3204 (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-517)))) (-12 (|HasCategory| (-641) (QUOTE (-213))) (|HasCategory| (-641) (QUOTE (-341)))) (-12 (|HasCategory| (-641) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-641) (QUOTE (-341)))) (|HasCategory| (-641) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-641) (QUOTE (-789))) (|HasCategory| (-641) (QUOTE (-517))) (|HasAttribute| (-641) (QUOTE -4254)) (|HasAttribute| (-641) (QUOTE -4251)) (-12 (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-136)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-641) (QUOTE (-286))) (|HasCategory| (-641) (QUOTE (-844)))) (|HasCategory| (-641) (QUOTE (-327))))) (-637 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4256 . T) (-1355 . T)) +((-4256 . T) (-1324 . T)) NIL (-638 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) @@ -2488,13 +2488,13 @@ NIL ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented"))) NIL NIL -(-640 OV E -3855 PG) +(-640 OV E -3837 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL (-641) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-1391 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) +((-1360 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-642 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2524,7 +2524,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}."))) NIL NIL -(-649 S -2004 I) +(-649 S -1514 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2544,14 +2544,14 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-654 R |Mod| -2787 -2727 |exactQuo|) +(-654 R |Mod| -2054 -1423 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-655 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4251 |has| |#1| (-341)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-327))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) +((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-327))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) (-656 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL @@ -2560,7 +2560,7 @@ NIL ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) (-4252 . T)) ((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138)))) -(-658 R |Mod| -2787 -2727 |exactQuo|) +(-658 R |Mod| -2054 -1423 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4252 . T)) NIL @@ -2572,7 +2572,7 @@ NIL ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) ((-4250 . T) (-4249 . T)) NIL -(-661 -3855) +(-661 -3837) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}."))) ((-4252 . T)) NIL @@ -2608,7 +2608,7 @@ NIL ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (^ (($ $ (|NonNegativeInteger|)) "\\spad{x^n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-670 -3855 UP) +(-670 -3837 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL @@ -2627,7 +2627,7 @@ NIL (-674 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) (((-4257 "*") |has| |#2| (-160)) (-4248 |has| |#2| (-517)) (-4253 |has| |#2| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#2| (QUOTE (-844))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) +((|HasCategory| |#2| (QUOTE (-844))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-800 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) (-675 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2646,7 +2646,7 @@ NIL ((-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-789)))) (-679 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4245 . T) (-4256 . T) (-1355 . T)) +((-4245 . T) (-4256 . T) (-1324 . T)) NIL (-680 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) @@ -2760,15 +2760,15 @@ NIL ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-708 -3855) +(-708 -3837) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-709 P -3855) +(-709 P -3837) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}."))) NIL NIL -(-710 UP -3855) +(-710 UP -3837) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL @@ -2784,7 +2784,7 @@ NIL ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) (((-4257 "*") . T)) NIL -(-714 R -3855) +(-714 R -3837) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL @@ -2804,7 +2804,7 @@ NIL ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-719 -3855 |ExtF| |SUEx| |ExtP| |n|) +(-719 -3837 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL @@ -2819,7 +2819,7 @@ NIL (-722 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-844))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091))))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1809 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1809 (|HasCategory| |#1| (QUOTE (-510)))) (-1809 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1809 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525))))) (-1809 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1809 (|HasCategory| |#1| (LIST (QUOTE -925) (QUOTE (-525))))))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) +((|HasCategory| |#1| (QUOTE (-844))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091))))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1796 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1796 (|HasCategory| |#1| (QUOTE (-510)))) (-1796 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1796 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-525))))) (-1796 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-1091)))) (-1796 (|HasCategory| |#1| (LIST (QUOTE -925) (QUOTE (-525))))))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) (-723 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL @@ -2827,14 +2827,14 @@ NIL (-724 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4251 |has| |#1| (-341)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) +((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) (-725 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-726 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL (-727 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) @@ -2888,23 +2888,23 @@ NIL ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) ((-4249 . T) (-4250 . T) (-4252 . T)) NIL -(-740 -3316 R OS S) +(-740 -3204 R OS S) ((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL (-741 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) ((-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-3316 (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3316 (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) +((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (-3204 (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3204 (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-931 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (-742) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-743 R -3855 L) +(-743 R -3837 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-744 R -3855) +(-744 R -3837) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL @@ -2912,7 +2912,7 @@ NIL ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-746 R -3855) +(-746 R -3837) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL @@ -2920,11 +2920,11 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-748 -3855 UP UPUP R) +(-748 -3837 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-749 -3855 UP L LQ) +(-749 -3837 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL @@ -2932,38 +2932,38 @@ NIL ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-751 -3855 UP L LQ) +(-751 -3837 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-752 -3855 UP) +(-752 -3837 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-753 -3855 L UP A LO) +(-753 -3837 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-754 -3855 UP) +(-754 -3837 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-755 -3855 LO) +(-755 -3837 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-756 -3855 LODO) +(-756 -3837 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}."))) NIL NIL -(-757 -3540 S |f|) +(-757 -1388 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4249 |has| |#2| (-977)) (-4250 |has| |#2| (-977)) (-4252 |has| |#2| (-6 -4252)) ((-4257 "*") |has| |#2| (-160)) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3316 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3316 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3316 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3316 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3204 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (QUOTE (-341))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341)))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-735))) (-3204 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787)))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-160))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-977)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-160)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-346)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-787)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020))))) (-3204 (-12 (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-735))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-787))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (QUOTE (-977)))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-3204 (|HasCategory| |#2| (QUOTE (-977))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-1020)))) (|HasAttribute| |#2| (QUOTE -4252)) (|HasCategory| |#2| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (-758 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-844))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) +((|HasCategory| |#1| (QUOTE (-844))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-760 (-1091)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) (-759 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring."))) (((-4257 "*") |has| |#2| (-341)) (-4248 |has| |#2| (-341)) (-4253 |has| |#2| (-341)) (-4247 |has| |#2| (-341)) (-4252 . T) (-4250 . T) (-4249 . T)) @@ -3018,7 +3018,7 @@ NIL NIL (-772 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4255 . T) (-4245 . T) (-4256 . T) (-1355 . T)) +((-4255 . T) (-4245 . T) (-4256 . T) (-1324 . T)) NIL (-773) ((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object."))) @@ -3031,7 +3031,7 @@ NIL (-775 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) ((-4252 |has| |#1| (-787))) -((|HasCategory| |#1| (QUOTE (-787))) (-3316 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3316 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21)))) +((|HasCategory| |#1| (QUOTE (-787))) (-3204 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3204 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21)))) (-776 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) ((-4250 |has| |#1| (-160)) (-4249 |has| |#1| (-160)) (-4252 . T)) @@ -3059,12 +3059,12 @@ NIL (-782 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) ((-4252 |has| |#1| (-787))) -((|HasCategory| |#1| (QUOTE (-787))) (-3316 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3316 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21)))) +((|HasCategory| |#1| (QUOTE (-787))) (-3204 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-787)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-510))) (-3204 (|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-21)))) (-783) ((|constructor| (NIL "Ordered finite sets."))) NIL NIL -(-784 -3540 S) +(-784 -1388 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3100,11 +3100,11 @@ NIL ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) -(-793 R |sigma| -1752) +(-793 R |sigma| -1695) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4249 . T) (-4250 . T) (-4252 . T)) ((|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-341)))) -(-794 |x| R |sigma| -1752) +(-794 |x| R |sigma| -1695) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial."))) ((-4249 . T) (-4250 . T) (-4252 . T)) ((|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-341)))) @@ -3155,15 +3155,15 @@ NIL (-806 |p|) ((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| (-805 |#1|) (QUOTE (-844))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-805 |#1|) (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-138))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-805 |#1|) (QUOTE (-953))) (|HasCategory| (-805 |#1|) (QUOTE (-762))) (-3316 (|HasCategory| (-805 |#1|) (QUOTE (-762))) (|HasCategory| (-805 |#1|) (QUOTE (-789)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (QUOTE (-1067))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (QUOTE (-213))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -805) (|devaluate| |#1|)) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (QUOTE (-286))) (|HasCategory| (-805 |#1|) (QUOTE (-510))) (|HasCategory| (-805 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-844)))) (|HasCategory| (-805 |#1|) (QUOTE (-136))))) +((|HasCategory| (-805 |#1|) (QUOTE (-844))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-805 |#1|) (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-138))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-805 |#1|) (QUOTE (-953))) (|HasCategory| (-805 |#1|) (QUOTE (-762))) (-3204 (|HasCategory| (-805 |#1|) (QUOTE (-762))) (|HasCategory| (-805 |#1|) (QUOTE (-789)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (QUOTE (-1067))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-805 |#1|) (QUOTE (-213))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -288) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (LIST (QUOTE -265) (LIST (QUOTE -805) (|devaluate| |#1|)) (LIST (QUOTE -805) (|devaluate| |#1|)))) (|HasCategory| (-805 |#1|) (QUOTE (-286))) (|HasCategory| (-805 |#1|) (QUOTE (-510))) (|HasCategory| (-805 |#1|) (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-805 |#1|) (QUOTE (-844)))) (|HasCategory| (-805 |#1|) (QUOTE (-136))))) (-807 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-762))) (-3316 (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) +((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-762))) (-3204 (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-789))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) (-808 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))))) (-809) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value."))) NIL @@ -3219,7 +3219,7 @@ NIL (-822 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-1809 (|HasCategory| |#2| (QUOTE (-977)))) (-1809 (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (-1809 (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091))))) +((-12 (-1796 (|HasCategory| |#2| (QUOTE (-977)))) (-1796 (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))))) (-12 (|HasCategory| |#2| (QUOTE (-977))) (-1796 (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091))))) (-823 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))]."))) NIL @@ -3228,7 +3228,7 @@ NIL ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-825 R -2004) +(-825 R -1514) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3252,7 +3252,7 @@ NIL ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-831 UP -3855) +(-831 UP -3837) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL @@ -3275,7 +3275,7 @@ NIL (-836 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-837 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL @@ -3291,7 +3291,7 @@ NIL (-840 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) ((-4252 . T)) -((-3316 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789)))) +((-3204 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-789)))) (-841 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL @@ -3312,7 +3312,7 @@ NIL ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) ((|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-136))) (|HasCategory| $ (QUOTE (-346)))) -(-846 R0 -3855 UP UPUP R) +(-846 R0 -3837 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL @@ -3340,7 +3340,7 @@ NIL ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}."))) NIL NIL -(-853 -3855) +(-853 -3837) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL @@ -3356,11 +3356,11 @@ NIL ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) (((-4257 "*") . T)) NIL -(-857 -3855 P) +(-857 -3837 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented"))) NIL NIL -(-858 |xx| -3855) +(-858 |xx| -3837) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented"))) NIL NIL @@ -3384,7 +3384,7 @@ NIL ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-864 R -3855) +(-864 R -3837) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL @@ -3396,7 +3396,7 @@ NIL ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-867 S R -3855) +(-867 S R -3837) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL @@ -3416,11 +3416,11 @@ NIL ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL ((|HasCategory| |#3| (LIST (QUOTE -821) (|devaluate| |#1|)))) -(-872 R -3855 -2004) +(-872 R -3837 -1514) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-873 -2004) +(-873 -1514) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL @@ -3443,7 +3443,7 @@ NIL (-878 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-879 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3468,7 +3468,7 @@ NIL ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) NIL -(-885 E V R P -3855) +(-885 E V R P -3837) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL @@ -3479,8 +3479,8 @@ NIL (-887 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-844))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) -(-888 E V R P -3855) +((|HasCategory| |#1| (QUOTE (-844))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1091) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) +(-888 E V R P -3837) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-429)))) @@ -3499,12 +3499,12 @@ NIL (-892 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed"))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-893) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}."))) NIL NIL -(-894 -3855) +(-894 -3837) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}."))) NIL NIL @@ -3519,17 +3519,17 @@ NIL (-897 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-126)))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253))) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-126)))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253))) (-898 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented"))) ((-4252 -12 (|has| |#2| (-450)) (|has| |#1| (-450)))) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669))))) (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669))))) (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-346)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-450)))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-735))) (|HasCategory| |#2| (QUOTE (-735))))) (-12 (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-669)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-126))) (|HasCategory| |#2| (QUOTE (-126)))) (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-789))))) (-899) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL (-900 T$) -((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the varible name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) +((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula"))) NIL ((|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-901) @@ -3538,7 +3538,7 @@ NIL NIL (-902 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4255 . T) (-4256 . T) (-1355 . T)) +((-4255 . T) (-4256 . T) (-1324 . T)) NIL (-903 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) @@ -3566,7 +3566,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-517)))) (-909 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4255 . T) (-1355 . T)) +((-4255 . T) (-1324 . T)) NIL (-910 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor."))) @@ -3582,7 +3582,7 @@ NIL NIL (-913 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL (-914 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented"))) @@ -3600,7 +3600,7 @@ NIL ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-918 K R UP -3855) +(-918 K R UP -3837) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL @@ -3630,7 +3630,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-510))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-953))) (|HasCategory| |#2| (QUOTE (-762))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-1067)))) (-925 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-1355 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) +((-1324 . T) (-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-926 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) @@ -3638,7 +3638,7 @@ NIL NIL (-927 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4255 . T) (-4256 . T) (-1355 . T)) +((-4255 . T) (-4256 . T) (-1324 . T)) NIL (-928 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) @@ -3655,11 +3655,11 @@ NIL (-931 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) ((-4248 |has| |#1| (-269)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-510))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))))) +((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-269))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -265) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-510))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))))) (-932 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-933 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -3668,14 +3668,14 @@ NIL ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-935 -3855 UP UPUP |radicnd| |n|) +(-935 -3837 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) ((-4248 |has| (-385 |#2|) (-341)) (-4253 |has| (-385 |#2|) (-341)) (-4247 |has| (-385 |#2|) (-341)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3316 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3316 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3316 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3316 (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341))))) +((|HasCategory| (-385 |#2|) (QUOTE (-136))) (|HasCategory| (-385 |#2|) (QUOTE (-138))) (|HasCategory| (-385 |#2|) (QUOTE (-327))) (-3204 (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (|HasCategory| (-385 |#2|) (QUOTE (-341))) (|HasCategory| (-385 |#2|) (QUOTE (-346))) (-3204 (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (|HasCategory| (-385 |#2|) (QUOTE (-327)))) (-3204 (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-327))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3204 (|HasCategory| (-385 |#2|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-385 |#2|) (QUOTE (-341)))) (-12 (|HasCategory| (-385 |#2|) (QUOTE (-213))) (|HasCategory| (-385 |#2|) (QUOTE (-341))))) (-936 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3316 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136))))) +((|HasCategory| (-525) (QUOTE (-844))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| (-525) (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-138))) (|HasCategory| (-525) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-953))) (|HasCategory| (-525) (QUOTE (-762))) (-3204 (|HasCategory| (-525) (QUOTE (-762))) (|HasCategory| (-525) (QUOTE (-789)))) (|HasCategory| (-525) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-1067))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| (-525) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| (-525) (QUOTE (-213))) (|HasCategory| (-525) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| (-525) (LIST (QUOTE -486) (QUOTE (-1091)) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -288) (QUOTE (-525)))) (|HasCategory| (-525) (LIST (QUOTE -265) (QUOTE (-525)) (QUOTE (-525)))) (|HasCategory| (-525) (QUOTE (-286))) (|HasCategory| (-525) (QUOTE (-510))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-525) (LIST (QUOTE -588) (QUOTE (-525)))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-525) (QUOTE (-844)))) (|HasCategory| (-525) (QUOTE (-136))))) (-937) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -3698,7 +3698,7 @@ NIL ((|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#2| (QUOTE (-1020)))) (-942 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) -((-1355 . T)) +((-1324 . T)) NIL (-943 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) @@ -3708,19 +3708,19 @@ NIL ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) ((-4248 . T) (-4253 . T) (-4247 . T) (-4250 . T) (-4249 . T) ((-4257 "*") . T) (-4252 . T)) NIL -(-945 R -3855) +(-945 R -3837) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-946 R -3855) +(-946 R -3837) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-947 -3855 UP) +(-947 -3837 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-948 -3855 UP) +(-948 -3837 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use."))) NIL NIL @@ -3751,8 +3751,8 @@ NIL (-955 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) ((-4248 . T) (-4253 . T) (-4247 . T) (-4250 . T) (-4249 . T) ((-4257 "*") . T) (-4252 . T)) -((-3316 (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (QUOTE (-525))))) -(-956 -3855 L) +((-3204 (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-385 (-525)) (LIST (QUOTE -968) (QUOTE (-525))))) +(-956 -3837 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL @@ -3788,14 +3788,14 @@ NIL ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-965 -3855 |Expon| |VarSet| |FPol| |LFPol|) +(-965 -3837 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) (((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-966) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (QUOTE (-1091))) (LIST (QUOTE |:|) (QUOTE -3631) (QUOTE (-51))))))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-1091) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1020))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (QUOTE (-1091))) (LIST (QUOTE |:|) (QUOTE -2348) (QUOTE (-51))))))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-1091) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1020))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (LIST (QUOTE -566) (QUOTE (-798))))) (-967 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%."))) NIL @@ -3840,7 +3840,7 @@ NIL ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) ((-4252 . T)) NIL -(-978 |xx| -3855) +(-978 |xx| -3837) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL @@ -3850,12 +3850,12 @@ NIL ((|HasCategory| |#4| (QUOTE (-286))) (|HasCategory| |#4| (QUOTE (-341))) (|HasCategory| |#4| (QUOTE (-517))) (|HasCategory| |#4| (QUOTE (-160)))) (-980 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4255 . T) (-1355 . T) (-4250 . T) (-4249 . T)) +((-4255 . T) (-1324 . T) (-4250 . T) (-4249 . T)) NIL (-981 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) ((-4255 . T) (-4250 . T) (-4249 . T)) -((-3316 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (QUOTE (-286))) (|HasCategory| |#3| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) +((-3204 (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (QUOTE (-286))) (|HasCategory| |#3| (QUOTE (-517))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))))) (-982 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL @@ -3887,7 +3887,7 @@ NIL (-989) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}"))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (QUOTE (-1091))) (LIST (QUOTE |:|) (QUOTE -3631) (QUOTE (-51))))))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (QUOTE (-1020))) (|HasCategory| (-1091) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1020))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3511 (-1091)) (|:| -3631 (-51))) (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (QUOTE (-1091))) (LIST (QUOTE |:|) (QUOTE -2348) (QUOTE (-51))))))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-51) (QUOTE (-1020)))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| (-51) (QUOTE (-1020))) (|HasCategory| (-51) (LIST (QUOTE -288) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (QUOTE (-1020))) (|HasCategory| (-1091) (QUOTE (-789))) (|HasCategory| (-51) (QUOTE (-1020))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-51) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3390 (-1091)) (|:| -2348 (-51))) (LIST (QUOTE -566) (QUOTE (-798))))) (-990 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL @@ -3914,7 +3914,7 @@ NIL NIL (-996 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL (-997 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) @@ -3924,11 +3924,11 @@ NIL ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-999 |Base| R -3855) +(-999 |Base| R -3837) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1000 |Base| R -3855) +(-1000 |Base| R -3837) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}."))) NIL NIL @@ -3943,7 +3943,7 @@ NIL (-1003 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) ((-4248 |has| |#1| (-341)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-327)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341))))) +((|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-327))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-327)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-346))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-327)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-327))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091))))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341))))) (-1004 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -3967,7 +3967,7 @@ NIL (-1009 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-844))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) +((|HasCategory| |#1| (QUOTE (-844))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1010 (-1091)) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) (-1010 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -3986,7 +3986,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-1020)))) (-1014 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) -((-1355 . T)) +((-1324 . T)) NIL (-1015 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) @@ -3994,7 +3994,7 @@ NIL ((|HasCategory| |#1| (QUOTE (-787))) (|HasCategory| |#1| (QUOTE (-1020)))) (-1016 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}."))) -((-1355 . T)) +((-1324 . T)) NIL (-1017 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) @@ -4002,7 +4002,7 @@ NIL NIL (-1018 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (< (((|Boolean|) $ $) "\\spad{s < t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4245 . T) (-1355 . T)) +((-4245 . T) (-1324 . T)) NIL (-1019 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) @@ -4019,7 +4019,7 @@ NIL (-1022 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}"))) ((-4255 . T) (-4245 . T) (-4256 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-346))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-1023 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp."))) NIL @@ -4046,7 +4046,7 @@ NIL NIL (-1029 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL (-1030) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) @@ -4063,12 +4063,12 @@ NIL (-1033 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4249 |has| |#3| (-977)) (-4250 |has| |#3| (-977)) (-4252 |has| |#3| (-6 -4252)) ((-4257 "*") |has| |#3| (-160)) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3316 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#3| (QUOTE (-341))) (-3316 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3316 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-735))) (-3316 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-160))) (-3316 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3316 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-1020)))) (-3316 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3316 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3316 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3316 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-126)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-669)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020))))) (-3316 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-3316 (|HasCategory| |#3| (QUOTE (-977))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (|HasAttribute| |#3| (QUOTE -4252)) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3204 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#3| (QUOTE (-341))) (-3204 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3204 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-341)))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-735))) (-3204 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787)))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-160))) (-3204 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3204 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (QUOTE (-1020)))) (-3204 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3204 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3204 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (QUOTE (-977)))) (-3204 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-126)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-160)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-213)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-341)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-346)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-669)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-735)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-787)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020))))) (-3204 (-12 (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-160))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-341))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-346))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-669))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-735))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-787))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (|HasCategory| (-525) (QUOTE (-789))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#3| (QUOTE (-213))) (|HasCategory| |#3| (QUOTE (-977)))) (-12 (|HasCategory| |#3| (QUOTE (-977))) (|HasCategory| |#3| (LIST (QUOTE -835) (QUOTE (-1091))))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525))))) (-3204 (|HasCategory| |#3| (QUOTE (-977))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -968) (QUOTE (-525)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#3| (QUOTE (-1020)))) (|HasAttribute| |#3| (QUOTE -4252)) (|HasCategory| |#3| (QUOTE (-126))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1020))) (|HasCategory| |#3| (LIST (QUOTE -288) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -566) (QUOTE (-798))))) (-1034 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-429)))) -(-1035 R -3855) +(-1035 R -3837) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL @@ -4086,7 +4086,7 @@ NIL NIL (-1039 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4255 . T) (-4256 . T) (-1355 . T)) +((-4255 . T) (-4256 . T) (-1324 . T)) NIL (-1040 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) @@ -4094,7 +4094,7 @@ NIL ((|HasCategory| |#3| (QUOTE (-341))) (|HasAttribute| |#3| (QUOTE (-4257 "*"))) (|HasCategory| |#3| (QUOTE (-160)))) (-1041 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere."))) -((-1355 . T) (-4255 . T) (-4249 . T) (-4250 . T) (-4252 . T)) +((-1324 . T) (-4255 . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-1042 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) @@ -4103,16 +4103,16 @@ NIL (-1043 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-844))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) +((|HasCategory| |#1| (QUOTE (-844))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) (-1044 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341)))) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341)))) (-1045 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL -(-1046 UP -3855) +(-1046 UP -3837) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL @@ -4159,18 +4159,18 @@ NIL (-1057 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1056) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1020)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1020))) (-3316 (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1056) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1020))))) (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1056) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1020)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1020))) (-3204 (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-798)))) (-12 (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -288) (LIST (QUOTE -1056) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1056 |#1| |#2|) (QUOTE (-1020))))) (|HasCategory| (-1056 |#1| |#2|) (LIST (QUOTE -566) (QUOTE (-798))))) (-1058 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}."))) ((-4252 . T) (-4244 |has| |#2| (-6 (-4257 "*"))) (-4255 . T) (-4249 . T) (-4250 . T)) -((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (-3316 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-341))) (-3316 (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-160)))) +((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (-3204 (-12 (|HasCategory| |#2| (QUOTE (-213))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (QUOTE (-286))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-341))) (-3204 (|HasAttribute| |#2| (QUOTE (-4257 "*"))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#2| (QUOTE (-213)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-160)))) (-1059 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL (-1060) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL (-1061 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) @@ -4183,19 +4183,19 @@ NIL (-1063 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-1064 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL (-1065 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) -((-1355 . T)) +((-1324 . T)) NIL (-1066 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4256 . T)) -((-12 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3631) (|devaluate| |#2|)))))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2348) (|devaluate| |#2|)))))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-789))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) (-1067) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL @@ -4219,19 +4219,19 @@ NIL (-1072 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) ((-4256 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-1073) ((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string"))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL (-1074) NIL ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135)))))) (|HasCategory| (-135) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| (-135) (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| (-135) (QUOTE (-1020))) (-12 (|HasCategory| (-135) (QUOTE (-1020))) (|HasCategory| (-135) (LIST (QUOTE -288) (QUOTE (-135))))) (|HasCategory| (-135) (LIST (QUOTE -566) (QUOTE (-798))))) (-1075 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -3631) (|devaluate| |#1|)))))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1020)))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (QUOTE (-1020))) (|HasCategory| (-1074) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3511 (-1074)) (|:| -3631 |#1|)) (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (QUOTE (-1074))) (LIST (QUOTE |:|) (QUOTE -2348) (|devaluate| |#1|)))))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-1020)))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (QUOTE (-1020))) (|HasCategory| (-1074) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3390 (-1074)) (|:| -2348 |#1|)) (LIST (QUOTE -566) (QUOTE (-798))))) (-1076 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}"))) NIL @@ -4258,9 +4258,9 @@ NIL NIL (-1082 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4257 "*") -3316 (-3850 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-3850 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-844)))) (-4248 -3316 (-3850 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-3850 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3316 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3316 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3316 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3316 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1278) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2215) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2192) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3316 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3316 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136))))) -(-1083 R -3855) +(((-4257 "*") -3204 (-3833 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-3833 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-844)))) (-4248 -3204 (-3833 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-3833 (|has| |#1| (-341)) (|has| (-1089 |#1| |#2| |#3|) (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) +((-3204 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3204 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3204 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3204 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3204 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1089) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1267) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4211) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2181) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3204 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3204 (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1089 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136))))) +(-1083 R -3837) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL @@ -4279,15 +4279,15 @@ NIL (-1087 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4251 |has| |#1| (-341)) (-4253 |has| |#1| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) +((|HasCategory| |#1| (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-1067))) (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-213))) (|HasAttribute| |#1| (QUOTE -4253)) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))))) (-1088 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1278) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2215) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2192) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1267) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4211) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2181) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) (-1089 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1032))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -1278) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2215) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2192) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1032))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -1267) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4211) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2181) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) (-1090) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL @@ -4303,7 +4303,7 @@ NIL (-1093 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-6 -4253)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| (-904) (QUOTE (-126))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253))) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-429))) (-12 (|HasCategory| (-904) (QUOTE (-126))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasAttribute| |#1| (QUOTE -4253))) (-1094) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL @@ -4335,7 +4335,7 @@ NIL (-1101 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) ((-4255 . T) (-4256 . T)) -((-12 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3511) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3631) (|devaluate| |#2|)))))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3316 (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3511 |#1|) (|:| -3631 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -288) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3390) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2348) (|devaluate| |#2|)))))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#2| (QUOTE (-1020)))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -567) (QUOTE (-501)))) (-12 (|HasCategory| |#2| (QUOTE (-1020))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#2| (QUOTE (-1020))) (-3204 (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#2| (LIST (QUOTE -566) (QUOTE (-798)))) (|HasCategory| (-2 (|:| -3390 |#1|) (|:| -2348 |#2|)) (LIST (QUOTE -566) (QUOTE (-798))))) (-1102 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}."))) NIL @@ -4346,7 +4346,7 @@ NIL NIL (-1104 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4256 . T) (-1355 . T)) +((-4256 . T) (-1324 . T)) NIL (-1105 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) @@ -4387,7 +4387,7 @@ NIL (-1114 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) ((-4256 . T) (-4255 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1020))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-1115 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL @@ -4396,7 +4396,7 @@ NIL ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1117 R -3855) +(-1117 R -3837) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -4404,7 +4404,7 @@ NIL ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1119 R -3855) +(-1119 R -3837) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL ((-12 (|HasCategory| |#1| (LIST (QUOTE -567) (LIST (QUOTE -827) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -821) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -821) (|devaluate| |#1|))))) @@ -4414,12 +4414,12 @@ NIL ((|HasCategory| |#4| (QUOTE (-346)))) (-1121 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL (-1122 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341)))) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-136))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-341)))) (-1123 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL @@ -4432,13 +4432,13 @@ NIL ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a"))) NIL ((|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) -(-1126 -3855) +(-1126 -3837) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL (-1127) ((|constructor| (NIL "The fundamental Type."))) -((-1355 . T)) +((-1324 . T)) NIL (-1128 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}"))) @@ -4470,16 +4470,16 @@ NIL ((|HasCategory| |#2| (QUOTE (-341)))) (-1135 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}."))) -(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-1355 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) +(((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-1324 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) NIL (-1136 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-953)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))) (-3316 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-138))))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-213)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-953)))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1278) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2215) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2192) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (QUOTE (-844))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-286)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136)))))) +((-3204 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-953)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136))))) (-3204 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-138))))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-213)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-1091))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-953)))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-762)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1067)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -265) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -288) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -486) (QUOTE (-1091)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1267) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4211) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2181) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-789)))) (|HasCategory| |#2| (QUOTE (-844))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-510)))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-286)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#1| (QUOTE (-136))) (-12 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-136)))))) (-1137 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4257 "*") -3316 (-3850 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-3850 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-844)))) (-4248 -3316 (-3850 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-3850 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) -((-3316 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3316 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3316 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3316 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3316 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1278) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2215) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2192) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3316 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3316 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136))))) +(((-4257 "*") -3204 (-3833 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-762))) (|has| |#1| (-160)) (-3833 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-844)))) (-4248 -3204 (-3833 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-762))) (|has| |#1| (-517)) (-3833 (|has| |#1| (-341)) (|has| (-1165 |#1| |#2| |#3|) (-844)))) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) +((-3204 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136)))) (-3204 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-138)))) (-3204 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|)))))) (-3204 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-213))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-525)) (|devaluate| |#1|))))) (|HasCategory| (-525) (QUOTE (-1032))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-341))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-1091)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-953))) (|HasCategory| |#1| (QUOTE (-341)))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-3204 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341))))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-1067))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -265) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -288) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -486) (QUOTE (-1091)) (LIST (QUOTE -1165) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -1267) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-525))))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4211) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2181) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-510))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-286))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-136))) (-3204 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3204 (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-762))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-160)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-844))) (|HasCategory| |#1| (QUOTE (-341)))) (-12 (|HasCategory| (-1165 |#1| |#2| |#3|) (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-341)))) (|HasCategory| |#1| (QUOTE (-136))))) (-1138 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL @@ -4515,7 +4515,7 @@ NIL (-1146 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial."))) (((-4257 "*") |has| |#2| (-160)) (-4248 |has| |#2| (-517)) (-4251 |has| |#2| (-341)) (-4253 |has| |#2| (-6 -4253)) (-4250 . T) (-4249 . T) (-4252 . T)) -((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3316 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3316 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3316 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) +((|HasCategory| |#2| (QUOTE (-844))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-160))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-517)))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-357)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-357))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -821) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -821) (QUOTE (-525))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-357)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -567) (LIST (QUOTE -827) (QUOTE (-525)))))) (-12 (|HasCategory| (-1005) (LIST (QUOTE -567) (QUOTE (-501)))) (|HasCategory| |#2| (LIST (QUOTE -567) (QUOTE (-501))))) (|HasCategory| |#2| (QUOTE (-789))) (|HasCategory| |#2| (LIST (QUOTE -588) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (-3204 (|HasCategory| |#2| (QUOTE (-160))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-517))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-429))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-341))) (|HasCategory| |#2| (QUOTE (-1067))) (|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (-3204 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| |#2| (QUOTE (-213))) (|HasAttribute| |#2| (QUOTE -4253)) (|HasCategory| |#2| (QUOTE (-429))) (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (-3204 (-12 (|HasCategory| $ (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-844)))) (|HasCategory| |#2| (QUOTE (-136))))) (-1147 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL @@ -4531,7 +4531,7 @@ NIL (-1150 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1032))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1278) (LIST (|devaluate| |#2|) (QUOTE (-1091)))))) +((|HasCategory| |#2| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1032))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -1267) (LIST (|devaluate| |#2|) (QUOTE (-1091)))))) (-1151 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T)) @@ -4559,22 +4559,22 @@ NIL (-1157 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1278) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2215) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2192) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) +((|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1267) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4211) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2181) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-1158 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4253 |has| |#1| (-341)) (-4247 |has| |#1| (-341)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3316 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1278) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2215) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2192) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (|HasCategory| |#1| (QUOTE (-160))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525))) (|devaluate| |#1|)))) (|HasCategory| (-385 (-525)) (QUOTE (-1032))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-3204 (|HasCategory| |#1| (QUOTE (-341))) (|HasCategory| |#1| (QUOTE (-517)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasSignature| |#1| (LIST (QUOTE -1267) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -385) (QUOTE (-525)))))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4211) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2181) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) (-1159 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}."))) (((-4257 "*") |has| (-1158 |#2| |#3| |#4|) (-160)) (-4248 |has| (-1158 |#2| |#3| |#4|) (-517)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-160))) (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-341))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-429))) (-3316 (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-517)))) +((|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-136))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-160))) (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -968) (QUOTE (-525)))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-341))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-429))) (-3204 (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (LIST (QUOTE -968) (LIST (QUOTE -385) (QUOTE (-525)))))) (|HasCategory| (-1158 |#2| |#3| |#4|) (QUOTE (-517)))) (-1160 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL ((|HasAttribute| |#1| (QUOTE -4256))) (-1161 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) -((-1355 . T)) +((-1324 . T)) NIL (-1162 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) @@ -4583,7 +4583,7 @@ NIL (-1163 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-893))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasSignature| |#2| (LIST (QUOTE -2192) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2215) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1091))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) +((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#2| (QUOTE (-893))) (|HasCategory| |#2| (QUOTE (-1113))) (|HasSignature| |#2| (LIST (QUOTE -2181) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -4211) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1091))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#2| (QUOTE (-341)))) (-1164 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T)) @@ -4591,18 +4591,18 @@ NIL (-1165 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4257 "*") |has| |#1| (-160)) (-4248 |has| |#1| (-517)) (-4249 . T) (-4250 . T) (-4252 . T)) -((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3316 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1032))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -1278) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3316 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -2215) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2192) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasCategory| |#1| (QUOTE (-517))) (-3204 (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-517)))) (|HasCategory| |#1| (QUOTE (-160))) (|HasCategory| |#1| (QUOTE (-136))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (LIST (QUOTE -835) (QUOTE (-1091)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-713)) (|devaluate| |#1|)))) (|HasCategory| (-713) (QUOTE (-1032))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasSignature| |#1| (LIST (QUOTE -1267) (LIST (|devaluate| |#1|) (QUOTE (-1091)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-713))))) (|HasCategory| |#1| (QUOTE (-341))) (-3204 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-525)))) (|HasCategory| |#1| (QUOTE (-893))) (|HasCategory| |#1| (QUOTE (-1113))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -385) (QUOTE (-525))))) (|HasSignature| |#1| (LIST (QUOTE -4211) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1091))))) (|HasSignature| |#1| (LIST (QUOTE -2181) (LIST (LIST (QUOTE -592) (QUOTE (-1091))) (|devaluate| |#1|))))))) (-1166 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1167 -3855 UP L UTS) +(-1167 -3837 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-517)))) (-1168) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) -((-1355 . T)) +((-1324 . T)) NIL (-1169 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) @@ -4614,7 +4614,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-934))) (|HasCategory| |#2| (QUOTE (-977))) (|HasCategory| |#2| (QUOTE (-669))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) (-1171 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4256 . T) (-4255 . T) (-1355 . T)) +((-4256 . T) (-4255 . T) (-1324 . T)) NIL (-1172 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) @@ -4623,7 +4623,7 @@ NIL (-1173 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) ((-4256 . T) (-4255 . T)) -((-3316 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3316 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3316 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) +((-3204 (-12 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|))))) (-3204 (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (|HasCategory| |#1| (LIST (QUOTE -567) (QUOTE (-501)))) (-3204 (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020)))) (|HasCategory| |#1| (QUOTE (-789))) (|HasCategory| (-525) (QUOTE (-789))) (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-669))) (|HasCategory| |#1| (QUOTE (-977))) (-12 (|HasCategory| |#1| (QUOTE (-934))) (|HasCategory| |#1| (QUOTE (-977)))) (-12 (|HasCategory| |#1| (QUOTE (-1020))) (|HasCategory| |#1| (LIST (QUOTE -288) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -566) (QUOTE (-798))))) (-1174) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL @@ -4656,7 +4656,7 @@ NIL ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1182 K R UP -3855) +(-1182 K R UP -3837) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}."))) NIL NIL @@ -4684,11 +4684,11 @@ NIL ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) ((-4248 |has| |#2| (-6 -4248)) (-4250 . T) (-4249 . T) (-4252 . T)) NIL -(-1189 S -3855) +(-1189 S -3837) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-346))) (|HasCategory| |#2| (QUOTE (-136))) (|HasCategory| |#2| (QUOTE (-138)))) -(-1190 -3855) +(-1190 -3837) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) ((-4247 . T) (-4253 . T) (-4248 . T) ((-4257 "*") . T) (-4249 . T) (-4250 . T) (-4252 . T)) NIL @@ -4744,4 +4744,4 @@ NIL NIL NIL NIL -((-3 NIL 2241067 2241072 2241077 2241082) (-2 NIL 2241047 2241052 2241057 2241062) (-1 NIL 2241027 2241032 2241037 2241042) (0 NIL 2241007 2241012 2241017 2241022) (-1199 "ZMOD.spad" 2240816 2240829 2240945 2241002) (-1198 "ZLINDEP.spad" 2239860 2239871 2240806 2240811) (-1197 "ZDSOLVE.spad" 2229709 2229731 2239850 2239855) (-1196 "YSTREAM.spad" 2229202 2229213 2229699 2229704) (-1195 "XRPOLY.spad" 2228422 2228442 2229058 2229127) (-1194 "XPR.spad" 2226151 2226164 2228140 2228239) (-1193 "XPOLY.spad" 2225706 2225717 2226007 2226076) (-1192 "XPOLYC.spad" 2225023 2225039 2225632 2225701) (-1191 "XPBWPOLY.spad" 2223460 2223480 2224803 2224872) (-1190 "XF.spad" 2221921 2221936 2223362 2223455) (-1189 "XF.spad" 2220362 2220379 2221805 2221810) (-1188 "XFALG.spad" 2217386 2217402 2220288 2220357) (-1187 "XEXPPKG.spad" 2216637 2216663 2217376 2217381) (-1186 "XDPOLY.spad" 2216251 2216267 2216493 2216562) (-1185 "XALG.spad" 2215849 2215860 2216207 2216246) (-1184 "WUTSET.spad" 2211688 2211705 2215495 2215522) (-1183 "WP.spad" 2210702 2210746 2211546 2211613) (-1182 "WFFINTBS.spad" 2208265 2208287 2210692 2210697) (-1181 "WEIER.spad" 2206479 2206490 2208255 2208260) (-1180 "VSPACE.spad" 2206152 2206163 2206447 2206474) (-1179 "VSPACE.spad" 2205845 2205858 2206142 2206147) (-1178 "VOID.spad" 2205435 2205444 2205835 2205840) (-1177 "VIEW.spad" 2203057 2203066 2205425 2205430) (-1176 "VIEWDEF.spad" 2198254 2198263 2203047 2203052) (-1175 "VIEW3D.spad" 2182089 2182098 2198244 2198249) (-1174 "VIEW2D.spad" 2169826 2169835 2182079 2182084) (-1173 "VECTOR.spad" 2168503 2168514 2168754 2168781) (-1172 "VECTOR2.spad" 2167130 2167143 2168493 2168498) (-1171 "VECTCAT.spad" 2165018 2165029 2167086 2167125) (-1170 "VECTCAT.spad" 2162727 2162740 2164797 2164802) (-1169 "VARIABLE.spad" 2162507 2162522 2162717 2162722) (-1168 "UTYPE.spad" 2162141 2162150 2162487 2162502) (-1167 "UTSODETL.spad" 2161434 2161458 2162097 2162102) (-1166 "UTSODE.spad" 2159622 2159642 2161424 2161429) (-1165 "UTS.spad" 2154411 2154439 2158089 2158186) (-1164 "UTSCAT.spad" 2151862 2151878 2154309 2154406) (-1163 "UTSCAT.spad" 2148957 2148975 2151406 2151411) (-1162 "UTS2.spad" 2148550 2148585 2148947 2148952) (-1161 "URAGG.spad" 2143172 2143183 2148530 2148545) (-1160 "URAGG.spad" 2137768 2137781 2143128 2143133) (-1159 "UPXSSING.spad" 2135414 2135440 2136852 2136985) (-1158 "UPXS.spad" 2132441 2132469 2133546 2133695) (-1157 "UPXSCONS.spad" 2130198 2130218 2130573 2130722) (-1156 "UPXSCCA.spad" 2128656 2128676 2130044 2130193) (-1155 "UPXSCCA.spad" 2127256 2127278 2128646 2128651) (-1154 "UPXSCAT.spad" 2125837 2125853 2127102 2127251) (-1153 "UPXS2.spad" 2125378 2125431 2125827 2125832) (-1152 "UPSQFREE.spad" 2123790 2123804 2125368 2125373) (-1151 "UPSCAT.spad" 2121383 2121407 2123688 2123785) (-1150 "UPSCAT.spad" 2118682 2118708 2120989 2120994) (-1149 "UPOLYC.spad" 2113660 2113671 2118524 2118677) (-1148 "UPOLYC.spad" 2108530 2108543 2113396 2113401) (-1147 "UPOLYC2.spad" 2107999 2108018 2108520 2108525) (-1146 "UP.spad" 2105044 2105059 2105552 2105705) (-1145 "UPMP.spad" 2103934 2103947 2105034 2105039) (-1144 "UPDIVP.spad" 2103497 2103511 2103924 2103929) (-1143 "UPDECOMP.spad" 2101734 2101748 2103487 2103492) (-1142 "UPCDEN.spad" 2100941 2100957 2101724 2101729) (-1141 "UP2.spad" 2100303 2100324 2100931 2100936) (-1140 "UNISEG.spad" 2099656 2099667 2100222 2100227) (-1139 "UNISEG2.spad" 2099149 2099162 2099612 2099617) (-1138 "UNIFACT.spad" 2098250 2098262 2099139 2099144) (-1137 "ULS.spad" 2088809 2088837 2089902 2090331) (-1136 "ULSCONS.spad" 2082852 2082872 2083224 2083373) (-1135 "ULSCCAT.spad" 2080449 2080469 2082672 2082847) (-1134 "ULSCCAT.spad" 2078180 2078202 2080405 2080410) (-1133 "ULSCAT.spad" 2076396 2076412 2078026 2078175) (-1132 "ULS2.spad" 2075908 2075961 2076386 2076391) (-1131 "UFD.spad" 2074973 2074982 2075834 2075903) (-1130 "UFD.spad" 2074100 2074111 2074963 2074968) (-1129 "UDVO.spad" 2072947 2072956 2074090 2074095) (-1128 "UDPO.spad" 2070374 2070385 2072903 2072908) (-1127 "TYPE.spad" 2070296 2070305 2070354 2070369) (-1126 "TWOFACT.spad" 2068946 2068961 2070286 2070291) (-1125 "TUPLE.spad" 2068332 2068343 2068845 2068850) (-1124 "TUBETOOL.spad" 2065169 2065178 2068322 2068327) (-1123 "TUBE.spad" 2063810 2063827 2065159 2065164) (-1122 "TS.spad" 2062399 2062415 2063375 2063472) (-1121 "TSETCAT.spad" 2049514 2049531 2062355 2062394) (-1120 "TSETCAT.spad" 2036627 2036646 2049470 2049475) (-1119 "TRMANIP.spad" 2030993 2031010 2036333 2036338) (-1118 "TRIMAT.spad" 2029952 2029977 2030983 2030988) (-1117 "TRIGMNIP.spad" 2028469 2028486 2029942 2029947) (-1116 "TRIGCAT.spad" 2027981 2027990 2028459 2028464) (-1115 "TRIGCAT.spad" 2027491 2027502 2027971 2027976) (-1114 "TREE.spad" 2026062 2026073 2027098 2027125) (-1113 "TRANFUN.spad" 2025893 2025902 2026052 2026057) (-1112 "TRANFUN.spad" 2025722 2025733 2025883 2025888) (-1111 "TOPSP.spad" 2025396 2025405 2025712 2025717) (-1110 "TOOLSIGN.spad" 2025059 2025070 2025386 2025391) (-1109 "TEXTFILE.spad" 2023616 2023625 2025049 2025054) (-1108 "TEX.spad" 2020633 2020642 2023606 2023611) (-1107 "TEX1.spad" 2020189 2020200 2020623 2020628) (-1106 "TEMUTL.spad" 2019744 2019753 2020179 2020184) (-1105 "TBCMPPK.spad" 2017837 2017860 2019734 2019739) (-1104 "TBAGG.spad" 2016861 2016884 2017805 2017832) (-1103 "TBAGG.spad" 2015905 2015930 2016851 2016856) (-1102 "TANEXP.spad" 2015281 2015292 2015895 2015900) (-1101 "TABLE.spad" 2013692 2013715 2013962 2013989) (-1100 "TABLEAU.spad" 2013173 2013184 2013682 2013687) (-1099 "TABLBUMP.spad" 2009956 2009967 2013163 2013168) (-1098 "SYSTEM.spad" 2009230 2009239 2009946 2009951) (-1097 "SYSSOLP.spad" 2006703 2006714 2009220 2009225) (-1096 "SYNTAX.spad" 2002895 2002904 2006693 2006698) (-1095 "SYMTAB.spad" 2000951 2000960 2002885 2002890) (-1094 "SYMS.spad" 1996936 1996945 2000941 2000946) (-1093 "SYMPOLY.spad" 1995946 1995957 1996028 1996155) (-1092 "SYMFUNC.spad" 1995421 1995432 1995936 1995941) (-1091 "SYMBOL.spad" 1992757 1992766 1995411 1995416) (-1090 "SWITCH.spad" 1989514 1989523 1992747 1992752) (-1089 "SUTS.spad" 1986413 1986441 1987981 1988078) (-1088 "SUPXS.spad" 1983427 1983455 1984545 1984694) (-1087 "SUP.spad" 1980199 1980210 1980980 1981133) (-1086 "SUPFRACF.spad" 1979304 1979322 1980189 1980194) (-1085 "SUP2.spad" 1978694 1978707 1979294 1979299) (-1084 "SUMRF.spad" 1977660 1977671 1978684 1978689) (-1083 "SUMFS.spad" 1977293 1977310 1977650 1977655) (-1082 "SULS.spad" 1967839 1967867 1968945 1969374) (-1081 "SUCH.spad" 1967519 1967534 1967829 1967834) (-1080 "SUBSPACE.spad" 1959526 1959541 1967509 1967514) (-1079 "SUBRESP.spad" 1958686 1958700 1959482 1959487) (-1078 "STTF.spad" 1954785 1954801 1958676 1958681) (-1077 "STTFNC.spad" 1951253 1951269 1954775 1954780) (-1076 "STTAYLOR.spad" 1943651 1943662 1951134 1951139) (-1075 "STRTBL.spad" 1942156 1942173 1942305 1942332) (-1074 "STRING.spad" 1941565 1941574 1941579 1941606) (-1073 "STRICAT.spad" 1941341 1941350 1941521 1941560) (-1072 "STREAM.spad" 1938109 1938120 1940866 1940881) (-1071 "STREAM3.spad" 1937654 1937669 1938099 1938104) (-1070 "STREAM2.spad" 1936722 1936735 1937644 1937649) (-1069 "STREAM1.spad" 1936426 1936437 1936712 1936717) (-1068 "STINPROD.spad" 1935332 1935348 1936416 1936421) (-1067 "STEP.spad" 1934533 1934542 1935322 1935327) (-1066 "STBL.spad" 1933059 1933087 1933226 1933241) (-1065 "STAGG.spad" 1932124 1932135 1933039 1933054) (-1064 "STAGG.spad" 1931197 1931210 1932114 1932119) (-1063 "STACK.spad" 1930548 1930559 1930804 1930831) (-1062 "SREGSET.spad" 1928252 1928269 1930194 1930221) (-1061 "SRDCMPK.spad" 1926797 1926817 1928242 1928247) (-1060 "SRAGG.spad" 1921882 1921891 1926753 1926792) (-1059 "SRAGG.spad" 1916999 1917010 1921872 1921877) (-1058 "SQMATRIX.spad" 1914625 1914643 1915533 1915620) (-1057 "SPLTREE.spad" 1909177 1909190 1914061 1914088) (-1056 "SPLNODE.spad" 1905765 1905778 1909167 1909172) (-1055 "SPFCAT.spad" 1904542 1904551 1905755 1905760) (-1054 "SPECOUT.spad" 1903092 1903101 1904532 1904537) (-1053 "spad-parser.spad" 1902557 1902566 1903082 1903087) (-1052 "SPACEC.spad" 1886570 1886581 1902547 1902552) (-1051 "SPACE3.spad" 1886346 1886357 1886560 1886565) (-1050 "SORTPAK.spad" 1885891 1885904 1886302 1886307) (-1049 "SOLVETRA.spad" 1883648 1883659 1885881 1885886) (-1048 "SOLVESER.spad" 1882168 1882179 1883638 1883643) (-1047 "SOLVERAD.spad" 1878178 1878189 1882158 1882163) (-1046 "SOLVEFOR.spad" 1876598 1876616 1878168 1878173) (-1045 "SNTSCAT.spad" 1876186 1876203 1876554 1876593) (-1044 "SMTS.spad" 1874446 1874472 1875751 1875848) (-1043 "SMP.spad" 1871888 1871908 1872278 1872405) (-1042 "SMITH.spad" 1870731 1870756 1871878 1871883) (-1041 "SMATCAT.spad" 1868829 1868859 1870663 1870726) (-1040 "SMATCAT.spad" 1866871 1866903 1868707 1868712) (-1039 "SKAGG.spad" 1865820 1865831 1866827 1866866) (-1038 "SINT.spad" 1864128 1864137 1865686 1865815) (-1037 "SIMPAN.spad" 1863856 1863865 1864118 1864123) (-1036 "SIGNRF.spad" 1862964 1862975 1863846 1863851) (-1035 "SIGNEF.spad" 1862233 1862250 1862954 1862959) (-1034 "SHP.spad" 1860151 1860166 1862189 1862194) (-1033 "SHDP.spad" 1851187 1851214 1851696 1851825) (-1032 "SGROUP.spad" 1850653 1850662 1851177 1851182) (-1031 "SGROUP.spad" 1850117 1850128 1850643 1850648) (-1030 "SGCF.spad" 1842998 1843007 1850107 1850112) (-1029 "SFRTCAT.spad" 1841914 1841931 1842954 1842993) (-1028 "SFRGCD.spad" 1840977 1840997 1841904 1841909) (-1027 "SFQCMPK.spad" 1835614 1835634 1840967 1840972) (-1026 "SFORT.spad" 1835049 1835063 1835604 1835609) (-1025 "SEXOF.spad" 1834892 1834932 1835039 1835044) (-1024 "SEX.spad" 1834784 1834793 1834882 1834887) (-1023 "SEXCAT.spad" 1831888 1831928 1834774 1834779) (-1022 "SET.spad" 1830188 1830199 1831309 1831348) (-1021 "SETMN.spad" 1828622 1828639 1830178 1830183) (-1020 "SETCAT.spad" 1828107 1828116 1828612 1828617) (-1019 "SETCAT.spad" 1827590 1827601 1828097 1828102) (-1018 "SETAGG.spad" 1824113 1824124 1827558 1827585) (-1017 "SETAGG.spad" 1820656 1820669 1824103 1824108) (-1016 "SEGXCAT.spad" 1819768 1819781 1820636 1820651) (-1015 "SEG.spad" 1819581 1819592 1819687 1819692) (-1014 "SEGCAT.spad" 1818400 1818411 1819561 1819576) (-1013 "SEGBIND.spad" 1817472 1817483 1818355 1818360) (-1012 "SEGBIND2.spad" 1817168 1817181 1817462 1817467) (-1011 "SEG2.spad" 1816593 1816606 1817124 1817129) (-1010 "SDVAR.spad" 1815869 1815880 1816583 1816588) (-1009 "SDPOL.spad" 1813262 1813273 1813553 1813680) (-1008 "SCPKG.spad" 1811341 1811352 1813252 1813257) (-1007 "SCOPE.spad" 1810486 1810495 1811331 1811336) (-1006 "SCACHE.spad" 1809168 1809179 1810476 1810481) (-1005 "SAOS.spad" 1809040 1809049 1809158 1809163) (-1004 "SAERFFC.spad" 1808753 1808773 1809030 1809035) (-1003 "SAE.spad" 1806931 1806947 1807542 1807677) (-1002 "SAEFACT.spad" 1806632 1806652 1806921 1806926) (-1001 "RURPK.spad" 1804273 1804289 1806622 1806627) (-1000 "RULESET.spad" 1803714 1803738 1804263 1804268) (-999 "RULE.spad" 1801919 1801942 1803704 1803709) (-998 "RULECOLD.spad" 1801772 1801784 1801909 1801914) (-997 "RSETGCD.spad" 1798151 1798170 1801762 1801767) (-996 "RSETCAT.spad" 1787924 1787940 1798107 1798146) (-995 "RSETCAT.spad" 1777729 1777747 1787914 1787919) (-994 "RSDCMPK.spad" 1776182 1776201 1777719 1777724) (-993 "RRCC.spad" 1774567 1774596 1776172 1776177) (-992 "RRCC.spad" 1772950 1772981 1774557 1774562) (-991 "RPOLCAT.spad" 1752311 1752325 1772818 1772945) (-990 "RPOLCAT.spad" 1731387 1731403 1751896 1751901) (-989 "ROUTINE.spad" 1727251 1727259 1730034 1730061) (-988 "ROMAN.spad" 1726484 1726492 1727117 1727246) (-987 "ROIRC.spad" 1725565 1725596 1726474 1726479) (-986 "RNS.spad" 1724469 1724477 1725467 1725560) (-985 "RNS.spad" 1723459 1723469 1724459 1724464) (-984 "RNG.spad" 1723195 1723203 1723449 1723454) (-983 "RMODULE.spad" 1722834 1722844 1723185 1723190) (-982 "RMCAT2.spad" 1722243 1722299 1722824 1722829) (-981 "RMATRIX.spad" 1720923 1720941 1721410 1721449) (-980 "RMATCAT.spad" 1716445 1716475 1720867 1720918) (-979 "RMATCAT.spad" 1711869 1711901 1716293 1716298) (-978 "RINTERP.spad" 1711758 1711777 1711859 1711864) (-977 "RING.spad" 1711116 1711124 1711738 1711753) (-976 "RING.spad" 1710482 1710492 1711106 1711111) (-975 "RIDIST.spad" 1709867 1709875 1710472 1710477) (-974 "RGCHAIN.spad" 1708447 1708462 1709352 1709379) (-973 "RF.spad" 1706062 1706072 1708437 1708442) (-972 "RFFACTOR.spad" 1705525 1705535 1706052 1706057) (-971 "RFFACT.spad" 1705261 1705272 1705515 1705520) (-970 "RFDIST.spad" 1704250 1704258 1705251 1705256) (-969 "RETSOL.spad" 1703668 1703680 1704240 1704245) (-968 "RETRACT.spad" 1703018 1703028 1703658 1703663) (-967 "RETRACT.spad" 1702366 1702378 1703008 1703013) (-966 "RESULT.spad" 1700427 1700435 1701013 1701040) (-965 "RESRING.spad" 1699775 1699821 1700365 1700422) (-964 "RESLATC.spad" 1699100 1699110 1699765 1699770) (-963 "REPSQ.spad" 1698830 1698840 1699090 1699095) (-962 "REP.spad" 1696383 1696391 1698820 1698825) (-961 "REPDB.spad" 1696089 1696099 1696373 1696378) (-960 "REP2.spad" 1685662 1685672 1695931 1695936) (-959 "REP1.spad" 1679653 1679663 1685612 1685617) (-958 "REGSET.spad" 1677451 1677467 1679299 1679326) (-957 "REF.spad" 1676781 1676791 1677406 1677411) (-956 "REDORDER.spad" 1675958 1675974 1676771 1676776) (-955 "RECLOS.spad" 1674748 1674767 1675451 1675544) (-954 "REALSOLV.spad" 1673881 1673889 1674738 1674743) (-953 "REAL.spad" 1673754 1673762 1673871 1673876) (-952 "REAL0Q.spad" 1671037 1671051 1673744 1673749) (-951 "REAL0.spad" 1667866 1667880 1671027 1671032) (-950 "RDIV.spad" 1667518 1667542 1667856 1667861) (-949 "RDIST.spad" 1667082 1667092 1667508 1667513) (-948 "RDETRS.spad" 1665879 1665896 1667072 1667077) (-947 "RDETR.spad" 1663987 1664004 1665869 1665874) (-946 "RDEEFS.spad" 1663061 1663077 1663977 1663982) (-945 "RDEEF.spad" 1662058 1662074 1663051 1663056) (-944 "RCFIELD.spad" 1659245 1659253 1661960 1662053) (-943 "RCFIELD.spad" 1656518 1656528 1659235 1659240) (-942 "RCAGG.spad" 1654421 1654431 1656498 1656513) (-941 "RCAGG.spad" 1652261 1652273 1654340 1654345) (-940 "RATRET.spad" 1651622 1651632 1652251 1652256) (-939 "RATFACT.spad" 1651315 1651326 1651612 1651617) (-938 "RANDSRC.spad" 1650635 1650643 1651305 1651310) (-937 "RADUTIL.spad" 1650390 1650398 1650625 1650630) (-936 "RADIX.spad" 1647183 1647196 1648860 1648953) (-935 "RADFF.spad" 1645600 1645636 1645718 1645874) (-934 "RADCAT.spad" 1645194 1645202 1645590 1645595) (-933 "RADCAT.spad" 1644786 1644796 1645184 1645189) (-932 "QUEUE.spad" 1644129 1644139 1644393 1644420) (-931 "QUAT.spad" 1642715 1642725 1643057 1643122) (-930 "QUATCT2.spad" 1642334 1642352 1642705 1642710) (-929 "QUATCAT.spad" 1640499 1640509 1642264 1642329) (-928 "QUATCAT.spad" 1638416 1638428 1640183 1640188) (-927 "QUAGG.spad" 1637230 1637240 1638372 1638411) (-926 "QFORM.spad" 1636693 1636707 1637220 1637225) (-925 "QFCAT.spad" 1635384 1635394 1636583 1636688) (-924 "QFCAT.spad" 1633681 1633693 1634882 1634887) (-923 "QFCAT2.spad" 1633372 1633388 1633671 1633676) (-922 "QEQUAT.spad" 1632929 1632937 1633362 1633367) (-921 "QCMPACK.spad" 1627676 1627695 1632919 1632924) (-920 "QALGSET.spad" 1623751 1623783 1627590 1627595) (-919 "QALGSET2.spad" 1621747 1621765 1623741 1623746) (-918 "PWFFINTB.spad" 1619057 1619078 1621737 1621742) (-917 "PUSHVAR.spad" 1618386 1618405 1619047 1619052) (-916 "PTRANFN.spad" 1614512 1614522 1618376 1618381) (-915 "PTPACK.spad" 1611600 1611610 1614502 1614507) (-914 "PTFUNC2.spad" 1611421 1611435 1611590 1611595) (-913 "PTCAT.spad" 1610503 1610513 1611377 1611416) (-912 "PSQFR.spad" 1609810 1609834 1610493 1610498) (-911 "PSEUDLIN.spad" 1608668 1608678 1609800 1609805) (-910 "PSETPK.spad" 1594101 1594117 1608546 1608551) (-909 "PSETCAT.spad" 1588009 1588032 1594069 1594096) (-908 "PSETCAT.spad" 1581903 1581928 1587965 1587970) (-907 "PSCURVE.spad" 1580886 1580894 1581893 1581898) (-906 "PSCAT.spad" 1579653 1579682 1580784 1580881) (-905 "PSCAT.spad" 1578510 1578541 1579643 1579648) (-904 "PRTITION.spad" 1577353 1577361 1578500 1578505) (-903 "PRS.spad" 1566915 1566932 1577309 1577314) (-902 "PRQAGG.spad" 1566334 1566344 1566871 1566910) (-901 "PROPLOG.spad" 1565737 1565745 1566324 1566329) (-900 "PROPFRML.spad" 1563602 1563613 1565673 1565678) (-899 "PROPERTY.spad" 1563096 1563104 1563592 1563597) (-898 "PRODUCT.spad" 1560776 1560788 1561062 1561117) (-897 "PR.spad" 1559165 1559177 1559870 1559997) (-896 "PRINT.spad" 1558917 1558925 1559155 1559160) (-895 "PRIMES.spad" 1557168 1557178 1558907 1558912) (-894 "PRIMELT.spad" 1555149 1555163 1557158 1557163) (-893 "PRIMCAT.spad" 1554772 1554780 1555139 1555144) (-892 "PRIMARR.spad" 1553777 1553787 1553955 1553982) (-891 "PRIMARR2.spad" 1552500 1552512 1553767 1553772) (-890 "PREASSOC.spad" 1551872 1551884 1552490 1552495) (-889 "PPCURVE.spad" 1551009 1551017 1551862 1551867) (-888 "POLYROOT.spad" 1549781 1549803 1550965 1550970) (-887 "POLY.spad" 1547081 1547091 1547598 1547725) (-886 "POLYLIFT.spad" 1546342 1546365 1547071 1547076) (-885 "POLYCATQ.spad" 1544444 1544466 1546332 1546337) (-884 "POLYCAT.spad" 1537850 1537871 1544312 1544439) (-883 "POLYCAT.spad" 1530558 1530581 1537022 1537027) (-882 "POLY2UP.spad" 1530006 1530020 1530548 1530553) (-881 "POLY2.spad" 1529601 1529613 1529996 1530001) (-880 "POLUTIL.spad" 1528542 1528571 1529557 1529562) (-879 "POLTOPOL.spad" 1527290 1527305 1528532 1528537) (-878 "POINT.spad" 1526131 1526141 1526218 1526245) (-877 "PNTHEORY.spad" 1522797 1522805 1526121 1526126) (-876 "PMTOOLS.spad" 1521554 1521568 1522787 1522792) (-875 "PMSYM.spad" 1521099 1521109 1521544 1521549) (-874 "PMQFCAT.spad" 1520686 1520700 1521089 1521094) (-873 "PMPRED.spad" 1520155 1520169 1520676 1520681) (-872 "PMPREDFS.spad" 1519599 1519621 1520145 1520150) (-871 "PMPLCAT.spad" 1518669 1518687 1519531 1519536) (-870 "PMLSAGG.spad" 1518250 1518264 1518659 1518664) (-869 "PMKERNEL.spad" 1517817 1517829 1518240 1518245) (-868 "PMINS.spad" 1517393 1517403 1517807 1517812) (-867 "PMFS.spad" 1516966 1516984 1517383 1517388) (-866 "PMDOWN.spad" 1516252 1516266 1516956 1516961) (-865 "PMASS.spad" 1515264 1515272 1516242 1516247) (-864 "PMASSFS.spad" 1514233 1514249 1515254 1515259) (-863 "PLOTTOOL.spad" 1514013 1514021 1514223 1514228) (-862 "PLOT.spad" 1508844 1508852 1514003 1514008) (-861 "PLOT3D.spad" 1505264 1505272 1508834 1508839) (-860 "PLOT1.spad" 1504405 1504415 1505254 1505259) (-859 "PLEQN.spad" 1491621 1491648 1504395 1504400) (-858 "PINTERP.spad" 1491237 1491256 1491611 1491616) (-857 "PINTERPA.spad" 1491019 1491035 1491227 1491232) (-856 "PI.spad" 1490626 1490634 1490993 1491014) (-855 "PID.spad" 1489582 1489590 1490552 1490621) (-854 "PICOERCE.spad" 1489239 1489249 1489572 1489577) (-853 "PGROEB.spad" 1487836 1487850 1489229 1489234) (-852 "PGE.spad" 1479089 1479097 1487826 1487831) (-851 "PGCD.spad" 1477971 1477988 1479079 1479084) (-850 "PFRPAC.spad" 1477114 1477124 1477961 1477966) (-849 "PFR.spad" 1473771 1473781 1477016 1477109) (-848 "PFOTOOLS.spad" 1473029 1473045 1473761 1473766) (-847 "PFOQ.spad" 1472399 1472417 1473019 1473024) (-846 "PFO.spad" 1471818 1471845 1472389 1472394) (-845 "PF.spad" 1471392 1471404 1471623 1471716) (-844 "PFECAT.spad" 1469058 1469066 1471318 1471387) (-843 "PFECAT.spad" 1466752 1466762 1469014 1469019) (-842 "PFBRU.spad" 1464622 1464634 1466742 1466747) (-841 "PFBR.spad" 1462160 1462183 1464612 1464617) (-840 "PERM.spad" 1457841 1457851 1461990 1462005) (-839 "PERMGRP.spad" 1452577 1452587 1457831 1457836) (-838 "PERMCAT.spad" 1451129 1451139 1452557 1452572) (-837 "PERMAN.spad" 1449661 1449675 1451119 1451124) (-836 "PENDTREE.spad" 1448934 1448944 1449290 1449295) (-835 "PDRING.spad" 1447425 1447435 1448914 1448929) (-834 "PDRING.spad" 1445924 1445936 1447415 1447420) (-833 "PDEPROB.spad" 1444881 1444889 1445914 1445919) (-832 "PDEPACK.spad" 1438883 1438891 1444871 1444876) (-831 "PDECOMP.spad" 1438345 1438362 1438873 1438878) (-830 "PDECAT.spad" 1436699 1436707 1438335 1438340) (-829 "PCOMP.spad" 1436550 1436563 1436689 1436694) (-828 "PBWLB.spad" 1435132 1435149 1436540 1436545) (-827 "PATTERN.spad" 1429563 1429573 1435122 1435127) (-826 "PATTERN2.spad" 1429299 1429311 1429553 1429558) (-825 "PATTERN1.spad" 1427601 1427617 1429289 1429294) (-824 "PATRES.spad" 1425148 1425160 1427591 1427596) (-823 "PATRES2.spad" 1424810 1424824 1425138 1425143) (-822 "PATMATCH.spad" 1422972 1423003 1424523 1424528) (-821 "PATMAB.spad" 1422397 1422407 1422962 1422967) (-820 "PATLRES.spad" 1421481 1421495 1422387 1422392) (-819 "PATAB.spad" 1421245 1421255 1421471 1421476) (-818 "PARTPERM.spad" 1418607 1418615 1421235 1421240) (-817 "PARSURF.spad" 1418035 1418063 1418597 1418602) (-816 "PARSU2.spad" 1417830 1417846 1418025 1418030) (-815 "script-parser.spad" 1417350 1417358 1417820 1417825) (-814 "PARSCURV.spad" 1416778 1416806 1417340 1417345) (-813 "PARSC2.spad" 1416567 1416583 1416768 1416773) (-812 "PARPCURV.spad" 1416025 1416053 1416557 1416562) (-811 "PARPC2.spad" 1415814 1415830 1416015 1416020) (-810 "PAN2EXPR.spad" 1415226 1415234 1415804 1415809) (-809 "PALETTE.spad" 1414196 1414204 1415216 1415221) (-808 "PAIR.spad" 1413179 1413192 1413784 1413789) (-807 "PADICRC.spad" 1410512 1410530 1411687 1411780) (-806 "PADICRAT.spad" 1408530 1408542 1408751 1408844) (-805 "PADIC.spad" 1408225 1408237 1408456 1408525) (-804 "PADICCT.spad" 1406766 1406778 1408151 1408220) (-803 "PADEPAC.spad" 1405445 1405464 1406756 1406761) (-802 "PADE.spad" 1404185 1404201 1405435 1405440) (-801 "OWP.spad" 1403169 1403199 1404043 1404110) (-800 "OVAR.spad" 1402950 1402973 1403159 1403164) (-799 "OUT.spad" 1402034 1402042 1402940 1402945) (-798 "OUTFORM.spad" 1391448 1391456 1402024 1402029) (-797 "OSI.spad" 1390923 1390931 1391438 1391443) (-796 "OSGROUP.spad" 1390841 1390849 1390913 1390918) (-795 "ORTHPOL.spad" 1389302 1389312 1390758 1390763) (-794 "OREUP.spad" 1388662 1388690 1388984 1389023) (-793 "ORESUP.spad" 1387963 1387987 1388344 1388383) (-792 "OREPCTO.spad" 1385782 1385794 1387883 1387888) (-791 "OREPCAT.spad" 1379839 1379849 1385738 1385777) (-790 "OREPCAT.spad" 1373786 1373798 1379687 1379692) (-789 "ORDSET.spad" 1372952 1372960 1373776 1373781) (-788 "ORDSET.spad" 1372116 1372126 1372942 1372947) (-787 "ORDRING.spad" 1371506 1371514 1372096 1372111) (-786 "ORDRING.spad" 1370904 1370914 1371496 1371501) (-785 "ORDMON.spad" 1370759 1370767 1370894 1370899) (-784 "ORDFUNS.spad" 1369885 1369901 1370749 1370754) (-783 "ORDFIN.spad" 1369819 1369827 1369875 1369880) (-782 "ORDCOMP.spad" 1368287 1368297 1369369 1369398) (-781 "ORDCOMP2.spad" 1367572 1367584 1368277 1368282) (-780 "OPTPROB.spad" 1366152 1366160 1367562 1367567) (-779 "OPTPACK.spad" 1358537 1358545 1366142 1366147) (-778 "OPTCAT.spad" 1356212 1356220 1358527 1358532) (-777 "OPQUERY.spad" 1355761 1355769 1356202 1356207) (-776 "OP.spad" 1355503 1355513 1355583 1355650) (-775 "ONECOMP.spad" 1354251 1354261 1355053 1355082) (-774 "ONECOMP2.spad" 1353669 1353681 1354241 1354246) (-773 "OMSERVER.spad" 1352671 1352679 1353659 1353664) (-772 "OMSAGG.spad" 1352447 1352457 1352615 1352666) (-771 "OMPKG.spad" 1351059 1351067 1352437 1352442) (-770 "OM.spad" 1350024 1350032 1351049 1351054) (-769 "OMLO.spad" 1349449 1349461 1349910 1349949) (-768 "OMEXPR.spad" 1349283 1349293 1349439 1349444) (-767 "OMERR.spad" 1348826 1348834 1349273 1349278) (-766 "OMERRK.spad" 1347860 1347868 1348816 1348821) (-765 "OMENC.spad" 1347204 1347212 1347850 1347855) (-764 "OMDEV.spad" 1341493 1341501 1347194 1347199) (-763 "OMCONN.spad" 1340902 1340910 1341483 1341488) (-762 "OINTDOM.spad" 1340665 1340673 1340828 1340897) (-761 "OFMONOID.spad" 1336852 1336862 1340655 1340660) (-760 "ODVAR.spad" 1336113 1336123 1336842 1336847) (-759 "ODR.spad" 1335561 1335587 1335925 1336074) (-758 "ODPOL.spad" 1332910 1332920 1333250 1333377) (-757 "ODP.spad" 1324082 1324102 1324455 1324584) (-756 "ODETOOLS.spad" 1322665 1322684 1324072 1324077) (-755 "ODESYS.spad" 1320315 1320332 1322655 1322660) (-754 "ODERTRIC.spad" 1316256 1316273 1320272 1320277) (-753 "ODERED.spad" 1315643 1315667 1316246 1316251) (-752 "ODERAT.spad" 1313194 1313211 1315633 1315638) (-751 "ODEPRRIC.spad" 1310085 1310107 1313184 1313189) (-750 "ODEPROB.spad" 1309284 1309292 1310075 1310080) (-749 "ODEPRIM.spad" 1306558 1306580 1309274 1309279) (-748 "ODEPAL.spad" 1305934 1305958 1306548 1306553) (-747 "ODEPACK.spad" 1292536 1292544 1305924 1305929) (-746 "ODEINT.spad" 1291967 1291983 1292526 1292531) (-745 "ODEIFTBL.spad" 1289362 1289370 1291957 1291962) (-744 "ODEEF.spad" 1284729 1284745 1289352 1289357) (-743 "ODECONST.spad" 1284248 1284266 1284719 1284724) (-742 "ODECAT.spad" 1282844 1282852 1284238 1284243) (-741 "OCT.spad" 1280991 1281001 1281707 1281746) (-740 "OCTCT2.spad" 1280635 1280656 1280981 1280986) (-739 "OC.spad" 1278409 1278419 1280591 1280630) (-738 "OC.spad" 1275909 1275921 1278093 1278098) (-737 "OCAMON.spad" 1275757 1275765 1275899 1275904) (-736 "OASGP.spad" 1275572 1275580 1275747 1275752) (-735 "OAMONS.spad" 1275092 1275100 1275562 1275567) (-734 "OAMON.spad" 1274953 1274961 1275082 1275087) (-733 "OAGROUP.spad" 1274815 1274823 1274943 1274948) (-732 "NUMTUBE.spad" 1274402 1274418 1274805 1274810) (-731 "NUMQUAD.spad" 1262264 1262272 1274392 1274397) (-730 "NUMODE.spad" 1253400 1253408 1262254 1262259) (-729 "NUMINT.spad" 1250958 1250966 1253390 1253395) (-728 "NUMFMT.spad" 1249798 1249806 1250948 1250953) (-727 "NUMERIC.spad" 1241871 1241881 1249604 1249609) (-726 "NTSCAT.spad" 1240361 1240377 1241827 1241866) (-725 "NTPOLFN.spad" 1239906 1239916 1240278 1240283) (-724 "NSUP.spad" 1232919 1232929 1237459 1237612) (-723 "NSUP2.spad" 1232311 1232323 1232909 1232914) (-722 "NSMP.spad" 1228510 1228529 1228818 1228945) (-721 "NREP.spad" 1226882 1226896 1228500 1228505) (-720 "NPCOEF.spad" 1226128 1226148 1226872 1226877) (-719 "NORMRETR.spad" 1225726 1225765 1226118 1226123) (-718 "NORMPK.spad" 1223628 1223647 1225716 1225721) (-717 "NORMMA.spad" 1223316 1223342 1223618 1223623) (-716 "NONE.spad" 1223057 1223065 1223306 1223311) (-715 "NONE1.spad" 1222733 1222743 1223047 1223052) (-714 "NODE1.spad" 1222202 1222218 1222723 1222728) (-713 "NNI.spad" 1221089 1221097 1222176 1222197) (-712 "NLINSOL.spad" 1219711 1219721 1221079 1221084) (-711 "NIPROB.spad" 1218194 1218202 1219701 1219706) (-710 "NFINTBAS.spad" 1215654 1215671 1218184 1218189) (-709 "NCODIV.spad" 1213852 1213868 1215644 1215649) (-708 "NCNTFRAC.spad" 1213494 1213508 1213842 1213847) (-707 "NCEP.spad" 1211654 1211668 1213484 1213489) (-706 "NASRING.spad" 1211250 1211258 1211644 1211649) (-705 "NASRING.spad" 1210844 1210854 1211240 1211245) (-704 "NARNG.spad" 1210188 1210196 1210834 1210839) (-703 "NARNG.spad" 1209530 1209540 1210178 1210183) (-702 "NAGSP.spad" 1208603 1208611 1209520 1209525) (-701 "NAGS.spad" 1198128 1198136 1208593 1208598) (-700 "NAGF07.spad" 1196521 1196529 1198118 1198123) (-699 "NAGF04.spad" 1190753 1190761 1196511 1196516) (-698 "NAGF02.spad" 1184562 1184570 1190743 1190748) (-697 "NAGF01.spad" 1180165 1180173 1184552 1184557) (-696 "NAGE04.spad" 1173625 1173633 1180155 1180160) (-695 "NAGE02.spad" 1163967 1163975 1173615 1173620) (-694 "NAGE01.spad" 1159851 1159859 1163957 1163962) (-693 "NAGD03.spad" 1157771 1157779 1159841 1159846) (-692 "NAGD02.spad" 1150302 1150310 1157761 1157766) (-691 "NAGD01.spad" 1144415 1144423 1150292 1150297) (-690 "NAGC06.spad" 1140202 1140210 1144405 1144410) (-689 "NAGC05.spad" 1138671 1138679 1140192 1140197) (-688 "NAGC02.spad" 1137926 1137934 1138661 1138666) (-687 "NAALG.spad" 1137461 1137471 1137894 1137921) (-686 "NAALG.spad" 1137016 1137028 1137451 1137456) (-685 "MULTSQFR.spad" 1133974 1133991 1137006 1137011) (-684 "MULTFACT.spad" 1133357 1133374 1133964 1133969) (-683 "MTSCAT.spad" 1131391 1131412 1133255 1133352) (-682 "MTHING.spad" 1131048 1131058 1131381 1131386) (-681 "MSYSCMD.spad" 1130482 1130490 1131038 1131043) (-680 "MSET.spad" 1128424 1128434 1130188 1130227) (-679 "MSETAGG.spad" 1128257 1128267 1128380 1128419) (-678 "MRING.spad" 1125228 1125240 1127965 1128032) (-677 "MRF2.spad" 1124796 1124810 1125218 1125223) (-676 "MRATFAC.spad" 1124342 1124359 1124786 1124791) (-675 "MPRFF.spad" 1122372 1122391 1124332 1124337) (-674 "MPOLY.spad" 1119810 1119825 1120169 1120296) (-673 "MPCPF.spad" 1119074 1119093 1119800 1119805) (-672 "MPC3.spad" 1118889 1118929 1119064 1119069) (-671 "MPC2.spad" 1118531 1118564 1118879 1118884) (-670 "MONOTOOL.spad" 1116866 1116883 1118521 1118526) (-669 "MONOID.spad" 1116040 1116048 1116856 1116861) (-668 "MONOID.spad" 1115212 1115222 1116030 1116035) (-667 "MONOGEN.spad" 1113958 1113971 1115072 1115207) (-666 "MONOGEN.spad" 1112726 1112741 1113842 1113847) (-665 "MONADWU.spad" 1110740 1110748 1112716 1112721) (-664 "MONADWU.spad" 1108752 1108762 1110730 1110735) (-663 "MONAD.spad" 1107896 1107904 1108742 1108747) (-662 "MONAD.spad" 1107038 1107048 1107886 1107891) (-661 "MOEBIUS.spad" 1105724 1105738 1107018 1107033) (-660 "MODULE.spad" 1105594 1105604 1105692 1105719) (-659 "MODULE.spad" 1105484 1105496 1105584 1105589) (-658 "MODRING.spad" 1104815 1104854 1105464 1105479) (-657 "MODOP.spad" 1103474 1103486 1104637 1104704) (-656 "MODMONOM.spad" 1103006 1103024 1103464 1103469) (-655 "MODMON.spad" 1099711 1099727 1100487 1100640) (-654 "MODFIELD.spad" 1099069 1099108 1099613 1099706) (-653 "MMLFORM.spad" 1097929 1097937 1099059 1099064) (-652 "MMAP.spad" 1097669 1097703 1097919 1097924) (-651 "MLO.spad" 1096096 1096106 1097625 1097664) (-650 "MLIFT.spad" 1094668 1094685 1096086 1096091) (-649 "MKUCFUNC.spad" 1094201 1094219 1094658 1094663) (-648 "MKRECORD.spad" 1093803 1093816 1094191 1094196) (-647 "MKFUNC.spad" 1093184 1093194 1093793 1093798) (-646 "MKFLCFN.spad" 1092140 1092150 1093174 1093179) (-645 "MKCHSET.spad" 1091916 1091926 1092130 1092135) (-644 "MKBCFUNC.spad" 1091401 1091419 1091906 1091911) (-643 "MINT.spad" 1090840 1090848 1091303 1091396) (-642 "MHROWRED.spad" 1089341 1089351 1090830 1090835) (-641 "MFLOAT.spad" 1087786 1087794 1089231 1089336) (-640 "MFINFACT.spad" 1087186 1087208 1087776 1087781) (-639 "MESH.spad" 1084918 1084926 1087176 1087181) (-638 "MDDFACT.spad" 1083111 1083121 1084908 1084913) (-637 "MDAGG.spad" 1082386 1082396 1083079 1083106) (-636 "MCMPLX.spad" 1078366 1078374 1078980 1079181) (-635 "MCDEN.spad" 1077574 1077586 1078356 1078361) (-634 "MCALCFN.spad" 1074676 1074702 1077564 1077569) (-633 "MATSTOR.spad" 1071952 1071962 1074666 1074671) (-632 "MATRIX.spad" 1070656 1070666 1071140 1071167) (-631 "MATLIN.spad" 1067982 1068006 1070540 1070545) (-630 "MATCAT.spad" 1059555 1059577 1067938 1067977) (-629 "MATCAT.spad" 1051012 1051036 1059397 1059402) (-628 "MATCAT2.spad" 1050280 1050328 1051002 1051007) (-627 "MAPPKG3.spad" 1049179 1049193 1050270 1050275) (-626 "MAPPKG2.spad" 1048513 1048525 1049169 1049174) (-625 "MAPPKG1.spad" 1047331 1047341 1048503 1048508) (-624 "MAPHACK3.spad" 1047139 1047153 1047321 1047326) (-623 "MAPHACK2.spad" 1046904 1046916 1047129 1047134) (-622 "MAPHACK1.spad" 1046534 1046544 1046894 1046899) (-621 "MAGMA.spad" 1044324 1044341 1046524 1046529) (-620 "M3D.spad" 1042022 1042032 1043704 1043709) (-619 "LZSTAGG.spad" 1039240 1039250 1042002 1042017) (-618 "LZSTAGG.spad" 1036466 1036478 1039230 1039235) (-617 "LWORD.spad" 1033171 1033188 1036456 1036461) (-616 "LSQM.spad" 1031399 1031413 1031797 1031848) (-615 "LSPP.spad" 1030932 1030949 1031389 1031394) (-614 "LSMP.spad" 1029772 1029800 1030922 1030927) (-613 "LSMP1.spad" 1027576 1027590 1029762 1029767) (-612 "LSAGG.spad" 1027233 1027243 1027532 1027571) (-611 "LSAGG.spad" 1026922 1026934 1027223 1027228) (-610 "LPOLY.spad" 1025876 1025895 1026778 1026847) (-609 "LPEFRAC.spad" 1025133 1025143 1025866 1025871) (-608 "LO.spad" 1024534 1024548 1025067 1025094) (-607 "LOGIC.spad" 1024136 1024144 1024524 1024529) (-606 "LOGIC.spad" 1023736 1023746 1024126 1024131) (-605 "LODOOPS.spad" 1022654 1022666 1023726 1023731) (-604 "LODO.spad" 1022040 1022056 1022336 1022375) (-603 "LODOF.spad" 1021084 1021101 1021997 1022002) (-602 "LODOCAT.spad" 1019742 1019752 1021040 1021079) (-601 "LODOCAT.spad" 1018398 1018410 1019698 1019703) (-600 "LODO2.spad" 1017673 1017685 1018080 1018119) (-599 "LODO1.spad" 1017075 1017085 1017355 1017394) (-598 "LODEEF.spad" 1015847 1015865 1017065 1017070) (-597 "LNAGG.spad" 1011639 1011649 1015827 1015842) (-596 "LNAGG.spad" 1007405 1007417 1011595 1011600) (-595 "LMOPS.spad" 1004141 1004158 1007395 1007400) (-594 "LMODULE.spad" 1003783 1003793 1004131 1004136) (-593 "LMDICT.spad" 1003066 1003076 1003334 1003361) (-592 "LIST.spad" 1000784 1000794 1002213 1002240) (-591 "LIST3.spad" 1000075 1000089 1000774 1000779) (-590 "LIST2.spad" 998715 998727 1000065 1000070) (-589 "LIST2MAP.spad" 995592 995604 998705 998710) (-588 "LINEXP.spad" 995024 995034 995572 995587) (-587 "LINDEP.spad" 993801 993813 994936 994941) (-586 "LIMITRF.spad" 991715 991725 993791 993796) (-585 "LIMITPS.spad" 990598 990611 991705 991710) (-584 "LIE.spad" 988612 988624 989888 990033) (-583 "LIECAT.spad" 988088 988098 988538 988607) (-582 "LIECAT.spad" 987592 987604 988044 988049) (-581 "LIB.spad" 985640 985648 986251 986266) (-580 "LGROBP.spad" 982993 983012 985630 985635) (-579 "LF.spad" 981912 981928 982983 982988) (-578 "LFCAT.spad" 980931 980939 981902 981907) (-577 "LEXTRIPK.spad" 976434 976449 980921 980926) (-576 "LEXP.spad" 974437 974464 976414 976429) (-575 "LEADCDET.spad" 972821 972838 974427 974432) (-574 "LAZM3PK.spad" 971525 971547 972811 972816) (-573 "LAUPOL.spad" 970216 970229 971120 971189) (-572 "LAPLACE.spad" 969789 969805 970206 970211) (-571 "LA.spad" 969229 969243 969711 969750) (-570 "LALG.spad" 969005 969015 969209 969224) (-569 "LALG.spad" 968789 968801 968995 969000) (-568 "KOVACIC.spad" 967502 967519 968779 968784) (-567 "KONVERT.spad" 967224 967234 967492 967497) (-566 "KOERCE.spad" 966961 966971 967214 967219) (-565 "KERNEL.spad" 965496 965506 966745 966750) (-564 "KERNEL2.spad" 965199 965211 965486 965491) (-563 "KDAGG.spad" 964290 964312 965167 965194) (-562 "KDAGG.spad" 963401 963425 964280 964285) (-561 "KAFILE.spad" 962364 962380 962599 962626) (-560 "JORDAN.spad" 960191 960203 961654 961799) (-559 "JAVACODE.spad" 959957 959965 960181 960186) (-558 "IXAGG.spad" 958070 958094 959937 959952) (-557 "IXAGG.spad" 956048 956074 957917 957922) (-556 "IVECTOR.spad" 954821 954836 954976 955003) (-555 "ITUPLE.spad" 953966 953976 954811 954816) (-554 "ITRIGMNP.spad" 952777 952796 953956 953961) (-553 "ITFUN3.spad" 952271 952285 952767 952772) (-552 "ITFUN2.spad" 952001 952013 952261 952266) (-551 "ITAYLOR.spad" 949793 949808 951837 951962) (-550 "ISUPS.spad" 942204 942219 948767 948864) (-549 "ISUMP.spad" 941701 941717 942194 942199) (-548 "ISTRING.spad" 940704 940717 940870 940897) (-547 "IRURPK.spad" 939417 939436 940694 940699) (-546 "IRSN.spad" 937377 937385 939407 939412) (-545 "IRRF2F.spad" 935852 935862 937333 937338) (-544 "IRREDFFX.spad" 935453 935464 935842 935847) (-543 "IROOT.spad" 933784 933794 935443 935448) (-542 "IR.spad" 931574 931588 933640 933667) (-541 "IR2.spad" 930594 930610 931564 931569) (-540 "IR2F.spad" 929794 929810 930584 930589) (-539 "IPRNTPK.spad" 929554 929562 929784 929789) (-538 "IPF.spad" 929119 929131 929359 929452) (-537 "IPADIC.spad" 928880 928906 929045 929114) (-536 "INVLAPLA.spad" 928525 928541 928870 928875) (-535 "INTTR.spad" 921771 921788 928515 928520) (-534 "INTTOOLS.spad" 919483 919499 921346 921351) (-533 "INTSLPE.spad" 918789 918797 919473 919478) (-532 "INTRVL.spad" 918355 918365 918703 918784) (-531 "INTRF.spad" 916719 916733 918345 918350) (-530 "INTRET.spad" 916151 916161 916709 916714) (-529 "INTRAT.spad" 914826 914843 916141 916146) (-528 "INTPM.spad" 913189 913205 914469 914474) (-527 "INTPAF.spad" 910957 910975 913121 913126) (-526 "INTPACK.spad" 901267 901275 910947 910952) (-525 "INT.spad" 900628 900636 901121 901262) (-524 "INTHERTR.spad" 899894 899911 900618 900623) (-523 "INTHERAL.spad" 899560 899584 899884 899889) (-522 "INTHEORY.spad" 895973 895981 899550 899555) (-521 "INTG0.spad" 889436 889454 895905 895910) (-520 "INTFTBL.spad" 883465 883473 889426 889431) (-519 "INTFACT.spad" 882524 882534 883455 883460) (-518 "INTEF.spad" 880839 880855 882514 882519) (-517 "INTDOM.spad" 879454 879462 880765 880834) (-516 "INTDOM.spad" 878131 878141 879444 879449) (-515 "INTCAT.spad" 876384 876394 878045 878126) (-514 "INTBIT.spad" 875887 875895 876374 876379) (-513 "INTALG.spad" 875069 875096 875877 875882) (-512 "INTAF.spad" 874561 874577 875059 875064) (-511 "INTABL.spad" 873079 873110 873242 873269) (-510 "INS.spad" 870475 870483 872981 873074) (-509 "INS.spad" 867957 867967 870465 870470) (-508 "INPSIGN.spad" 867391 867404 867947 867952) (-507 "INPRODPF.spad" 866457 866476 867381 867386) (-506 "INPRODFF.spad" 865515 865539 866447 866452) (-505 "INNMFACT.spad" 864486 864503 865505 865510) (-504 "INMODGCD.spad" 863970 864000 864476 864481) (-503 "INFSP.spad" 862255 862277 863960 863965) (-502 "INFPROD0.spad" 861305 861324 862245 862250) (-501 "INFORM.spad" 858573 858581 861295 861300) (-500 "INFORM1.spad" 858198 858208 858563 858568) (-499 "INFINITY.spad" 857750 857758 858188 858193) (-498 "INEP.spad" 856282 856304 857740 857745) (-497 "INDE.spad" 856188 856205 856272 856277) (-496 "INCRMAPS.spad" 855609 855619 856178 856183) (-495 "INBFF.spad" 851379 851390 855599 855604) (-494 "IMATRIX.spad" 850324 850350 850836 850863) (-493 "IMATQF.spad" 849418 849462 850280 850285) (-492 "IMATLIN.spad" 848023 848047 849374 849379) (-491 "ILIST.spad" 846679 846694 847206 847233) (-490 "IIARRAY2.spad" 846067 846105 846286 846313) (-489 "IFF.spad" 845477 845493 845748 845841) (-488 "IFARRAY.spad" 842964 842979 844660 844687) (-487 "IFAMON.spad" 842826 842843 842920 842925) (-486 "IEVALAB.spad" 842215 842227 842816 842821) (-485 "IEVALAB.spad" 841602 841616 842205 842210) (-484 "IDPO.spad" 841400 841412 841592 841597) (-483 "IDPOAMS.spad" 841156 841168 841390 841395) (-482 "IDPOAM.spad" 840876 840888 841146 841151) (-481 "IDPC.spad" 839810 839822 840866 840871) (-480 "IDPAM.spad" 839555 839567 839800 839805) (-479 "IDPAG.spad" 839302 839314 839545 839550) (-478 "IDECOMP.spad" 836539 836557 839292 839297) (-477 "IDEAL.spad" 831462 831501 836474 836479) (-476 "ICDEN.spad" 830613 830629 831452 831457) (-475 "ICARD.spad" 829802 829810 830603 830608) (-474 "IBPTOOLS.spad" 828395 828412 829792 829797) (-473 "IBITS.spad" 827594 827607 828031 828058) (-472 "IBATOOL.spad" 824469 824488 827584 827589) (-471 "IBACHIN.spad" 822956 822971 824459 824464) (-470 "IARRAY2.spad" 821944 821970 822563 822590) (-469 "IARRAY1.spad" 820989 821004 821127 821154) (-468 "IAN.spad" 819204 819212 820807 820900) (-467 "IALGFACT.spad" 818805 818838 819194 819199) (-466 "HYPCAT.spad" 818229 818237 818795 818800) (-465 "HYPCAT.spad" 817651 817661 818219 818224) (-464 "HOAGG.spad" 814909 814919 817631 817646) (-463 "HOAGG.spad" 811952 811964 814676 814681) (-462 "HEXADEC.spad" 809824 809832 810422 810515) (-461 "HEUGCD.spad" 808839 808850 809814 809819) (-460 "HELLFDIV.spad" 808429 808453 808829 808834) (-459 "HEAP.spad" 807821 807831 808036 808063) (-458 "HDP.spad" 798989 799005 799366 799495) (-457 "HDMP.spad" 796168 796183 796786 796913) (-456 "HB.spad" 794405 794413 796158 796163) (-455 "HASHTBL.spad" 792875 792906 793086 793113) (-454 "HACKPI.spad" 792358 792366 792777 792870) (-453 "GTSET.spad" 791297 791313 792004 792031) (-452 "GSTBL.spad" 789816 789851 789990 790005) (-451 "GSERIES.spad" 786983 787010 787948 788097) (-450 "GROUP.spad" 786157 786165 786963 786978) (-449 "GROUP.spad" 785339 785349 786147 786152) (-448 "GROEBSOL.spad" 783827 783848 785329 785334) (-447 "GRMOD.spad" 782398 782410 783817 783822) (-446 "GRMOD.spad" 780967 780981 782388 782393) (-445 "GRIMAGE.spad" 773572 773580 780957 780962) (-444 "GRDEF.spad" 771951 771959 773562 773567) (-443 "GRAY.spad" 770410 770418 771941 771946) (-442 "GRALG.spad" 769457 769469 770400 770405) (-441 "GRALG.spad" 768502 768516 769447 769452) (-440 "GPOLSET.spad" 767956 767979 768184 768211) (-439 "GOSPER.spad" 767221 767239 767946 767951) (-438 "GMODPOL.spad" 766359 766386 767189 767216) (-437 "GHENSEL.spad" 765428 765442 766349 766354) (-436 "GENUPS.spad" 761529 761542 765418 765423) (-435 "GENUFACT.spad" 761106 761116 761519 761524) (-434 "GENPGCD.spad" 760690 760707 761096 761101) (-433 "GENMFACT.spad" 760142 760161 760680 760685) (-432 "GENEEZ.spad" 758081 758094 760132 760137) (-431 "GDMP.spad" 755102 755119 755878 756005) (-430 "GCNAALG.spad" 748997 749024 754896 754963) (-429 "GCDDOM.spad" 748169 748177 748923 748992) (-428 "GCDDOM.spad" 747403 747413 748159 748164) (-427 "GB.spad" 744921 744959 747359 747364) (-426 "GBINTERN.spad" 740941 740979 744911 744916) (-425 "GBF.spad" 736698 736736 740931 740936) (-424 "GBEUCLID.spad" 734572 734610 736688 736693) (-423 "GAUSSFAC.spad" 733869 733877 734562 734567) (-422 "GALUTIL.spad" 732191 732201 733825 733830) (-421 "GALPOLYU.spad" 730637 730650 732181 732186) (-420 "GALFACTU.spad" 728802 728821 730627 730632) (-419 "GALFACT.spad" 718935 718946 728792 728797) (-418 "FVFUN.spad" 715948 715956 718915 718930) (-417 "FVC.spad" 714990 714998 715928 715943) (-416 "FUNCTION.spad" 714839 714851 714980 714985) (-415 "FT.spad" 713051 713059 714829 714834) (-414 "FTEM.spad" 712214 712222 713041 713046) (-413 "FSUPFACT.spad" 711115 711134 712151 712156) (-412 "FST.spad" 709201 709209 711105 711110) (-411 "FSRED.spad" 708679 708695 709191 709196) (-410 "FSPRMELT.spad" 707503 707519 708636 708641) (-409 "FSPECF.spad" 705580 705596 707493 707498) (-408 "FS.spad" 699631 699641 705344 705575) (-407 "FS.spad" 693473 693485 699188 699193) (-406 "FSINT.spad" 693131 693147 693463 693468) (-405 "FSERIES.spad" 692318 692330 692951 693050) (-404 "FSCINT.spad" 691631 691647 692308 692313) (-403 "FSAGG.spad" 690736 690746 691575 691626) (-402 "FSAGG.spad" 689815 689827 690656 690661) (-401 "FSAGG2.spad" 688514 688530 689805 689810) (-400 "FS2UPS.spad" 682903 682937 688504 688509) (-399 "FS2.spad" 682548 682564 682893 682898) (-398 "FS2EXPXP.spad" 681671 681694 682538 682543) (-397 "FRUTIL.spad" 680613 680623 681661 681666) (-396 "FR.spad" 674310 674320 679640 679709) (-395 "FRNAALG.spad" 669397 669407 674252 674305) (-394 "FRNAALG.spad" 664496 664508 669353 669358) (-393 "FRNAAF2.spad" 663950 663968 664486 664491) (-392 "FRMOD.spad" 663345 663375 663882 663887) (-391 "FRIDEAL.spad" 662540 662561 663325 663340) (-390 "FRIDEAL2.spad" 662142 662174 662530 662535) (-389 "FRETRCT.spad" 661653 661663 662132 662137) (-388 "FRETRCT.spad" 661032 661044 661513 661518) (-387 "FRAMALG.spad" 659360 659373 660988 661027) (-386 "FRAMALG.spad" 657720 657735 659350 659355) (-385 "FRAC.spad" 654823 654833 655226 655399) (-384 "FRAC2.spad" 654426 654438 654813 654818) (-383 "FR2.spad" 653760 653772 654416 654421) (-382 "FPS.spad" 650569 650577 653650 653755) (-381 "FPS.spad" 647406 647416 650489 650494) (-380 "FPC.spad" 646448 646456 647308 647401) (-379 "FPC.spad" 645576 645586 646438 646443) (-378 "FPATMAB.spad" 645328 645338 645556 645571) (-377 "FPARFRAC.spad" 643801 643818 645318 645323) (-376 "FORTRAN.spad" 642307 642350 643791 643796) (-375 "FORT.spad" 641236 641244 642297 642302) (-374 "FORTFN.spad" 638396 638404 641216 641231) (-373 "FORTCAT.spad" 638070 638078 638376 638391) (-372 "FORMULA.spad" 635408 635416 638060 638065) (-371 "FORMULA1.spad" 634887 634897 635398 635403) (-370 "FORDER.spad" 634578 634602 634877 634882) (-369 "FOP.spad" 633779 633787 634568 634573) (-368 "FNLA.spad" 633203 633225 633747 633774) (-367 "FNCAT.spad" 631531 631539 633193 633198) (-366 "FNAME.spad" 631423 631431 631521 631526) (-365 "FMTC.spad" 631221 631229 631349 631418) (-364 "FMONOID.spad" 628276 628286 631177 631182) (-363 "FM.spad" 627971 627983 628210 628237) (-362 "FMFUN.spad" 624991 624999 627951 627966) (-361 "FMC.spad" 624033 624041 624971 624986) (-360 "FMCAT.spad" 621687 621705 624001 624028) (-359 "FM1.spad" 621044 621056 621621 621648) (-358 "FLOATRP.spad" 618765 618779 621034 621039) (-357 "FLOAT.spad" 611929 611937 618631 618760) (-356 "FLOATCP.spad" 609346 609360 611919 611924) (-355 "FLINEXP.spad" 609058 609068 609326 609341) (-354 "FLINEXP.spad" 608724 608736 608994 608999) (-353 "FLASORT.spad" 608044 608056 608714 608719) (-352 "FLALG.spad" 605690 605709 607970 608039) (-351 "FLAGG.spad" 602696 602706 605658 605685) (-350 "FLAGG.spad" 599615 599627 602579 602584) (-349 "FLAGG2.spad" 598296 598312 599605 599610) (-348 "FINRALG.spad" 596325 596338 598252 598291) (-347 "FINRALG.spad" 594280 594295 596209 596214) (-346 "FINITE.spad" 593432 593440 594270 594275) (-345 "FINAALG.spad" 582413 582423 593374 593427) (-344 "FINAALG.spad" 571406 571418 582369 582374) (-343 "FILE.spad" 570989 570999 571396 571401) (-342 "FILECAT.spad" 569507 569524 570979 570984) (-341 "FIELD.spad" 568913 568921 569409 569502) (-340 "FIELD.spad" 568405 568415 568903 568908) (-339 "FGROUP.spad" 567014 567024 568385 568400) (-338 "FGLMICPK.spad" 565801 565816 567004 567009) (-337 "FFX.spad" 565176 565191 565517 565610) (-336 "FFSLPE.spad" 564665 564686 565166 565171) (-335 "FFPOLY.spad" 555917 555928 564655 564660) (-334 "FFPOLY2.spad" 554977 554994 555907 555912) (-333 "FFP.spad" 554374 554394 554693 554786) (-332 "FF.spad" 553822 553838 554055 554148) (-331 "FFNBX.spad" 552334 552354 553538 553631) (-330 "FFNBP.spad" 550847 550864 552050 552143) (-329 "FFNB.spad" 549312 549333 550528 550621) (-328 "FFINTBAS.spad" 546726 546745 549302 549307) (-327 "FFIELDC.spad" 544301 544309 546628 546721) (-326 "FFIELDC.spad" 541962 541972 544291 544296) (-325 "FFHOM.spad" 540710 540727 541952 541957) (-324 "FFF.spad" 538145 538156 540700 540705) (-323 "FFCGX.spad" 536992 537012 537861 537954) (-322 "FFCGP.spad" 535881 535901 536708 536801) (-321 "FFCG.spad" 534673 534694 535562 535655) (-320 "FFCAT.spad" 527574 527596 534512 534668) (-319 "FFCAT.spad" 520554 520578 527494 527499) (-318 "FFCAT2.spad" 520299 520339 520544 520549) (-317 "FEXPR.spad" 512012 512058 520059 520098) (-316 "FEVALAB.spad" 511718 511728 512002 512007) (-315 "FEVALAB.spad" 511209 511221 511495 511500) (-314 "FDIV.spad" 510651 510675 511199 511204) (-313 "FDIVCAT.spad" 508693 508717 510641 510646) (-312 "FDIVCAT.spad" 506733 506759 508683 508688) (-311 "FDIV2.spad" 506387 506427 506723 506728) (-310 "FCPAK1.spad" 504940 504948 506377 506382) (-309 "FCOMP.spad" 504319 504329 504930 504935) (-308 "FC.spad" 494144 494152 504309 504314) (-307 "FAXF.spad" 487079 487093 494046 494139) (-306 "FAXF.spad" 480066 480082 487035 487040) (-305 "FARRAY.spad" 478212 478222 479249 479276) (-304 "FAMR.spad" 476332 476344 478110 478207) (-303 "FAMR.spad" 474436 474450 476216 476221) (-302 "FAMONOID.spad" 474086 474096 474390 474395) (-301 "FAMONC.spad" 472308 472320 474076 474081) (-300 "FAGROUP.spad" 471914 471924 472204 472231) (-299 "FACUTIL.spad" 470110 470127 471904 471909) (-298 "FACTFUNC.spad" 469286 469296 470100 470105) (-297 "EXPUPXS.spad" 466119 466142 467418 467567) (-296 "EXPRTUBE.spad" 463347 463355 466109 466114) (-295 "EXPRODE.spad" 460219 460235 463337 463342) (-294 "EXPR.spad" 455521 455531 456235 456638) (-293 "EXPR2UPS.spad" 451613 451626 455511 455516) (-292 "EXPR2.spad" 451316 451328 451603 451608) (-291 "EXPEXPAN.spad" 448257 448282 448891 448984) (-290 "EXIT.spad" 447928 447936 448247 448252) (-289 "EVALCYC.spad" 447386 447400 447918 447923) (-288 "EVALAB.spad" 446950 446960 447376 447381) (-287 "EVALAB.spad" 446512 446524 446940 446945) (-286 "EUCDOM.spad" 444054 444062 446438 446507) (-285 "EUCDOM.spad" 441658 441668 444044 444049) (-284 "ESTOOLS.spad" 433498 433506 441648 441653) (-283 "ESTOOLS2.spad" 433099 433113 433488 433493) (-282 "ESTOOLS1.spad" 432784 432795 433089 433094) (-281 "ES.spad" 425331 425339 432774 432779) (-280 "ES.spad" 417786 417796 425231 425236) (-279 "ESCONT.spad" 414559 414567 417776 417781) (-278 "ESCONT1.spad" 414308 414320 414549 414554) (-277 "ES2.spad" 413803 413819 414298 414303) (-276 "ES1.spad" 413369 413385 413793 413798) (-275 "ERROR.spad" 410690 410698 413359 413364) (-274 "EQTBL.spad" 409162 409184 409371 409398) (-273 "EQ.spad" 404046 404056 406845 406954) (-272 "EQ2.spad" 403762 403774 404036 404041) (-271 "EP.spad" 400076 400086 403752 403757) (-270 "ENV.spad" 398778 398786 400066 400071) (-269 "ENTIRER.spad" 398446 398454 398722 398773) (-268 "EMR.spad" 397647 397688 398372 398441) (-267 "ELTAGG.spad" 395887 395906 397637 397642) (-266 "ELTAGG.spad" 394091 394112 395843 395848) (-265 "ELTAB.spad" 393538 393556 394081 394086) (-264 "ELFUTS.spad" 392917 392936 393528 393533) (-263 "ELEMFUN.spad" 392606 392614 392907 392912) (-262 "ELEMFUN.spad" 392293 392303 392596 392601) (-261 "ELAGG.spad" 390224 390234 392261 392288) (-260 "ELAGG.spad" 388104 388116 390143 390148) (-259 "ELABEXPR.spad" 387035 387043 388094 388099) (-258 "EFUPXS.spad" 383811 383841 386991 386996) (-257 "EFULS.spad" 380647 380670 383767 383772) (-256 "EFSTRUC.spad" 378602 378618 380637 380642) (-255 "EF.spad" 373368 373384 378592 378597) (-254 "EAB.spad" 371644 371652 373358 373363) (-253 "E04UCFA.spad" 371180 371188 371634 371639) (-252 "E04NAFA.spad" 370757 370765 371170 371175) (-251 "E04MBFA.spad" 370337 370345 370747 370752) (-250 "E04JAFA.spad" 369873 369881 370327 370332) (-249 "E04GCFA.spad" 369409 369417 369863 369868) (-248 "E04FDFA.spad" 368945 368953 369399 369404) (-247 "E04DGFA.spad" 368481 368489 368935 368940) (-246 "E04AGNT.spad" 364323 364331 368471 368476) (-245 "DVARCAT.spad" 361008 361018 364313 364318) (-244 "DVARCAT.spad" 357691 357703 360998 361003) (-243 "DSMP.spad" 355125 355139 355430 355557) (-242 "DROPT.spad" 349070 349078 355115 355120) (-241 "DROPT1.spad" 348733 348743 349060 349065) (-240 "DROPT0.spad" 343560 343568 348723 348728) (-239 "DRAWPT.spad" 341715 341723 343550 343555) (-238 "DRAW.spad" 334315 334328 341705 341710) (-237 "DRAWHACK.spad" 333623 333633 334305 334310) (-236 "DRAWCX.spad" 331065 331073 333613 333618) (-235 "DRAWCURV.spad" 330602 330617 331055 331060) (-234 "DRAWCFUN.spad" 319774 319782 330592 330597) (-233 "DQAGG.spad" 317930 317940 319730 319769) (-232 "DPOLCAT.spad" 313271 313287 317798 317925) (-231 "DPOLCAT.spad" 308698 308716 313227 313232) (-230 "DPMO.spad" 302048 302064 302186 302482) (-229 "DPMM.spad" 295411 295429 295536 295832) (-228 "DOMAIN.spad" 294682 294690 295401 295406) (-227 "DMP.spad" 291907 291922 292479 292606) (-226 "DLP.spad" 291255 291265 291897 291902) (-225 "DLIST.spad" 289667 289677 290438 290465) (-224 "DLAGG.spad" 288068 288078 289647 289662) (-223 "DIVRING.spad" 287515 287523 288012 288063) (-222 "DIVRING.spad" 287006 287016 287505 287510) (-221 "DISPLAY.spad" 285186 285194 286996 287001) (-220 "DIRPROD.spad" 276091 276107 276731 276860) (-219 "DIRPROD2.spad" 274899 274917 276081 276086) (-218 "DIRPCAT.spad" 273831 273847 274753 274894) (-217 "DIRPCAT.spad" 272503 272521 273427 273432) (-216 "DIOSP.spad" 271328 271336 272493 272498) (-215 "DIOPS.spad" 270300 270310 271296 271323) (-214 "DIOPS.spad" 269258 269270 270256 270261) (-213 "DIFRING.spad" 268550 268558 269238 269253) (-212 "DIFRING.spad" 267850 267860 268540 268545) (-211 "DIFEXT.spad" 267009 267019 267830 267845) (-210 "DIFEXT.spad" 266085 266097 266908 266913) (-209 "DIAGG.spad" 265703 265713 266053 266080) (-208 "DIAGG.spad" 265341 265353 265693 265698) (-207 "DHMATRIX.spad" 263645 263655 264798 264825) (-206 "DFSFUN.spad" 257053 257061 263635 263640) (-205 "DFLOAT.spad" 253576 253584 256943 257048) (-204 "DFINTTLS.spad" 251785 251801 253566 253571) (-203 "DERHAM.spad" 249695 249727 251765 251780) (-202 "DEQUEUE.spad" 249013 249023 249302 249329) (-201 "DEGRED.spad" 248628 248642 249003 249008) (-200 "DEFINTRF.spad" 246153 246163 248618 248623) (-199 "DEFINTEF.spad" 244649 244665 246143 246148) (-198 "DECIMAL.spad" 242533 242541 243119 243212) (-197 "DDFACT.spad" 240332 240349 242523 242528) (-196 "DBLRESP.spad" 239930 239954 240322 240327) (-195 "DBASE.spad" 238502 238512 239920 239925) (-194 "D03FAFA.spad" 238330 238338 238492 238497) (-193 "D03EEFA.spad" 238150 238158 238320 238325) (-192 "D03AGNT.spad" 237230 237238 238140 238145) (-191 "D02EJFA.spad" 236692 236700 237220 237225) (-190 "D02CJFA.spad" 236170 236178 236682 236687) (-189 "D02BHFA.spad" 235660 235668 236160 236165) (-188 "D02BBFA.spad" 235150 235158 235650 235655) (-187 "D02AGNT.spad" 229954 229962 235140 235145) (-186 "D01WGTS.spad" 228273 228281 229944 229949) (-185 "D01TRNS.spad" 228250 228258 228263 228268) (-184 "D01GBFA.spad" 227772 227780 228240 228245) (-183 "D01FCFA.spad" 227294 227302 227762 227767) (-182 "D01ASFA.spad" 226762 226770 227284 227289) (-181 "D01AQFA.spad" 226208 226216 226752 226757) (-180 "D01APFA.spad" 225632 225640 226198 226203) (-179 "D01ANFA.spad" 225126 225134 225622 225627) (-178 "D01AMFA.spad" 224636 224644 225116 225121) (-177 "D01ALFA.spad" 224176 224184 224626 224631) (-176 "D01AKFA.spad" 223702 223710 224166 224171) (-175 "D01AJFA.spad" 223225 223233 223692 223697) (-174 "D01AGNT.spad" 219284 219292 223215 223220) (-173 "CYCLOTOM.spad" 218790 218798 219274 219279) (-172 "CYCLES.spad" 215622 215630 218780 218785) (-171 "CVMP.spad" 215039 215049 215612 215617) (-170 "CTRIGMNP.spad" 213529 213545 215029 215034) (-169 "CTORCALL.spad" 213117 213125 213519 213524) (-168 "CSTTOOLS.spad" 212360 212373 213107 213112) (-167 "CRFP.spad" 206064 206077 212350 212355) (-166 "CRAPACK.spad" 205107 205117 206054 206059) (-165 "CPMATCH.spad" 204607 204622 205032 205037) (-164 "CPIMA.spad" 204312 204331 204597 204602) (-163 "COORDSYS.spad" 199205 199215 204302 204307) (-162 "CONTOUR.spad" 198607 198615 199195 199200) (-161 "CONTFRAC.spad" 194219 194229 198509 198602) (-160 "COMRING.spad" 193893 193901 194157 194214) (-159 "COMPPROP.spad" 193407 193415 193883 193888) (-158 "COMPLPAT.spad" 193174 193189 193397 193402) (-157 "COMPLEX.spad" 187207 187217 187451 187712) (-156 "COMPLEX2.spad" 186920 186932 187197 187202) (-155 "COMPFACT.spad" 186522 186536 186910 186915) (-154 "COMPCAT.spad" 184578 184588 186244 186517) (-153 "COMPCAT.spad" 182341 182353 184009 184014) (-152 "COMMUPC.spad" 182087 182105 182331 182336) (-151 "COMMONOP.spad" 181620 181628 182077 182082) (-150 "COMM.spad" 181429 181437 181610 181615) (-149 "COMBOPC.spad" 180334 180342 181419 181424) (-148 "COMBINAT.spad" 179079 179089 180324 180329) (-147 "COMBF.spad" 176447 176463 179069 179074) (-146 "COLOR.spad" 175284 175292 176437 176442) (-145 "CMPLXRT.spad" 174993 175010 175274 175279) (-144 "CLIP.spad" 171085 171093 174983 174988) (-143 "CLIF.spad" 169724 169740 171041 171080) (-142 "CLAGG.spad" 166199 166209 169704 169719) (-141 "CLAGG.spad" 162555 162567 166062 166067) (-140 "CINTSLPE.spad" 161880 161893 162545 162550) (-139 "CHVAR.spad" 159958 159980 161870 161875) (-138 "CHARZ.spad" 159873 159881 159938 159953) (-137 "CHARPOL.spad" 159381 159391 159863 159868) (-136 "CHARNZ.spad" 159134 159142 159361 159376) (-135 "CHAR.spad" 157002 157010 159124 159129) (-134 "CFCAT.spad" 156318 156326 156992 156997) (-133 "CDEN.spad" 155476 155490 156308 156313) (-132 "CCLASS.spad" 153625 153633 154887 154926) (-131 "CATEGORY.spad" 153404 153412 153615 153620) (-130 "CARTEN.spad" 148507 148531 153394 153399) (-129 "CARTEN2.spad" 147893 147920 148497 148502) (-128 "CARD.spad" 145182 145190 147867 147888) (-127 "CACHSET.spad" 144804 144812 145172 145177) (-126 "CABMON.spad" 144357 144365 144794 144799) (-125 "BYTE.spad" 143751 143759 144347 144352) (-124 "BYTEARY.spad" 142826 142834 142920 142947) (-123 "BTREE.spad" 141895 141905 142433 142460) (-122 "BTOURN.spad" 140898 140908 141502 141529) (-121 "BTCAT.spad" 140274 140284 140854 140893) (-120 "BTCAT.spad" 139682 139694 140264 140269) (-119 "BTAGG.spad" 138698 138706 139638 139677) (-118 "BTAGG.spad" 137746 137756 138688 138693) (-117 "BSTREE.spad" 136481 136491 137353 137380) (-116 "BRILL.spad" 134676 134687 136471 136476) (-115 "BRAGG.spad" 133590 133600 134656 134671) (-114 "BRAGG.spad" 132478 132490 133546 133551) (-113 "BPADICRT.spad" 130462 130474 130717 130810) (-112 "BPADIC.spad" 130126 130138 130388 130457) (-111 "BOUNDZRO.spad" 129782 129799 130116 130121) (-110 "BOP.spad" 125246 125254 129772 129777) (-109 "BOP1.spad" 122632 122642 125202 125207) (-108 "BOOLEAN.spad" 121895 121903 122622 122627) (-107 "BMODULE.spad" 121607 121619 121863 121890) (-106 "BITS.spad" 121026 121034 121243 121270) (-105 "BINFILE.spad" 120369 120377 121016 121021) (-104 "BINDING.spad" 119788 119796 120359 120364) (-103 "BINARY.spad" 117681 117689 118258 118351) (-102 "BGAGG.spad" 116866 116876 117649 117676) (-101 "BGAGG.spad" 116071 116083 116856 116861) (-100 "BFUNCT.spad" 115635 115643 116051 116066) (-99 "BEZOUT.spad" 114770 114796 115585 115590) (-98 "BBTREE.spad" 111590 111599 114377 114404) (-97 "BASTYPE.spad" 111263 111270 111580 111585) (-96 "BASTYPE.spad" 110934 110943 111253 111258) (-95 "BALFACT.spad" 110374 110386 110924 110929) (-94 "AUTOMOR.spad" 109821 109830 110354 110369) (-93 "ATTREG.spad" 106540 106547 109573 109816) (-92 "ATTRBUT.spad" 102563 102570 106520 106535) (-91 "ATRIG.spad" 102033 102040 102553 102558) (-90 "ATRIG.spad" 101501 101510 102023 102028) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2241068 2241073 2241078 2241083) (-2 NIL 2241048 2241053 2241058 2241063) (-1 NIL 2241028 2241033 2241038 2241043) (0 NIL 2241008 2241013 2241018 2241023) (-1199 "ZMOD.spad" 2240817 2240830 2240946 2241003) (-1198 "ZLINDEP.spad" 2239861 2239872 2240807 2240812) (-1197 "ZDSOLVE.spad" 2229710 2229732 2239851 2239856) (-1196 "YSTREAM.spad" 2229203 2229214 2229700 2229705) (-1195 "XRPOLY.spad" 2228423 2228443 2229059 2229128) (-1194 "XPR.spad" 2226152 2226165 2228141 2228240) (-1193 "XPOLY.spad" 2225707 2225718 2226008 2226077) (-1192 "XPOLYC.spad" 2225024 2225040 2225633 2225702) (-1191 "XPBWPOLY.spad" 2223461 2223481 2224804 2224873) (-1190 "XF.spad" 2221922 2221937 2223363 2223456) (-1189 "XF.spad" 2220363 2220380 2221806 2221811) (-1188 "XFALG.spad" 2217387 2217403 2220289 2220358) (-1187 "XEXPPKG.spad" 2216638 2216664 2217377 2217382) (-1186 "XDPOLY.spad" 2216252 2216268 2216494 2216563) (-1185 "XALG.spad" 2215850 2215861 2216208 2216247) (-1184 "WUTSET.spad" 2211689 2211706 2215496 2215523) (-1183 "WP.spad" 2210703 2210747 2211547 2211614) (-1182 "WFFINTBS.spad" 2208266 2208288 2210693 2210698) (-1181 "WEIER.spad" 2206480 2206491 2208256 2208261) (-1180 "VSPACE.spad" 2206153 2206164 2206448 2206475) (-1179 "VSPACE.spad" 2205846 2205859 2206143 2206148) (-1178 "VOID.spad" 2205436 2205445 2205836 2205841) (-1177 "VIEW.spad" 2203058 2203067 2205426 2205431) (-1176 "VIEWDEF.spad" 2198255 2198264 2203048 2203053) (-1175 "VIEW3D.spad" 2182090 2182099 2198245 2198250) (-1174 "VIEW2D.spad" 2169827 2169836 2182080 2182085) (-1173 "VECTOR.spad" 2168504 2168515 2168755 2168782) (-1172 "VECTOR2.spad" 2167131 2167144 2168494 2168499) (-1171 "VECTCAT.spad" 2165019 2165030 2167087 2167126) (-1170 "VECTCAT.spad" 2162728 2162741 2164798 2164803) (-1169 "VARIABLE.spad" 2162508 2162523 2162718 2162723) (-1168 "UTYPE.spad" 2162142 2162151 2162488 2162503) (-1167 "UTSODETL.spad" 2161435 2161459 2162098 2162103) (-1166 "UTSODE.spad" 2159623 2159643 2161425 2161430) (-1165 "UTS.spad" 2154412 2154440 2158090 2158187) (-1164 "UTSCAT.spad" 2151863 2151879 2154310 2154407) (-1163 "UTSCAT.spad" 2148958 2148976 2151407 2151412) (-1162 "UTS2.spad" 2148551 2148586 2148948 2148953) (-1161 "URAGG.spad" 2143173 2143184 2148531 2148546) (-1160 "URAGG.spad" 2137769 2137782 2143129 2143134) (-1159 "UPXSSING.spad" 2135415 2135441 2136853 2136986) (-1158 "UPXS.spad" 2132442 2132470 2133547 2133696) (-1157 "UPXSCONS.spad" 2130199 2130219 2130574 2130723) (-1156 "UPXSCCA.spad" 2128657 2128677 2130045 2130194) (-1155 "UPXSCCA.spad" 2127257 2127279 2128647 2128652) (-1154 "UPXSCAT.spad" 2125838 2125854 2127103 2127252) (-1153 "UPXS2.spad" 2125379 2125432 2125828 2125833) (-1152 "UPSQFREE.spad" 2123791 2123805 2125369 2125374) (-1151 "UPSCAT.spad" 2121384 2121408 2123689 2123786) (-1150 "UPSCAT.spad" 2118683 2118709 2120990 2120995) (-1149 "UPOLYC.spad" 2113661 2113672 2118525 2118678) (-1148 "UPOLYC.spad" 2108531 2108544 2113397 2113402) (-1147 "UPOLYC2.spad" 2108000 2108019 2108521 2108526) (-1146 "UP.spad" 2105045 2105060 2105553 2105706) (-1145 "UPMP.spad" 2103935 2103948 2105035 2105040) (-1144 "UPDIVP.spad" 2103498 2103512 2103925 2103930) (-1143 "UPDECOMP.spad" 2101735 2101749 2103488 2103493) (-1142 "UPCDEN.spad" 2100942 2100958 2101725 2101730) (-1141 "UP2.spad" 2100304 2100325 2100932 2100937) (-1140 "UNISEG.spad" 2099657 2099668 2100223 2100228) (-1139 "UNISEG2.spad" 2099150 2099163 2099613 2099618) (-1138 "UNIFACT.spad" 2098251 2098263 2099140 2099145) (-1137 "ULS.spad" 2088810 2088838 2089903 2090332) (-1136 "ULSCONS.spad" 2082853 2082873 2083225 2083374) (-1135 "ULSCCAT.spad" 2080450 2080470 2082673 2082848) (-1134 "ULSCCAT.spad" 2078181 2078203 2080406 2080411) (-1133 "ULSCAT.spad" 2076397 2076413 2078027 2078176) (-1132 "ULS2.spad" 2075909 2075962 2076387 2076392) (-1131 "UFD.spad" 2074974 2074983 2075835 2075904) (-1130 "UFD.spad" 2074101 2074112 2074964 2074969) (-1129 "UDVO.spad" 2072948 2072957 2074091 2074096) (-1128 "UDPO.spad" 2070375 2070386 2072904 2072909) (-1127 "TYPE.spad" 2070297 2070306 2070355 2070370) (-1126 "TWOFACT.spad" 2068947 2068962 2070287 2070292) (-1125 "TUPLE.spad" 2068333 2068344 2068846 2068851) (-1124 "TUBETOOL.spad" 2065170 2065179 2068323 2068328) (-1123 "TUBE.spad" 2063811 2063828 2065160 2065165) (-1122 "TS.spad" 2062400 2062416 2063376 2063473) (-1121 "TSETCAT.spad" 2049515 2049532 2062356 2062395) (-1120 "TSETCAT.spad" 2036628 2036647 2049471 2049476) (-1119 "TRMANIP.spad" 2030994 2031011 2036334 2036339) (-1118 "TRIMAT.spad" 2029953 2029978 2030984 2030989) (-1117 "TRIGMNIP.spad" 2028470 2028487 2029943 2029948) (-1116 "TRIGCAT.spad" 2027982 2027991 2028460 2028465) (-1115 "TRIGCAT.spad" 2027492 2027503 2027972 2027977) (-1114 "TREE.spad" 2026063 2026074 2027099 2027126) (-1113 "TRANFUN.spad" 2025894 2025903 2026053 2026058) (-1112 "TRANFUN.spad" 2025723 2025734 2025884 2025889) (-1111 "TOPSP.spad" 2025397 2025406 2025713 2025718) (-1110 "TOOLSIGN.spad" 2025060 2025071 2025387 2025392) (-1109 "TEXTFILE.spad" 2023617 2023626 2025050 2025055) (-1108 "TEX.spad" 2020634 2020643 2023607 2023612) (-1107 "TEX1.spad" 2020190 2020201 2020624 2020629) (-1106 "TEMUTL.spad" 2019745 2019754 2020180 2020185) (-1105 "TBCMPPK.spad" 2017838 2017861 2019735 2019740) (-1104 "TBAGG.spad" 2016862 2016885 2017806 2017833) (-1103 "TBAGG.spad" 2015906 2015931 2016852 2016857) (-1102 "TANEXP.spad" 2015282 2015293 2015896 2015901) (-1101 "TABLE.spad" 2013693 2013716 2013963 2013990) (-1100 "TABLEAU.spad" 2013174 2013185 2013683 2013688) (-1099 "TABLBUMP.spad" 2009957 2009968 2013164 2013169) (-1098 "SYSTEM.spad" 2009231 2009240 2009947 2009952) (-1097 "SYSSOLP.spad" 2006704 2006715 2009221 2009226) (-1096 "SYNTAX.spad" 2002896 2002905 2006694 2006699) (-1095 "SYMTAB.spad" 2000952 2000961 2002886 2002891) (-1094 "SYMS.spad" 1996937 1996946 2000942 2000947) (-1093 "SYMPOLY.spad" 1995947 1995958 1996029 1996156) (-1092 "SYMFUNC.spad" 1995422 1995433 1995937 1995942) (-1091 "SYMBOL.spad" 1992758 1992767 1995412 1995417) (-1090 "SWITCH.spad" 1989515 1989524 1992748 1992753) (-1089 "SUTS.spad" 1986414 1986442 1987982 1988079) (-1088 "SUPXS.spad" 1983428 1983456 1984546 1984695) (-1087 "SUP.spad" 1980200 1980211 1980981 1981134) (-1086 "SUPFRACF.spad" 1979305 1979323 1980190 1980195) (-1085 "SUP2.spad" 1978695 1978708 1979295 1979300) (-1084 "SUMRF.spad" 1977661 1977672 1978685 1978690) (-1083 "SUMFS.spad" 1977294 1977311 1977651 1977656) (-1082 "SULS.spad" 1967840 1967868 1968946 1969375) (-1081 "SUCH.spad" 1967520 1967535 1967830 1967835) (-1080 "SUBSPACE.spad" 1959527 1959542 1967510 1967515) (-1079 "SUBRESP.spad" 1958687 1958701 1959483 1959488) (-1078 "STTF.spad" 1954786 1954802 1958677 1958682) (-1077 "STTFNC.spad" 1951254 1951270 1954776 1954781) (-1076 "STTAYLOR.spad" 1943652 1943663 1951135 1951140) (-1075 "STRTBL.spad" 1942157 1942174 1942306 1942333) (-1074 "STRING.spad" 1941566 1941575 1941580 1941607) (-1073 "STRICAT.spad" 1941342 1941351 1941522 1941561) (-1072 "STREAM.spad" 1938110 1938121 1940867 1940882) (-1071 "STREAM3.spad" 1937655 1937670 1938100 1938105) (-1070 "STREAM2.spad" 1936723 1936736 1937645 1937650) (-1069 "STREAM1.spad" 1936427 1936438 1936713 1936718) (-1068 "STINPROD.spad" 1935333 1935349 1936417 1936422) (-1067 "STEP.spad" 1934534 1934543 1935323 1935328) (-1066 "STBL.spad" 1933060 1933088 1933227 1933242) (-1065 "STAGG.spad" 1932125 1932136 1933040 1933055) (-1064 "STAGG.spad" 1931198 1931211 1932115 1932120) (-1063 "STACK.spad" 1930549 1930560 1930805 1930832) (-1062 "SREGSET.spad" 1928253 1928270 1930195 1930222) (-1061 "SRDCMPK.spad" 1926798 1926818 1928243 1928248) (-1060 "SRAGG.spad" 1921883 1921892 1926754 1926793) (-1059 "SRAGG.spad" 1917000 1917011 1921873 1921878) (-1058 "SQMATRIX.spad" 1914626 1914644 1915534 1915621) (-1057 "SPLTREE.spad" 1909178 1909191 1914062 1914089) (-1056 "SPLNODE.spad" 1905766 1905779 1909168 1909173) (-1055 "SPFCAT.spad" 1904543 1904552 1905756 1905761) (-1054 "SPECOUT.spad" 1903093 1903102 1904533 1904538) (-1053 "spad-parser.spad" 1902558 1902567 1903083 1903088) (-1052 "SPACEC.spad" 1886571 1886582 1902548 1902553) (-1051 "SPACE3.spad" 1886347 1886358 1886561 1886566) (-1050 "SORTPAK.spad" 1885892 1885905 1886303 1886308) (-1049 "SOLVETRA.spad" 1883649 1883660 1885882 1885887) (-1048 "SOLVESER.spad" 1882169 1882180 1883639 1883644) (-1047 "SOLVERAD.spad" 1878179 1878190 1882159 1882164) (-1046 "SOLVEFOR.spad" 1876599 1876617 1878169 1878174) (-1045 "SNTSCAT.spad" 1876187 1876204 1876555 1876594) (-1044 "SMTS.spad" 1874447 1874473 1875752 1875849) (-1043 "SMP.spad" 1871889 1871909 1872279 1872406) (-1042 "SMITH.spad" 1870732 1870757 1871879 1871884) (-1041 "SMATCAT.spad" 1868830 1868860 1870664 1870727) (-1040 "SMATCAT.spad" 1866872 1866904 1868708 1868713) (-1039 "SKAGG.spad" 1865821 1865832 1866828 1866867) (-1038 "SINT.spad" 1864129 1864138 1865687 1865816) (-1037 "SIMPAN.spad" 1863857 1863866 1864119 1864124) (-1036 "SIGNRF.spad" 1862965 1862976 1863847 1863852) (-1035 "SIGNEF.spad" 1862234 1862251 1862955 1862960) (-1034 "SHP.spad" 1860152 1860167 1862190 1862195) (-1033 "SHDP.spad" 1851188 1851215 1851697 1851826) (-1032 "SGROUP.spad" 1850654 1850663 1851178 1851183) (-1031 "SGROUP.spad" 1850118 1850129 1850644 1850649) (-1030 "SGCF.spad" 1842999 1843008 1850108 1850113) (-1029 "SFRTCAT.spad" 1841915 1841932 1842955 1842994) (-1028 "SFRGCD.spad" 1840978 1840998 1841905 1841910) (-1027 "SFQCMPK.spad" 1835615 1835635 1840968 1840973) (-1026 "SFORT.spad" 1835050 1835064 1835605 1835610) (-1025 "SEXOF.spad" 1834893 1834933 1835040 1835045) (-1024 "SEX.spad" 1834785 1834794 1834883 1834888) (-1023 "SEXCAT.spad" 1831889 1831929 1834775 1834780) (-1022 "SET.spad" 1830189 1830200 1831310 1831349) (-1021 "SETMN.spad" 1828623 1828640 1830179 1830184) (-1020 "SETCAT.spad" 1828108 1828117 1828613 1828618) (-1019 "SETCAT.spad" 1827591 1827602 1828098 1828103) (-1018 "SETAGG.spad" 1824114 1824125 1827559 1827586) (-1017 "SETAGG.spad" 1820657 1820670 1824104 1824109) (-1016 "SEGXCAT.spad" 1819769 1819782 1820637 1820652) (-1015 "SEG.spad" 1819582 1819593 1819688 1819693) (-1014 "SEGCAT.spad" 1818401 1818412 1819562 1819577) (-1013 "SEGBIND.spad" 1817473 1817484 1818356 1818361) (-1012 "SEGBIND2.spad" 1817169 1817182 1817463 1817468) (-1011 "SEG2.spad" 1816594 1816607 1817125 1817130) (-1010 "SDVAR.spad" 1815870 1815881 1816584 1816589) (-1009 "SDPOL.spad" 1813263 1813274 1813554 1813681) (-1008 "SCPKG.spad" 1811342 1811353 1813253 1813258) (-1007 "SCOPE.spad" 1810487 1810496 1811332 1811337) (-1006 "SCACHE.spad" 1809169 1809180 1810477 1810482) (-1005 "SAOS.spad" 1809041 1809050 1809159 1809164) (-1004 "SAERFFC.spad" 1808754 1808774 1809031 1809036) (-1003 "SAE.spad" 1806932 1806948 1807543 1807678) (-1002 "SAEFACT.spad" 1806633 1806653 1806922 1806927) (-1001 "RURPK.spad" 1804274 1804290 1806623 1806628) (-1000 "RULESET.spad" 1803715 1803739 1804264 1804269) (-999 "RULE.spad" 1801920 1801943 1803705 1803710) (-998 "RULECOLD.spad" 1801773 1801785 1801910 1801915) (-997 "RSETGCD.spad" 1798152 1798171 1801763 1801768) (-996 "RSETCAT.spad" 1787925 1787941 1798108 1798147) (-995 "RSETCAT.spad" 1777730 1777748 1787915 1787920) (-994 "RSDCMPK.spad" 1776183 1776202 1777720 1777725) (-993 "RRCC.spad" 1774568 1774597 1776173 1776178) (-992 "RRCC.spad" 1772951 1772982 1774558 1774563) (-991 "RPOLCAT.spad" 1752312 1752326 1772819 1772946) (-990 "RPOLCAT.spad" 1731388 1731404 1751897 1751902) (-989 "ROUTINE.spad" 1727252 1727260 1730035 1730062) (-988 "ROMAN.spad" 1726485 1726493 1727118 1727247) (-987 "ROIRC.spad" 1725566 1725597 1726475 1726480) (-986 "RNS.spad" 1724470 1724478 1725468 1725561) (-985 "RNS.spad" 1723460 1723470 1724460 1724465) (-984 "RNG.spad" 1723196 1723204 1723450 1723455) (-983 "RMODULE.spad" 1722835 1722845 1723186 1723191) (-982 "RMCAT2.spad" 1722244 1722300 1722825 1722830) (-981 "RMATRIX.spad" 1720924 1720942 1721411 1721450) (-980 "RMATCAT.spad" 1716446 1716476 1720868 1720919) (-979 "RMATCAT.spad" 1711870 1711902 1716294 1716299) (-978 "RINTERP.spad" 1711759 1711778 1711860 1711865) (-977 "RING.spad" 1711117 1711125 1711739 1711754) (-976 "RING.spad" 1710483 1710493 1711107 1711112) (-975 "RIDIST.spad" 1709868 1709876 1710473 1710478) (-974 "RGCHAIN.spad" 1708448 1708463 1709353 1709380) (-973 "RF.spad" 1706063 1706073 1708438 1708443) (-972 "RFFACTOR.spad" 1705526 1705536 1706053 1706058) (-971 "RFFACT.spad" 1705262 1705273 1705516 1705521) (-970 "RFDIST.spad" 1704251 1704259 1705252 1705257) (-969 "RETSOL.spad" 1703669 1703681 1704241 1704246) (-968 "RETRACT.spad" 1703019 1703029 1703659 1703664) (-967 "RETRACT.spad" 1702367 1702379 1703009 1703014) (-966 "RESULT.spad" 1700428 1700436 1701014 1701041) (-965 "RESRING.spad" 1699776 1699822 1700366 1700423) (-964 "RESLATC.spad" 1699101 1699111 1699766 1699771) (-963 "REPSQ.spad" 1698831 1698841 1699091 1699096) (-962 "REP.spad" 1696384 1696392 1698821 1698826) (-961 "REPDB.spad" 1696090 1696100 1696374 1696379) (-960 "REP2.spad" 1685663 1685673 1695932 1695937) (-959 "REP1.spad" 1679654 1679664 1685613 1685618) (-958 "REGSET.spad" 1677452 1677468 1679300 1679327) (-957 "REF.spad" 1676782 1676792 1677407 1677412) (-956 "REDORDER.spad" 1675959 1675975 1676772 1676777) (-955 "RECLOS.spad" 1674749 1674768 1675452 1675545) (-954 "REALSOLV.spad" 1673882 1673890 1674739 1674744) (-953 "REAL.spad" 1673755 1673763 1673872 1673877) (-952 "REAL0Q.spad" 1671038 1671052 1673745 1673750) (-951 "REAL0.spad" 1667867 1667881 1671028 1671033) (-950 "RDIV.spad" 1667519 1667543 1667857 1667862) (-949 "RDIST.spad" 1667083 1667093 1667509 1667514) (-948 "RDETRS.spad" 1665880 1665897 1667073 1667078) (-947 "RDETR.spad" 1663988 1664005 1665870 1665875) (-946 "RDEEFS.spad" 1663062 1663078 1663978 1663983) (-945 "RDEEF.spad" 1662059 1662075 1663052 1663057) (-944 "RCFIELD.spad" 1659246 1659254 1661961 1662054) (-943 "RCFIELD.spad" 1656519 1656529 1659236 1659241) (-942 "RCAGG.spad" 1654422 1654432 1656499 1656514) (-941 "RCAGG.spad" 1652262 1652274 1654341 1654346) (-940 "RATRET.spad" 1651623 1651633 1652252 1652257) (-939 "RATFACT.spad" 1651316 1651327 1651613 1651618) (-938 "RANDSRC.spad" 1650636 1650644 1651306 1651311) (-937 "RADUTIL.spad" 1650391 1650399 1650626 1650631) (-936 "RADIX.spad" 1647184 1647197 1648861 1648954) (-935 "RADFF.spad" 1645601 1645637 1645719 1645875) (-934 "RADCAT.spad" 1645195 1645203 1645591 1645596) (-933 "RADCAT.spad" 1644787 1644797 1645185 1645190) (-932 "QUEUE.spad" 1644130 1644140 1644394 1644421) (-931 "QUAT.spad" 1642716 1642726 1643058 1643123) (-930 "QUATCT2.spad" 1642335 1642353 1642706 1642711) (-929 "QUATCAT.spad" 1640500 1640510 1642265 1642330) (-928 "QUATCAT.spad" 1638417 1638429 1640184 1640189) (-927 "QUAGG.spad" 1637231 1637241 1638373 1638412) (-926 "QFORM.spad" 1636694 1636708 1637221 1637226) (-925 "QFCAT.spad" 1635385 1635395 1636584 1636689) (-924 "QFCAT.spad" 1633682 1633694 1634883 1634888) (-923 "QFCAT2.spad" 1633373 1633389 1633672 1633677) (-922 "QEQUAT.spad" 1632930 1632938 1633363 1633368) (-921 "QCMPACK.spad" 1627677 1627696 1632920 1632925) (-920 "QALGSET.spad" 1623752 1623784 1627591 1627596) (-919 "QALGSET2.spad" 1621748 1621766 1623742 1623747) (-918 "PWFFINTB.spad" 1619058 1619079 1621738 1621743) (-917 "PUSHVAR.spad" 1618387 1618406 1619048 1619053) (-916 "PTRANFN.spad" 1614513 1614523 1618377 1618382) (-915 "PTPACK.spad" 1611601 1611611 1614503 1614508) (-914 "PTFUNC2.spad" 1611422 1611436 1611591 1611596) (-913 "PTCAT.spad" 1610504 1610514 1611378 1611417) (-912 "PSQFR.spad" 1609811 1609835 1610494 1610499) (-911 "PSEUDLIN.spad" 1608669 1608679 1609801 1609806) (-910 "PSETPK.spad" 1594102 1594118 1608547 1608552) (-909 "PSETCAT.spad" 1588010 1588033 1594070 1594097) (-908 "PSETCAT.spad" 1581904 1581929 1587966 1587971) (-907 "PSCURVE.spad" 1580887 1580895 1581894 1581899) (-906 "PSCAT.spad" 1579654 1579683 1580785 1580882) (-905 "PSCAT.spad" 1578511 1578542 1579644 1579649) (-904 "PRTITION.spad" 1577354 1577362 1578501 1578506) (-903 "PRS.spad" 1566916 1566933 1577310 1577315) (-902 "PRQAGG.spad" 1566335 1566345 1566872 1566911) (-901 "PROPLOG.spad" 1565738 1565746 1566325 1566330) (-900 "PROPFRML.spad" 1563602 1563613 1565674 1565679) (-899 "PROPERTY.spad" 1563096 1563104 1563592 1563597) (-898 "PRODUCT.spad" 1560776 1560788 1561062 1561117) (-897 "PR.spad" 1559165 1559177 1559870 1559997) (-896 "PRINT.spad" 1558917 1558925 1559155 1559160) (-895 "PRIMES.spad" 1557168 1557178 1558907 1558912) (-894 "PRIMELT.spad" 1555149 1555163 1557158 1557163) (-893 "PRIMCAT.spad" 1554772 1554780 1555139 1555144) (-892 "PRIMARR.spad" 1553777 1553787 1553955 1553982) (-891 "PRIMARR2.spad" 1552500 1552512 1553767 1553772) (-890 "PREASSOC.spad" 1551872 1551884 1552490 1552495) (-889 "PPCURVE.spad" 1551009 1551017 1551862 1551867) (-888 "POLYROOT.spad" 1549781 1549803 1550965 1550970) (-887 "POLY.spad" 1547081 1547091 1547598 1547725) (-886 "POLYLIFT.spad" 1546342 1546365 1547071 1547076) (-885 "POLYCATQ.spad" 1544444 1544466 1546332 1546337) (-884 "POLYCAT.spad" 1537850 1537871 1544312 1544439) (-883 "POLYCAT.spad" 1530558 1530581 1537022 1537027) (-882 "POLY2UP.spad" 1530006 1530020 1530548 1530553) (-881 "POLY2.spad" 1529601 1529613 1529996 1530001) (-880 "POLUTIL.spad" 1528542 1528571 1529557 1529562) (-879 "POLTOPOL.spad" 1527290 1527305 1528532 1528537) (-878 "POINT.spad" 1526131 1526141 1526218 1526245) (-877 "PNTHEORY.spad" 1522797 1522805 1526121 1526126) (-876 "PMTOOLS.spad" 1521554 1521568 1522787 1522792) (-875 "PMSYM.spad" 1521099 1521109 1521544 1521549) (-874 "PMQFCAT.spad" 1520686 1520700 1521089 1521094) (-873 "PMPRED.spad" 1520155 1520169 1520676 1520681) (-872 "PMPREDFS.spad" 1519599 1519621 1520145 1520150) (-871 "PMPLCAT.spad" 1518669 1518687 1519531 1519536) (-870 "PMLSAGG.spad" 1518250 1518264 1518659 1518664) (-869 "PMKERNEL.spad" 1517817 1517829 1518240 1518245) (-868 "PMINS.spad" 1517393 1517403 1517807 1517812) (-867 "PMFS.spad" 1516966 1516984 1517383 1517388) (-866 "PMDOWN.spad" 1516252 1516266 1516956 1516961) (-865 "PMASS.spad" 1515264 1515272 1516242 1516247) (-864 "PMASSFS.spad" 1514233 1514249 1515254 1515259) (-863 "PLOTTOOL.spad" 1514013 1514021 1514223 1514228) (-862 "PLOT.spad" 1508844 1508852 1514003 1514008) (-861 "PLOT3D.spad" 1505264 1505272 1508834 1508839) (-860 "PLOT1.spad" 1504405 1504415 1505254 1505259) (-859 "PLEQN.spad" 1491621 1491648 1504395 1504400) (-858 "PINTERP.spad" 1491237 1491256 1491611 1491616) (-857 "PINTERPA.spad" 1491019 1491035 1491227 1491232) (-856 "PI.spad" 1490626 1490634 1490993 1491014) (-855 "PID.spad" 1489582 1489590 1490552 1490621) (-854 "PICOERCE.spad" 1489239 1489249 1489572 1489577) (-853 "PGROEB.spad" 1487836 1487850 1489229 1489234) (-852 "PGE.spad" 1479089 1479097 1487826 1487831) (-851 "PGCD.spad" 1477971 1477988 1479079 1479084) (-850 "PFRPAC.spad" 1477114 1477124 1477961 1477966) (-849 "PFR.spad" 1473771 1473781 1477016 1477109) (-848 "PFOTOOLS.spad" 1473029 1473045 1473761 1473766) (-847 "PFOQ.spad" 1472399 1472417 1473019 1473024) (-846 "PFO.spad" 1471818 1471845 1472389 1472394) (-845 "PF.spad" 1471392 1471404 1471623 1471716) (-844 "PFECAT.spad" 1469058 1469066 1471318 1471387) (-843 "PFECAT.spad" 1466752 1466762 1469014 1469019) (-842 "PFBRU.spad" 1464622 1464634 1466742 1466747) (-841 "PFBR.spad" 1462160 1462183 1464612 1464617) (-840 "PERM.spad" 1457841 1457851 1461990 1462005) (-839 "PERMGRP.spad" 1452577 1452587 1457831 1457836) (-838 "PERMCAT.spad" 1451129 1451139 1452557 1452572) (-837 "PERMAN.spad" 1449661 1449675 1451119 1451124) (-836 "PENDTREE.spad" 1448934 1448944 1449290 1449295) (-835 "PDRING.spad" 1447425 1447435 1448914 1448929) (-834 "PDRING.spad" 1445924 1445936 1447415 1447420) (-833 "PDEPROB.spad" 1444881 1444889 1445914 1445919) (-832 "PDEPACK.spad" 1438883 1438891 1444871 1444876) (-831 "PDECOMP.spad" 1438345 1438362 1438873 1438878) (-830 "PDECAT.spad" 1436699 1436707 1438335 1438340) (-829 "PCOMP.spad" 1436550 1436563 1436689 1436694) (-828 "PBWLB.spad" 1435132 1435149 1436540 1436545) (-827 "PATTERN.spad" 1429563 1429573 1435122 1435127) (-826 "PATTERN2.spad" 1429299 1429311 1429553 1429558) (-825 "PATTERN1.spad" 1427601 1427617 1429289 1429294) (-824 "PATRES.spad" 1425148 1425160 1427591 1427596) (-823 "PATRES2.spad" 1424810 1424824 1425138 1425143) (-822 "PATMATCH.spad" 1422972 1423003 1424523 1424528) (-821 "PATMAB.spad" 1422397 1422407 1422962 1422967) (-820 "PATLRES.spad" 1421481 1421495 1422387 1422392) (-819 "PATAB.spad" 1421245 1421255 1421471 1421476) (-818 "PARTPERM.spad" 1418607 1418615 1421235 1421240) (-817 "PARSURF.spad" 1418035 1418063 1418597 1418602) (-816 "PARSU2.spad" 1417830 1417846 1418025 1418030) (-815 "script-parser.spad" 1417350 1417358 1417820 1417825) (-814 "PARSCURV.spad" 1416778 1416806 1417340 1417345) (-813 "PARSC2.spad" 1416567 1416583 1416768 1416773) (-812 "PARPCURV.spad" 1416025 1416053 1416557 1416562) (-811 "PARPC2.spad" 1415814 1415830 1416015 1416020) (-810 "PAN2EXPR.spad" 1415226 1415234 1415804 1415809) (-809 "PALETTE.spad" 1414196 1414204 1415216 1415221) (-808 "PAIR.spad" 1413179 1413192 1413784 1413789) (-807 "PADICRC.spad" 1410512 1410530 1411687 1411780) (-806 "PADICRAT.spad" 1408530 1408542 1408751 1408844) (-805 "PADIC.spad" 1408225 1408237 1408456 1408525) (-804 "PADICCT.spad" 1406766 1406778 1408151 1408220) (-803 "PADEPAC.spad" 1405445 1405464 1406756 1406761) (-802 "PADE.spad" 1404185 1404201 1405435 1405440) (-801 "OWP.spad" 1403169 1403199 1404043 1404110) (-800 "OVAR.spad" 1402950 1402973 1403159 1403164) (-799 "OUT.spad" 1402034 1402042 1402940 1402945) (-798 "OUTFORM.spad" 1391448 1391456 1402024 1402029) (-797 "OSI.spad" 1390923 1390931 1391438 1391443) (-796 "OSGROUP.spad" 1390841 1390849 1390913 1390918) (-795 "ORTHPOL.spad" 1389302 1389312 1390758 1390763) (-794 "OREUP.spad" 1388662 1388690 1388984 1389023) (-793 "ORESUP.spad" 1387963 1387987 1388344 1388383) (-792 "OREPCTO.spad" 1385782 1385794 1387883 1387888) (-791 "OREPCAT.spad" 1379839 1379849 1385738 1385777) (-790 "OREPCAT.spad" 1373786 1373798 1379687 1379692) (-789 "ORDSET.spad" 1372952 1372960 1373776 1373781) (-788 "ORDSET.spad" 1372116 1372126 1372942 1372947) (-787 "ORDRING.spad" 1371506 1371514 1372096 1372111) (-786 "ORDRING.spad" 1370904 1370914 1371496 1371501) (-785 "ORDMON.spad" 1370759 1370767 1370894 1370899) (-784 "ORDFUNS.spad" 1369885 1369901 1370749 1370754) (-783 "ORDFIN.spad" 1369819 1369827 1369875 1369880) (-782 "ORDCOMP.spad" 1368287 1368297 1369369 1369398) (-781 "ORDCOMP2.spad" 1367572 1367584 1368277 1368282) (-780 "OPTPROB.spad" 1366152 1366160 1367562 1367567) (-779 "OPTPACK.spad" 1358537 1358545 1366142 1366147) (-778 "OPTCAT.spad" 1356212 1356220 1358527 1358532) (-777 "OPQUERY.spad" 1355761 1355769 1356202 1356207) (-776 "OP.spad" 1355503 1355513 1355583 1355650) (-775 "ONECOMP.spad" 1354251 1354261 1355053 1355082) (-774 "ONECOMP2.spad" 1353669 1353681 1354241 1354246) (-773 "OMSERVER.spad" 1352671 1352679 1353659 1353664) (-772 "OMSAGG.spad" 1352447 1352457 1352615 1352666) (-771 "OMPKG.spad" 1351059 1351067 1352437 1352442) (-770 "OM.spad" 1350024 1350032 1351049 1351054) (-769 "OMLO.spad" 1349449 1349461 1349910 1349949) (-768 "OMEXPR.spad" 1349283 1349293 1349439 1349444) (-767 "OMERR.spad" 1348826 1348834 1349273 1349278) (-766 "OMERRK.spad" 1347860 1347868 1348816 1348821) (-765 "OMENC.spad" 1347204 1347212 1347850 1347855) (-764 "OMDEV.spad" 1341493 1341501 1347194 1347199) (-763 "OMCONN.spad" 1340902 1340910 1341483 1341488) (-762 "OINTDOM.spad" 1340665 1340673 1340828 1340897) (-761 "OFMONOID.spad" 1336852 1336862 1340655 1340660) (-760 "ODVAR.spad" 1336113 1336123 1336842 1336847) (-759 "ODR.spad" 1335561 1335587 1335925 1336074) (-758 "ODPOL.spad" 1332910 1332920 1333250 1333377) (-757 "ODP.spad" 1324082 1324102 1324455 1324584) (-756 "ODETOOLS.spad" 1322665 1322684 1324072 1324077) (-755 "ODESYS.spad" 1320315 1320332 1322655 1322660) (-754 "ODERTRIC.spad" 1316256 1316273 1320272 1320277) (-753 "ODERED.spad" 1315643 1315667 1316246 1316251) (-752 "ODERAT.spad" 1313194 1313211 1315633 1315638) (-751 "ODEPRRIC.spad" 1310085 1310107 1313184 1313189) (-750 "ODEPROB.spad" 1309284 1309292 1310075 1310080) (-749 "ODEPRIM.spad" 1306558 1306580 1309274 1309279) (-748 "ODEPAL.spad" 1305934 1305958 1306548 1306553) (-747 "ODEPACK.spad" 1292536 1292544 1305924 1305929) (-746 "ODEINT.spad" 1291967 1291983 1292526 1292531) (-745 "ODEIFTBL.spad" 1289362 1289370 1291957 1291962) (-744 "ODEEF.spad" 1284729 1284745 1289352 1289357) (-743 "ODECONST.spad" 1284248 1284266 1284719 1284724) (-742 "ODECAT.spad" 1282844 1282852 1284238 1284243) (-741 "OCT.spad" 1280991 1281001 1281707 1281746) (-740 "OCTCT2.spad" 1280635 1280656 1280981 1280986) (-739 "OC.spad" 1278409 1278419 1280591 1280630) (-738 "OC.spad" 1275909 1275921 1278093 1278098) (-737 "OCAMON.spad" 1275757 1275765 1275899 1275904) (-736 "OASGP.spad" 1275572 1275580 1275747 1275752) (-735 "OAMONS.spad" 1275092 1275100 1275562 1275567) (-734 "OAMON.spad" 1274953 1274961 1275082 1275087) (-733 "OAGROUP.spad" 1274815 1274823 1274943 1274948) (-732 "NUMTUBE.spad" 1274402 1274418 1274805 1274810) (-731 "NUMQUAD.spad" 1262264 1262272 1274392 1274397) (-730 "NUMODE.spad" 1253400 1253408 1262254 1262259) (-729 "NUMINT.spad" 1250958 1250966 1253390 1253395) (-728 "NUMFMT.spad" 1249798 1249806 1250948 1250953) (-727 "NUMERIC.spad" 1241871 1241881 1249604 1249609) (-726 "NTSCAT.spad" 1240361 1240377 1241827 1241866) (-725 "NTPOLFN.spad" 1239906 1239916 1240278 1240283) (-724 "NSUP.spad" 1232919 1232929 1237459 1237612) (-723 "NSUP2.spad" 1232311 1232323 1232909 1232914) (-722 "NSMP.spad" 1228510 1228529 1228818 1228945) (-721 "NREP.spad" 1226882 1226896 1228500 1228505) (-720 "NPCOEF.spad" 1226128 1226148 1226872 1226877) (-719 "NORMRETR.spad" 1225726 1225765 1226118 1226123) (-718 "NORMPK.spad" 1223628 1223647 1225716 1225721) (-717 "NORMMA.spad" 1223316 1223342 1223618 1223623) (-716 "NONE.spad" 1223057 1223065 1223306 1223311) (-715 "NONE1.spad" 1222733 1222743 1223047 1223052) (-714 "NODE1.spad" 1222202 1222218 1222723 1222728) (-713 "NNI.spad" 1221089 1221097 1222176 1222197) (-712 "NLINSOL.spad" 1219711 1219721 1221079 1221084) (-711 "NIPROB.spad" 1218194 1218202 1219701 1219706) (-710 "NFINTBAS.spad" 1215654 1215671 1218184 1218189) (-709 "NCODIV.spad" 1213852 1213868 1215644 1215649) (-708 "NCNTFRAC.spad" 1213494 1213508 1213842 1213847) (-707 "NCEP.spad" 1211654 1211668 1213484 1213489) (-706 "NASRING.spad" 1211250 1211258 1211644 1211649) (-705 "NASRING.spad" 1210844 1210854 1211240 1211245) (-704 "NARNG.spad" 1210188 1210196 1210834 1210839) (-703 "NARNG.spad" 1209530 1209540 1210178 1210183) (-702 "NAGSP.spad" 1208603 1208611 1209520 1209525) (-701 "NAGS.spad" 1198128 1198136 1208593 1208598) (-700 "NAGF07.spad" 1196521 1196529 1198118 1198123) (-699 "NAGF04.spad" 1190753 1190761 1196511 1196516) (-698 "NAGF02.spad" 1184562 1184570 1190743 1190748) (-697 "NAGF01.spad" 1180165 1180173 1184552 1184557) (-696 "NAGE04.spad" 1173625 1173633 1180155 1180160) (-695 "NAGE02.spad" 1163967 1163975 1173615 1173620) (-694 "NAGE01.spad" 1159851 1159859 1163957 1163962) (-693 "NAGD03.spad" 1157771 1157779 1159841 1159846) (-692 "NAGD02.spad" 1150302 1150310 1157761 1157766) (-691 "NAGD01.spad" 1144415 1144423 1150292 1150297) (-690 "NAGC06.spad" 1140202 1140210 1144405 1144410) (-689 "NAGC05.spad" 1138671 1138679 1140192 1140197) (-688 "NAGC02.spad" 1137926 1137934 1138661 1138666) (-687 "NAALG.spad" 1137461 1137471 1137894 1137921) (-686 "NAALG.spad" 1137016 1137028 1137451 1137456) (-685 "MULTSQFR.spad" 1133974 1133991 1137006 1137011) (-684 "MULTFACT.spad" 1133357 1133374 1133964 1133969) (-683 "MTSCAT.spad" 1131391 1131412 1133255 1133352) (-682 "MTHING.spad" 1131048 1131058 1131381 1131386) (-681 "MSYSCMD.spad" 1130482 1130490 1131038 1131043) (-680 "MSET.spad" 1128424 1128434 1130188 1130227) (-679 "MSETAGG.spad" 1128257 1128267 1128380 1128419) (-678 "MRING.spad" 1125228 1125240 1127965 1128032) (-677 "MRF2.spad" 1124796 1124810 1125218 1125223) (-676 "MRATFAC.spad" 1124342 1124359 1124786 1124791) (-675 "MPRFF.spad" 1122372 1122391 1124332 1124337) (-674 "MPOLY.spad" 1119810 1119825 1120169 1120296) (-673 "MPCPF.spad" 1119074 1119093 1119800 1119805) (-672 "MPC3.spad" 1118889 1118929 1119064 1119069) (-671 "MPC2.spad" 1118531 1118564 1118879 1118884) (-670 "MONOTOOL.spad" 1116866 1116883 1118521 1118526) (-669 "MONOID.spad" 1116040 1116048 1116856 1116861) (-668 "MONOID.spad" 1115212 1115222 1116030 1116035) (-667 "MONOGEN.spad" 1113958 1113971 1115072 1115207) (-666 "MONOGEN.spad" 1112726 1112741 1113842 1113847) (-665 "MONADWU.spad" 1110740 1110748 1112716 1112721) (-664 "MONADWU.spad" 1108752 1108762 1110730 1110735) (-663 "MONAD.spad" 1107896 1107904 1108742 1108747) (-662 "MONAD.spad" 1107038 1107048 1107886 1107891) (-661 "MOEBIUS.spad" 1105724 1105738 1107018 1107033) (-660 "MODULE.spad" 1105594 1105604 1105692 1105719) (-659 "MODULE.spad" 1105484 1105496 1105584 1105589) (-658 "MODRING.spad" 1104815 1104854 1105464 1105479) (-657 "MODOP.spad" 1103474 1103486 1104637 1104704) (-656 "MODMONOM.spad" 1103006 1103024 1103464 1103469) (-655 "MODMON.spad" 1099711 1099727 1100487 1100640) (-654 "MODFIELD.spad" 1099069 1099108 1099613 1099706) (-653 "MMLFORM.spad" 1097929 1097937 1099059 1099064) (-652 "MMAP.spad" 1097669 1097703 1097919 1097924) (-651 "MLO.spad" 1096096 1096106 1097625 1097664) (-650 "MLIFT.spad" 1094668 1094685 1096086 1096091) (-649 "MKUCFUNC.spad" 1094201 1094219 1094658 1094663) (-648 "MKRECORD.spad" 1093803 1093816 1094191 1094196) (-647 "MKFUNC.spad" 1093184 1093194 1093793 1093798) (-646 "MKFLCFN.spad" 1092140 1092150 1093174 1093179) (-645 "MKCHSET.spad" 1091916 1091926 1092130 1092135) (-644 "MKBCFUNC.spad" 1091401 1091419 1091906 1091911) (-643 "MINT.spad" 1090840 1090848 1091303 1091396) (-642 "MHROWRED.spad" 1089341 1089351 1090830 1090835) (-641 "MFLOAT.spad" 1087786 1087794 1089231 1089336) (-640 "MFINFACT.spad" 1087186 1087208 1087776 1087781) (-639 "MESH.spad" 1084918 1084926 1087176 1087181) (-638 "MDDFACT.spad" 1083111 1083121 1084908 1084913) (-637 "MDAGG.spad" 1082386 1082396 1083079 1083106) (-636 "MCMPLX.spad" 1078366 1078374 1078980 1079181) (-635 "MCDEN.spad" 1077574 1077586 1078356 1078361) (-634 "MCALCFN.spad" 1074676 1074702 1077564 1077569) (-633 "MATSTOR.spad" 1071952 1071962 1074666 1074671) (-632 "MATRIX.spad" 1070656 1070666 1071140 1071167) (-631 "MATLIN.spad" 1067982 1068006 1070540 1070545) (-630 "MATCAT.spad" 1059555 1059577 1067938 1067977) (-629 "MATCAT.spad" 1051012 1051036 1059397 1059402) (-628 "MATCAT2.spad" 1050280 1050328 1051002 1051007) (-627 "MAPPKG3.spad" 1049179 1049193 1050270 1050275) (-626 "MAPPKG2.spad" 1048513 1048525 1049169 1049174) (-625 "MAPPKG1.spad" 1047331 1047341 1048503 1048508) (-624 "MAPHACK3.spad" 1047139 1047153 1047321 1047326) (-623 "MAPHACK2.spad" 1046904 1046916 1047129 1047134) (-622 "MAPHACK1.spad" 1046534 1046544 1046894 1046899) (-621 "MAGMA.spad" 1044324 1044341 1046524 1046529) (-620 "M3D.spad" 1042022 1042032 1043704 1043709) (-619 "LZSTAGG.spad" 1039240 1039250 1042002 1042017) (-618 "LZSTAGG.spad" 1036466 1036478 1039230 1039235) (-617 "LWORD.spad" 1033171 1033188 1036456 1036461) (-616 "LSQM.spad" 1031399 1031413 1031797 1031848) (-615 "LSPP.spad" 1030932 1030949 1031389 1031394) (-614 "LSMP.spad" 1029772 1029800 1030922 1030927) (-613 "LSMP1.spad" 1027576 1027590 1029762 1029767) (-612 "LSAGG.spad" 1027233 1027243 1027532 1027571) (-611 "LSAGG.spad" 1026922 1026934 1027223 1027228) (-610 "LPOLY.spad" 1025876 1025895 1026778 1026847) (-609 "LPEFRAC.spad" 1025133 1025143 1025866 1025871) (-608 "LO.spad" 1024534 1024548 1025067 1025094) (-607 "LOGIC.spad" 1024136 1024144 1024524 1024529) (-606 "LOGIC.spad" 1023736 1023746 1024126 1024131) (-605 "LODOOPS.spad" 1022654 1022666 1023726 1023731) (-604 "LODO.spad" 1022040 1022056 1022336 1022375) (-603 "LODOF.spad" 1021084 1021101 1021997 1022002) (-602 "LODOCAT.spad" 1019742 1019752 1021040 1021079) (-601 "LODOCAT.spad" 1018398 1018410 1019698 1019703) (-600 "LODO2.spad" 1017673 1017685 1018080 1018119) (-599 "LODO1.spad" 1017075 1017085 1017355 1017394) (-598 "LODEEF.spad" 1015847 1015865 1017065 1017070) (-597 "LNAGG.spad" 1011639 1011649 1015827 1015842) (-596 "LNAGG.spad" 1007405 1007417 1011595 1011600) (-595 "LMOPS.spad" 1004141 1004158 1007395 1007400) (-594 "LMODULE.spad" 1003783 1003793 1004131 1004136) (-593 "LMDICT.spad" 1003066 1003076 1003334 1003361) (-592 "LIST.spad" 1000784 1000794 1002213 1002240) (-591 "LIST3.spad" 1000075 1000089 1000774 1000779) (-590 "LIST2.spad" 998715 998727 1000065 1000070) (-589 "LIST2MAP.spad" 995592 995604 998705 998710) (-588 "LINEXP.spad" 995024 995034 995572 995587) (-587 "LINDEP.spad" 993801 993813 994936 994941) (-586 "LIMITRF.spad" 991715 991725 993791 993796) (-585 "LIMITPS.spad" 990598 990611 991705 991710) (-584 "LIE.spad" 988612 988624 989888 990033) (-583 "LIECAT.spad" 988088 988098 988538 988607) (-582 "LIECAT.spad" 987592 987604 988044 988049) (-581 "LIB.spad" 985640 985648 986251 986266) (-580 "LGROBP.spad" 982993 983012 985630 985635) (-579 "LF.spad" 981912 981928 982983 982988) (-578 "LFCAT.spad" 980931 980939 981902 981907) (-577 "LEXTRIPK.spad" 976434 976449 980921 980926) (-576 "LEXP.spad" 974437 974464 976414 976429) (-575 "LEADCDET.spad" 972821 972838 974427 974432) (-574 "LAZM3PK.spad" 971525 971547 972811 972816) (-573 "LAUPOL.spad" 970216 970229 971120 971189) (-572 "LAPLACE.spad" 969789 969805 970206 970211) (-571 "LA.spad" 969229 969243 969711 969750) (-570 "LALG.spad" 969005 969015 969209 969224) (-569 "LALG.spad" 968789 968801 968995 969000) (-568 "KOVACIC.spad" 967502 967519 968779 968784) (-567 "KONVERT.spad" 967224 967234 967492 967497) (-566 "KOERCE.spad" 966961 966971 967214 967219) (-565 "KERNEL.spad" 965496 965506 966745 966750) (-564 "KERNEL2.spad" 965199 965211 965486 965491) (-563 "KDAGG.spad" 964290 964312 965167 965194) (-562 "KDAGG.spad" 963401 963425 964280 964285) (-561 "KAFILE.spad" 962364 962380 962599 962626) (-560 "JORDAN.spad" 960191 960203 961654 961799) (-559 "JAVACODE.spad" 959957 959965 960181 960186) (-558 "IXAGG.spad" 958070 958094 959937 959952) (-557 "IXAGG.spad" 956048 956074 957917 957922) (-556 "IVECTOR.spad" 954821 954836 954976 955003) (-555 "ITUPLE.spad" 953966 953976 954811 954816) (-554 "ITRIGMNP.spad" 952777 952796 953956 953961) (-553 "ITFUN3.spad" 952271 952285 952767 952772) (-552 "ITFUN2.spad" 952001 952013 952261 952266) (-551 "ITAYLOR.spad" 949793 949808 951837 951962) (-550 "ISUPS.spad" 942204 942219 948767 948864) (-549 "ISUMP.spad" 941701 941717 942194 942199) (-548 "ISTRING.spad" 940704 940717 940870 940897) (-547 "IRURPK.spad" 939417 939436 940694 940699) (-546 "IRSN.spad" 937377 937385 939407 939412) (-545 "IRRF2F.spad" 935852 935862 937333 937338) (-544 "IRREDFFX.spad" 935453 935464 935842 935847) (-543 "IROOT.spad" 933784 933794 935443 935448) (-542 "IR.spad" 931574 931588 933640 933667) (-541 "IR2.spad" 930594 930610 931564 931569) (-540 "IR2F.spad" 929794 929810 930584 930589) (-539 "IPRNTPK.spad" 929554 929562 929784 929789) (-538 "IPF.spad" 929119 929131 929359 929452) (-537 "IPADIC.spad" 928880 928906 929045 929114) (-536 "INVLAPLA.spad" 928525 928541 928870 928875) (-535 "INTTR.spad" 921771 921788 928515 928520) (-534 "INTTOOLS.spad" 919483 919499 921346 921351) (-533 "INTSLPE.spad" 918789 918797 919473 919478) (-532 "INTRVL.spad" 918355 918365 918703 918784) (-531 "INTRF.spad" 916719 916733 918345 918350) (-530 "INTRET.spad" 916151 916161 916709 916714) (-529 "INTRAT.spad" 914826 914843 916141 916146) (-528 "INTPM.spad" 913189 913205 914469 914474) (-527 "INTPAF.spad" 910957 910975 913121 913126) (-526 "INTPACK.spad" 901267 901275 910947 910952) (-525 "INT.spad" 900628 900636 901121 901262) (-524 "INTHERTR.spad" 899894 899911 900618 900623) (-523 "INTHERAL.spad" 899560 899584 899884 899889) (-522 "INTHEORY.spad" 895973 895981 899550 899555) (-521 "INTG0.spad" 889436 889454 895905 895910) (-520 "INTFTBL.spad" 883465 883473 889426 889431) (-519 "INTFACT.spad" 882524 882534 883455 883460) (-518 "INTEF.spad" 880839 880855 882514 882519) (-517 "INTDOM.spad" 879454 879462 880765 880834) (-516 "INTDOM.spad" 878131 878141 879444 879449) (-515 "INTCAT.spad" 876384 876394 878045 878126) (-514 "INTBIT.spad" 875887 875895 876374 876379) (-513 "INTALG.spad" 875069 875096 875877 875882) (-512 "INTAF.spad" 874561 874577 875059 875064) (-511 "INTABL.spad" 873079 873110 873242 873269) (-510 "INS.spad" 870475 870483 872981 873074) (-509 "INS.spad" 867957 867967 870465 870470) (-508 "INPSIGN.spad" 867391 867404 867947 867952) (-507 "INPRODPF.spad" 866457 866476 867381 867386) (-506 "INPRODFF.spad" 865515 865539 866447 866452) (-505 "INNMFACT.spad" 864486 864503 865505 865510) (-504 "INMODGCD.spad" 863970 864000 864476 864481) (-503 "INFSP.spad" 862255 862277 863960 863965) (-502 "INFPROD0.spad" 861305 861324 862245 862250) (-501 "INFORM.spad" 858573 858581 861295 861300) (-500 "INFORM1.spad" 858198 858208 858563 858568) (-499 "INFINITY.spad" 857750 857758 858188 858193) (-498 "INEP.spad" 856282 856304 857740 857745) (-497 "INDE.spad" 856188 856205 856272 856277) (-496 "INCRMAPS.spad" 855609 855619 856178 856183) (-495 "INBFF.spad" 851379 851390 855599 855604) (-494 "IMATRIX.spad" 850324 850350 850836 850863) (-493 "IMATQF.spad" 849418 849462 850280 850285) (-492 "IMATLIN.spad" 848023 848047 849374 849379) (-491 "ILIST.spad" 846679 846694 847206 847233) (-490 "IIARRAY2.spad" 846067 846105 846286 846313) (-489 "IFF.spad" 845477 845493 845748 845841) (-488 "IFARRAY.spad" 842964 842979 844660 844687) (-487 "IFAMON.spad" 842826 842843 842920 842925) (-486 "IEVALAB.spad" 842215 842227 842816 842821) (-485 "IEVALAB.spad" 841602 841616 842205 842210) (-484 "IDPO.spad" 841400 841412 841592 841597) (-483 "IDPOAMS.spad" 841156 841168 841390 841395) (-482 "IDPOAM.spad" 840876 840888 841146 841151) (-481 "IDPC.spad" 839810 839822 840866 840871) (-480 "IDPAM.spad" 839555 839567 839800 839805) (-479 "IDPAG.spad" 839302 839314 839545 839550) (-478 "IDECOMP.spad" 836539 836557 839292 839297) (-477 "IDEAL.spad" 831462 831501 836474 836479) (-476 "ICDEN.spad" 830613 830629 831452 831457) (-475 "ICARD.spad" 829802 829810 830603 830608) (-474 "IBPTOOLS.spad" 828395 828412 829792 829797) (-473 "IBITS.spad" 827594 827607 828031 828058) (-472 "IBATOOL.spad" 824469 824488 827584 827589) (-471 "IBACHIN.spad" 822956 822971 824459 824464) (-470 "IARRAY2.spad" 821944 821970 822563 822590) (-469 "IARRAY1.spad" 820989 821004 821127 821154) (-468 "IAN.spad" 819204 819212 820807 820900) (-467 "IALGFACT.spad" 818805 818838 819194 819199) (-466 "HYPCAT.spad" 818229 818237 818795 818800) (-465 "HYPCAT.spad" 817651 817661 818219 818224) (-464 "HOAGG.spad" 814909 814919 817631 817646) (-463 "HOAGG.spad" 811952 811964 814676 814681) (-462 "HEXADEC.spad" 809824 809832 810422 810515) (-461 "HEUGCD.spad" 808839 808850 809814 809819) (-460 "HELLFDIV.spad" 808429 808453 808829 808834) (-459 "HEAP.spad" 807821 807831 808036 808063) (-458 "HDP.spad" 798989 799005 799366 799495) (-457 "HDMP.spad" 796168 796183 796786 796913) (-456 "HB.spad" 794405 794413 796158 796163) (-455 "HASHTBL.spad" 792875 792906 793086 793113) (-454 "HACKPI.spad" 792358 792366 792777 792870) (-453 "GTSET.spad" 791297 791313 792004 792031) (-452 "GSTBL.spad" 789816 789851 789990 790005) (-451 "GSERIES.spad" 786983 787010 787948 788097) (-450 "GROUP.spad" 786157 786165 786963 786978) (-449 "GROUP.spad" 785339 785349 786147 786152) (-448 "GROEBSOL.spad" 783827 783848 785329 785334) (-447 "GRMOD.spad" 782398 782410 783817 783822) (-446 "GRMOD.spad" 780967 780981 782388 782393) (-445 "GRIMAGE.spad" 773572 773580 780957 780962) (-444 "GRDEF.spad" 771951 771959 773562 773567) (-443 "GRAY.spad" 770410 770418 771941 771946) (-442 "GRALG.spad" 769457 769469 770400 770405) (-441 "GRALG.spad" 768502 768516 769447 769452) (-440 "GPOLSET.spad" 767956 767979 768184 768211) (-439 "GOSPER.spad" 767221 767239 767946 767951) (-438 "GMODPOL.spad" 766359 766386 767189 767216) (-437 "GHENSEL.spad" 765428 765442 766349 766354) (-436 "GENUPS.spad" 761529 761542 765418 765423) (-435 "GENUFACT.spad" 761106 761116 761519 761524) (-434 "GENPGCD.spad" 760690 760707 761096 761101) (-433 "GENMFACT.spad" 760142 760161 760680 760685) (-432 "GENEEZ.spad" 758081 758094 760132 760137) (-431 "GDMP.spad" 755102 755119 755878 756005) (-430 "GCNAALG.spad" 748997 749024 754896 754963) (-429 "GCDDOM.spad" 748169 748177 748923 748992) (-428 "GCDDOM.spad" 747403 747413 748159 748164) (-427 "GB.spad" 744921 744959 747359 747364) (-426 "GBINTERN.spad" 740941 740979 744911 744916) (-425 "GBF.spad" 736698 736736 740931 740936) (-424 "GBEUCLID.spad" 734572 734610 736688 736693) (-423 "GAUSSFAC.spad" 733869 733877 734562 734567) (-422 "GALUTIL.spad" 732191 732201 733825 733830) (-421 "GALPOLYU.spad" 730637 730650 732181 732186) (-420 "GALFACTU.spad" 728802 728821 730627 730632) (-419 "GALFACT.spad" 718935 718946 728792 728797) (-418 "FVFUN.spad" 715948 715956 718915 718930) (-417 "FVC.spad" 714990 714998 715928 715943) (-416 "FUNCTION.spad" 714839 714851 714980 714985) (-415 "FT.spad" 713051 713059 714829 714834) (-414 "FTEM.spad" 712214 712222 713041 713046) (-413 "FSUPFACT.spad" 711115 711134 712151 712156) (-412 "FST.spad" 709201 709209 711105 711110) (-411 "FSRED.spad" 708679 708695 709191 709196) (-410 "FSPRMELT.spad" 707503 707519 708636 708641) (-409 "FSPECF.spad" 705580 705596 707493 707498) (-408 "FS.spad" 699631 699641 705344 705575) (-407 "FS.spad" 693473 693485 699188 699193) (-406 "FSINT.spad" 693131 693147 693463 693468) (-405 "FSERIES.spad" 692318 692330 692951 693050) (-404 "FSCINT.spad" 691631 691647 692308 692313) (-403 "FSAGG.spad" 690736 690746 691575 691626) (-402 "FSAGG.spad" 689815 689827 690656 690661) (-401 "FSAGG2.spad" 688514 688530 689805 689810) (-400 "FS2UPS.spad" 682903 682937 688504 688509) (-399 "FS2.spad" 682548 682564 682893 682898) (-398 "FS2EXPXP.spad" 681671 681694 682538 682543) (-397 "FRUTIL.spad" 680613 680623 681661 681666) (-396 "FR.spad" 674310 674320 679640 679709) (-395 "FRNAALG.spad" 669397 669407 674252 674305) (-394 "FRNAALG.spad" 664496 664508 669353 669358) (-393 "FRNAAF2.spad" 663950 663968 664486 664491) (-392 "FRMOD.spad" 663345 663375 663882 663887) (-391 "FRIDEAL.spad" 662540 662561 663325 663340) (-390 "FRIDEAL2.spad" 662142 662174 662530 662535) (-389 "FRETRCT.spad" 661653 661663 662132 662137) (-388 "FRETRCT.spad" 661032 661044 661513 661518) (-387 "FRAMALG.spad" 659360 659373 660988 661027) (-386 "FRAMALG.spad" 657720 657735 659350 659355) (-385 "FRAC.spad" 654823 654833 655226 655399) (-384 "FRAC2.spad" 654426 654438 654813 654818) (-383 "FR2.spad" 653760 653772 654416 654421) (-382 "FPS.spad" 650569 650577 653650 653755) (-381 "FPS.spad" 647406 647416 650489 650494) (-380 "FPC.spad" 646448 646456 647308 647401) (-379 "FPC.spad" 645576 645586 646438 646443) (-378 "FPATMAB.spad" 645328 645338 645556 645571) (-377 "FPARFRAC.spad" 643801 643818 645318 645323) (-376 "FORTRAN.spad" 642307 642350 643791 643796) (-375 "FORT.spad" 641236 641244 642297 642302) (-374 "FORTFN.spad" 638396 638404 641216 641231) (-373 "FORTCAT.spad" 638070 638078 638376 638391) (-372 "FORMULA.spad" 635408 635416 638060 638065) (-371 "FORMULA1.spad" 634887 634897 635398 635403) (-370 "FORDER.spad" 634578 634602 634877 634882) (-369 "FOP.spad" 633779 633787 634568 634573) (-368 "FNLA.spad" 633203 633225 633747 633774) (-367 "FNCAT.spad" 631531 631539 633193 633198) (-366 "FNAME.spad" 631423 631431 631521 631526) (-365 "FMTC.spad" 631221 631229 631349 631418) (-364 "FMONOID.spad" 628276 628286 631177 631182) (-363 "FM.spad" 627971 627983 628210 628237) (-362 "FMFUN.spad" 624991 624999 627951 627966) (-361 "FMC.spad" 624033 624041 624971 624986) (-360 "FMCAT.spad" 621687 621705 624001 624028) (-359 "FM1.spad" 621044 621056 621621 621648) (-358 "FLOATRP.spad" 618765 618779 621034 621039) (-357 "FLOAT.spad" 611929 611937 618631 618760) (-356 "FLOATCP.spad" 609346 609360 611919 611924) (-355 "FLINEXP.spad" 609058 609068 609326 609341) (-354 "FLINEXP.spad" 608724 608736 608994 608999) (-353 "FLASORT.spad" 608044 608056 608714 608719) (-352 "FLALG.spad" 605690 605709 607970 608039) (-351 "FLAGG.spad" 602696 602706 605658 605685) (-350 "FLAGG.spad" 599615 599627 602579 602584) (-349 "FLAGG2.spad" 598296 598312 599605 599610) (-348 "FINRALG.spad" 596325 596338 598252 598291) (-347 "FINRALG.spad" 594280 594295 596209 596214) (-346 "FINITE.spad" 593432 593440 594270 594275) (-345 "FINAALG.spad" 582413 582423 593374 593427) (-344 "FINAALG.spad" 571406 571418 582369 582374) (-343 "FILE.spad" 570989 570999 571396 571401) (-342 "FILECAT.spad" 569507 569524 570979 570984) (-341 "FIELD.spad" 568913 568921 569409 569502) (-340 "FIELD.spad" 568405 568415 568903 568908) (-339 "FGROUP.spad" 567014 567024 568385 568400) (-338 "FGLMICPK.spad" 565801 565816 567004 567009) (-337 "FFX.spad" 565176 565191 565517 565610) (-336 "FFSLPE.spad" 564665 564686 565166 565171) (-335 "FFPOLY.spad" 555917 555928 564655 564660) (-334 "FFPOLY2.spad" 554977 554994 555907 555912) (-333 "FFP.spad" 554374 554394 554693 554786) (-332 "FF.spad" 553822 553838 554055 554148) (-331 "FFNBX.spad" 552334 552354 553538 553631) (-330 "FFNBP.spad" 550847 550864 552050 552143) (-329 "FFNB.spad" 549312 549333 550528 550621) (-328 "FFINTBAS.spad" 546726 546745 549302 549307) (-327 "FFIELDC.spad" 544301 544309 546628 546721) (-326 "FFIELDC.spad" 541962 541972 544291 544296) (-325 "FFHOM.spad" 540710 540727 541952 541957) (-324 "FFF.spad" 538145 538156 540700 540705) (-323 "FFCGX.spad" 536992 537012 537861 537954) (-322 "FFCGP.spad" 535881 535901 536708 536801) (-321 "FFCG.spad" 534673 534694 535562 535655) (-320 "FFCAT.spad" 527574 527596 534512 534668) (-319 "FFCAT.spad" 520554 520578 527494 527499) (-318 "FFCAT2.spad" 520299 520339 520544 520549) (-317 "FEXPR.spad" 512012 512058 520059 520098) (-316 "FEVALAB.spad" 511718 511728 512002 512007) (-315 "FEVALAB.spad" 511209 511221 511495 511500) (-314 "FDIV.spad" 510651 510675 511199 511204) (-313 "FDIVCAT.spad" 508693 508717 510641 510646) (-312 "FDIVCAT.spad" 506733 506759 508683 508688) (-311 "FDIV2.spad" 506387 506427 506723 506728) (-310 "FCPAK1.spad" 504940 504948 506377 506382) (-309 "FCOMP.spad" 504319 504329 504930 504935) (-308 "FC.spad" 494144 494152 504309 504314) (-307 "FAXF.spad" 487079 487093 494046 494139) (-306 "FAXF.spad" 480066 480082 487035 487040) (-305 "FARRAY.spad" 478212 478222 479249 479276) (-304 "FAMR.spad" 476332 476344 478110 478207) (-303 "FAMR.spad" 474436 474450 476216 476221) (-302 "FAMONOID.spad" 474086 474096 474390 474395) (-301 "FAMONC.spad" 472308 472320 474076 474081) (-300 "FAGROUP.spad" 471914 471924 472204 472231) (-299 "FACUTIL.spad" 470110 470127 471904 471909) (-298 "FACTFUNC.spad" 469286 469296 470100 470105) (-297 "EXPUPXS.spad" 466119 466142 467418 467567) (-296 "EXPRTUBE.spad" 463347 463355 466109 466114) (-295 "EXPRODE.spad" 460219 460235 463337 463342) (-294 "EXPR.spad" 455521 455531 456235 456638) (-293 "EXPR2UPS.spad" 451613 451626 455511 455516) (-292 "EXPR2.spad" 451316 451328 451603 451608) (-291 "EXPEXPAN.spad" 448257 448282 448891 448984) (-290 "EXIT.spad" 447928 447936 448247 448252) (-289 "EVALCYC.spad" 447386 447400 447918 447923) (-288 "EVALAB.spad" 446950 446960 447376 447381) (-287 "EVALAB.spad" 446512 446524 446940 446945) (-286 "EUCDOM.spad" 444054 444062 446438 446507) (-285 "EUCDOM.spad" 441658 441668 444044 444049) (-284 "ESTOOLS.spad" 433498 433506 441648 441653) (-283 "ESTOOLS2.spad" 433099 433113 433488 433493) (-282 "ESTOOLS1.spad" 432784 432795 433089 433094) (-281 "ES.spad" 425331 425339 432774 432779) (-280 "ES.spad" 417786 417796 425231 425236) (-279 "ESCONT.spad" 414559 414567 417776 417781) (-278 "ESCONT1.spad" 414308 414320 414549 414554) (-277 "ES2.spad" 413803 413819 414298 414303) (-276 "ES1.spad" 413369 413385 413793 413798) (-275 "ERROR.spad" 410690 410698 413359 413364) (-274 "EQTBL.spad" 409162 409184 409371 409398) (-273 "EQ.spad" 404046 404056 406845 406954) (-272 "EQ2.spad" 403762 403774 404036 404041) (-271 "EP.spad" 400076 400086 403752 403757) (-270 "ENV.spad" 398778 398786 400066 400071) (-269 "ENTIRER.spad" 398446 398454 398722 398773) (-268 "EMR.spad" 397647 397688 398372 398441) (-267 "ELTAGG.spad" 395887 395906 397637 397642) (-266 "ELTAGG.spad" 394091 394112 395843 395848) (-265 "ELTAB.spad" 393538 393556 394081 394086) (-264 "ELFUTS.spad" 392917 392936 393528 393533) (-263 "ELEMFUN.spad" 392606 392614 392907 392912) (-262 "ELEMFUN.spad" 392293 392303 392596 392601) (-261 "ELAGG.spad" 390224 390234 392261 392288) (-260 "ELAGG.spad" 388104 388116 390143 390148) (-259 "ELABEXPR.spad" 387035 387043 388094 388099) (-258 "EFUPXS.spad" 383811 383841 386991 386996) (-257 "EFULS.spad" 380647 380670 383767 383772) (-256 "EFSTRUC.spad" 378602 378618 380637 380642) (-255 "EF.spad" 373368 373384 378592 378597) (-254 "EAB.spad" 371644 371652 373358 373363) (-253 "E04UCFA.spad" 371180 371188 371634 371639) (-252 "E04NAFA.spad" 370757 370765 371170 371175) (-251 "E04MBFA.spad" 370337 370345 370747 370752) (-250 "E04JAFA.spad" 369873 369881 370327 370332) (-249 "E04GCFA.spad" 369409 369417 369863 369868) (-248 "E04FDFA.spad" 368945 368953 369399 369404) (-247 "E04DGFA.spad" 368481 368489 368935 368940) (-246 "E04AGNT.spad" 364323 364331 368471 368476) (-245 "DVARCAT.spad" 361008 361018 364313 364318) (-244 "DVARCAT.spad" 357691 357703 360998 361003) (-243 "DSMP.spad" 355125 355139 355430 355557) (-242 "DROPT.spad" 349070 349078 355115 355120) (-241 "DROPT1.spad" 348733 348743 349060 349065) (-240 "DROPT0.spad" 343560 343568 348723 348728) (-239 "DRAWPT.spad" 341715 341723 343550 343555) (-238 "DRAW.spad" 334315 334328 341705 341710) (-237 "DRAWHACK.spad" 333623 333633 334305 334310) (-236 "DRAWCX.spad" 331065 331073 333613 333618) (-235 "DRAWCURV.spad" 330602 330617 331055 331060) (-234 "DRAWCFUN.spad" 319774 319782 330592 330597) (-233 "DQAGG.spad" 317930 317940 319730 319769) (-232 "DPOLCAT.spad" 313271 313287 317798 317925) (-231 "DPOLCAT.spad" 308698 308716 313227 313232) (-230 "DPMO.spad" 302048 302064 302186 302482) (-229 "DPMM.spad" 295411 295429 295536 295832) (-228 "DOMAIN.spad" 294682 294690 295401 295406) (-227 "DMP.spad" 291907 291922 292479 292606) (-226 "DLP.spad" 291255 291265 291897 291902) (-225 "DLIST.spad" 289667 289677 290438 290465) (-224 "DLAGG.spad" 288068 288078 289647 289662) (-223 "DIVRING.spad" 287515 287523 288012 288063) (-222 "DIVRING.spad" 287006 287016 287505 287510) (-221 "DISPLAY.spad" 285186 285194 286996 287001) (-220 "DIRPROD.spad" 276091 276107 276731 276860) (-219 "DIRPROD2.spad" 274899 274917 276081 276086) (-218 "DIRPCAT.spad" 273831 273847 274753 274894) (-217 "DIRPCAT.spad" 272503 272521 273427 273432) (-216 "DIOSP.spad" 271328 271336 272493 272498) (-215 "DIOPS.spad" 270300 270310 271296 271323) (-214 "DIOPS.spad" 269258 269270 270256 270261) (-213 "DIFRING.spad" 268550 268558 269238 269253) (-212 "DIFRING.spad" 267850 267860 268540 268545) (-211 "DIFEXT.spad" 267009 267019 267830 267845) (-210 "DIFEXT.spad" 266085 266097 266908 266913) (-209 "DIAGG.spad" 265703 265713 266053 266080) (-208 "DIAGG.spad" 265341 265353 265693 265698) (-207 "DHMATRIX.spad" 263645 263655 264798 264825) (-206 "DFSFUN.spad" 257053 257061 263635 263640) (-205 "DFLOAT.spad" 253576 253584 256943 257048) (-204 "DFINTTLS.spad" 251785 251801 253566 253571) (-203 "DERHAM.spad" 249695 249727 251765 251780) (-202 "DEQUEUE.spad" 249013 249023 249302 249329) (-201 "DEGRED.spad" 248628 248642 249003 249008) (-200 "DEFINTRF.spad" 246153 246163 248618 248623) (-199 "DEFINTEF.spad" 244649 244665 246143 246148) (-198 "DECIMAL.spad" 242533 242541 243119 243212) (-197 "DDFACT.spad" 240332 240349 242523 242528) (-196 "DBLRESP.spad" 239930 239954 240322 240327) (-195 "DBASE.spad" 238502 238512 239920 239925) (-194 "D03FAFA.spad" 238330 238338 238492 238497) (-193 "D03EEFA.spad" 238150 238158 238320 238325) (-192 "D03AGNT.spad" 237230 237238 238140 238145) (-191 "D02EJFA.spad" 236692 236700 237220 237225) (-190 "D02CJFA.spad" 236170 236178 236682 236687) (-189 "D02BHFA.spad" 235660 235668 236160 236165) (-188 "D02BBFA.spad" 235150 235158 235650 235655) (-187 "D02AGNT.spad" 229954 229962 235140 235145) (-186 "D01WGTS.spad" 228273 228281 229944 229949) (-185 "D01TRNS.spad" 228250 228258 228263 228268) (-184 "D01GBFA.spad" 227772 227780 228240 228245) (-183 "D01FCFA.spad" 227294 227302 227762 227767) (-182 "D01ASFA.spad" 226762 226770 227284 227289) (-181 "D01AQFA.spad" 226208 226216 226752 226757) (-180 "D01APFA.spad" 225632 225640 226198 226203) (-179 "D01ANFA.spad" 225126 225134 225622 225627) (-178 "D01AMFA.spad" 224636 224644 225116 225121) (-177 "D01ALFA.spad" 224176 224184 224626 224631) (-176 "D01AKFA.spad" 223702 223710 224166 224171) (-175 "D01AJFA.spad" 223225 223233 223692 223697) (-174 "D01AGNT.spad" 219284 219292 223215 223220) (-173 "CYCLOTOM.spad" 218790 218798 219274 219279) (-172 "CYCLES.spad" 215622 215630 218780 218785) (-171 "CVMP.spad" 215039 215049 215612 215617) (-170 "CTRIGMNP.spad" 213529 213545 215029 215034) (-169 "CTORCALL.spad" 213117 213125 213519 213524) (-168 "CSTTOOLS.spad" 212360 212373 213107 213112) (-167 "CRFP.spad" 206064 206077 212350 212355) (-166 "CRAPACK.spad" 205107 205117 206054 206059) (-165 "CPMATCH.spad" 204607 204622 205032 205037) (-164 "CPIMA.spad" 204312 204331 204597 204602) (-163 "COORDSYS.spad" 199205 199215 204302 204307) (-162 "CONTOUR.spad" 198607 198615 199195 199200) (-161 "CONTFRAC.spad" 194219 194229 198509 198602) (-160 "COMRING.spad" 193893 193901 194157 194214) (-159 "COMPPROP.spad" 193407 193415 193883 193888) (-158 "COMPLPAT.spad" 193174 193189 193397 193402) (-157 "COMPLEX.spad" 187207 187217 187451 187712) (-156 "COMPLEX2.spad" 186920 186932 187197 187202) (-155 "COMPFACT.spad" 186522 186536 186910 186915) (-154 "COMPCAT.spad" 184578 184588 186244 186517) (-153 "COMPCAT.spad" 182341 182353 184009 184014) (-152 "COMMUPC.spad" 182087 182105 182331 182336) (-151 "COMMONOP.spad" 181620 181628 182077 182082) (-150 "COMM.spad" 181429 181437 181610 181615) (-149 "COMBOPC.spad" 180334 180342 181419 181424) (-148 "COMBINAT.spad" 179079 179089 180324 180329) (-147 "COMBF.spad" 176447 176463 179069 179074) (-146 "COLOR.spad" 175284 175292 176437 176442) (-145 "CMPLXRT.spad" 174993 175010 175274 175279) (-144 "CLIP.spad" 171085 171093 174983 174988) (-143 "CLIF.spad" 169724 169740 171041 171080) (-142 "CLAGG.spad" 166199 166209 169704 169719) (-141 "CLAGG.spad" 162555 162567 166062 166067) (-140 "CINTSLPE.spad" 161880 161893 162545 162550) (-139 "CHVAR.spad" 159958 159980 161870 161875) (-138 "CHARZ.spad" 159873 159881 159938 159953) (-137 "CHARPOL.spad" 159381 159391 159863 159868) (-136 "CHARNZ.spad" 159134 159142 159361 159376) (-135 "CHAR.spad" 157002 157010 159124 159129) (-134 "CFCAT.spad" 156318 156326 156992 156997) (-133 "CDEN.spad" 155476 155490 156308 156313) (-132 "CCLASS.spad" 153625 153633 154887 154926) (-131 "CATEGORY.spad" 153404 153412 153615 153620) (-130 "CARTEN.spad" 148507 148531 153394 153399) (-129 "CARTEN2.spad" 147893 147920 148497 148502) (-128 "CARD.spad" 145182 145190 147867 147888) (-127 "CACHSET.spad" 144804 144812 145172 145177) (-126 "CABMON.spad" 144357 144365 144794 144799) (-125 "BYTE.spad" 143751 143759 144347 144352) (-124 "BYTEARY.spad" 142826 142834 142920 142947) (-123 "BTREE.spad" 141895 141905 142433 142460) (-122 "BTOURN.spad" 140898 140908 141502 141529) (-121 "BTCAT.spad" 140274 140284 140854 140893) (-120 "BTCAT.spad" 139682 139694 140264 140269) (-119 "BTAGG.spad" 138698 138706 139638 139677) (-118 "BTAGG.spad" 137746 137756 138688 138693) (-117 "BSTREE.spad" 136481 136491 137353 137380) (-116 "BRILL.spad" 134676 134687 136471 136476) (-115 "BRAGG.spad" 133590 133600 134656 134671) (-114 "BRAGG.spad" 132478 132490 133546 133551) (-113 "BPADICRT.spad" 130462 130474 130717 130810) (-112 "BPADIC.spad" 130126 130138 130388 130457) (-111 "BOUNDZRO.spad" 129782 129799 130116 130121) (-110 "BOP.spad" 125246 125254 129772 129777) (-109 "BOP1.spad" 122632 122642 125202 125207) (-108 "BOOLEAN.spad" 121895 121903 122622 122627) (-107 "BMODULE.spad" 121607 121619 121863 121890) (-106 "BITS.spad" 121026 121034 121243 121270) (-105 "BINFILE.spad" 120369 120377 121016 121021) (-104 "BINDING.spad" 119788 119796 120359 120364) (-103 "BINARY.spad" 117681 117689 118258 118351) (-102 "BGAGG.spad" 116866 116876 117649 117676) (-101 "BGAGG.spad" 116071 116083 116856 116861) (-100 "BFUNCT.spad" 115635 115643 116051 116066) (-99 "BEZOUT.spad" 114770 114796 115585 115590) (-98 "BBTREE.spad" 111590 111599 114377 114404) (-97 "BASTYPE.spad" 111263 111270 111580 111585) (-96 "BASTYPE.spad" 110934 110943 111253 111258) (-95 "BALFACT.spad" 110374 110386 110924 110929) (-94 "AUTOMOR.spad" 109821 109830 110354 110369) (-93 "ATTREG.spad" 106540 106547 109573 109816) (-92 "ATTRBUT.spad" 102563 102570 106520 106535) (-91 "ATRIG.spad" 102033 102040 102553 102558) (-90 "ATRIG.spad" 101501 101510 102023 102028) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file |