aboutsummaryrefslogtreecommitdiff
path: root/src/share/algebra/browse.daase
diff options
context:
space:
mode:
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r--src/share/algebra/browse.daase1282
1 files changed, 641 insertions, 641 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index 06dabb7d..81ffe67b 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2276553 . 3439752255)
+(2276389 . 3440274381)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,7 +46,7 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4379 . T) (-4377 . T) (-4376 . T) ((-4384 "*") . T) (-4375 . T) (-4380 . T) (-4374 . T))
+((-4380 . T) (-4378 . T) (-4377 . T) ((-4385 "*") . T) (-4376 . T) (-4381 . T) (-4375 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
@@ -56,14 +56,14 @@ NIL
((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression \\spad{`d'}.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression.")))
NIL
NIL
-(-32 R -3160)
+(-32 R -3198)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))
(-33 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4382)))
+((|HasAttribute| |#1| (QUOTE -4383)))
(-34)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
@@ -74,7 +74,7 @@ NIL
NIL
(-36 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4382 . T) (-4383 . T))
+((-4383 . T) (-4384 . T))
NIL
(-37 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
@@ -82,17 +82,17 @@ NIL
NIL
(-38 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-39 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-40 -3160 UP UPUP -4169)
+(-40 -3198 UP UPUP -1783)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4375 |has| (-406 |#2|) (-362)) (-4380 |has| (-406 |#2|) (-362)) (-4374 |has| (-406 |#2|) (-362)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-3986 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3986 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-3986 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -631) (QUOTE (-558)))) (-3986 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
-(-41 R -3160)
+((-4376 |has| (-406 |#2|) (-362)) (-4381 |has| (-406 |#2|) (-362)) (-4375 |has| (-406 |#2|) (-362)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-3996 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3996 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-3996 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -631) (QUOTE (-558)))) (-3996 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
+(-41 R -3198)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -429) (|devaluate| |#1|)))))
@@ -106,23 +106,23 @@ NIL
((|HasCategory| |#1| (QUOTE (-306))))
(-44 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4379 |has| |#1| (-550)) (-4377 . T) (-4376 . T))
+((-4380 |has| |#1| (-550)) (-4378 . T) (-4377 . T))
((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550))))
(-45 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4382 . T) (-4383 . T))
-((-3986 (-12 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2957) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2957) (|devaluate| |#2|))))))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2957) (|devaluate| |#2|)))))))
+((-4383 . T) (-4384 . T))
+((-3996 (-12 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3528) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3528) (|devaluate| |#2|))))))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3528) (|devaluate| |#2|)))))))
(-46 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))))
(-47 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-48)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
(-49)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
@@ -130,7 +130,7 @@ NIL
NIL
(-50 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-51 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -144,7 +144,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-54 |Base| R -3160)
+(-54 |Base| R -3198)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -158,7 +158,7 @@ NIL
NIL
(-57 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4382 . T) (-4383 . T))
+((-4383 . T) (-4384 . T))
NIL
(-58 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -166,65 +166,65 @@ NIL
NIL
(-59 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-60 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-61 -3072)
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-61 -3149)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3072)
+(-62 -3149)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-63 -3072)
+(-63 -3149)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3072)
+(-64 -3149)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -3072)
+(-65 -3149)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3072)
+(-66 -3149)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-67 -3072)
+(-67 -3149)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-68 -3072)
+(-68 -3149)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3072)
+(-69 -3149)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-70 -3072)
+(-70 -3149)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-71 -3072)
+(-71 -3149)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-72 -3072)
+(-72 -3149)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-73 -3072)
+(-73 -3149)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-74 -3072)
+(-74 -3149)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -236,55 +236,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-77 -3072)
+(-77 -3149)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-78 -3072)
+(-78 -3149)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-79 -3072)
+(-79 -3149)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3072)
+(-80 -3149)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3072)
+(-81 -3149)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")))
NIL
NIL
-(-82 -3072)
+(-82 -3149)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3072)
+(-83 -3149)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3072)
+(-84 -3149)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3072)
+(-85 -3149)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3072)
+(-86 -3149)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-87 -3072)
+(-87 -3149)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-88 -3072)
+(-88 -3149)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-89 -3072)
+(-89 -3149)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -294,8 +294,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-362))))
(-91 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-92 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -318,15 +318,15 @@ NIL
NIL
(-97)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4382 . T))
+((-4383 . T))
NIL
(-98)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4382 . T) ((-4384 "*") . T) (-4383 . T) (-4379 . T) (-4377 . T) (-4376 . T) (-4375 . T) (-4380 . T) (-4374 . T) (-4373 . T) (-4372 . T) (-4371 . T) (-4370 . T) (-4378 . T) (-4381 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4369 . T))
+((-4383 . T) ((-4385 "*") . T) (-4384 . T) (-4380 . T) (-4378 . T) (-4377 . T) (-4376 . T) (-4381 . T) (-4375 . T) (-4374 . T) (-4373 . T) (-4372 . T) (-4371 . T) (-4379 . T) (-4382 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4370 . T))
NIL
(-99 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-100 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -342,15 +342,15 @@ NIL
NIL
(-103 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-104 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4384 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4385 "*"))))
(-105)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4382 . T))
+((-4383 . T))
NIL
(-106 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -358,23 +358,23 @@ NIL
NIL
(-107 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4383 . T))
+((-4384 . T))
NIL
(-108)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3986 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3996 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
(-109)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
NIL
(-110)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-112) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -605) (QUOTE (-853)))))
(-111 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
NIL
(-112)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -388,22 +388,22 @@ NIL
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-115 -3160 UP)
+(-115 -3198 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-116 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-117 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| (-116 |#1|) (QUOTE (-899))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-146))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-116 |#1|) (QUOTE (-1012))) (|HasCategory| (-116 |#1|) (QUOTE (-811))) (-3986 (|HasCategory| (-116 |#1|) (QUOTE (-811))) (|HasCategory| (-116 |#1|) (QUOTE (-841)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (QUOTE (-1138))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (QUOTE (-232))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-306))) (|HasCategory| (-116 |#1|) (QUOTE (-543))) (|HasCategory| (-116 |#1|) (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-899)))) (|HasCategory| (-116 |#1|) (QUOTE (-144)))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| (-116 |#1|) (QUOTE (-899))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-116 |#1|) (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-146))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-116 |#1|) (QUOTE (-1012))) (|HasCategory| (-116 |#1|) (QUOTE (-811))) (-3996 (|HasCategory| (-116 |#1|) (QUOTE (-811))) (|HasCategory| (-116 |#1|) (QUOTE (-841)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (QUOTE (-1138))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-116 |#1|) (QUOTE (-232))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -116) (|devaluate| |#1|)) (LIST (QUOTE -116) (|devaluate| |#1|)))) (|HasCategory| (-116 |#1|) (QUOTE (-306))) (|HasCategory| (-116 |#1|) (QUOTE (-543))) (|HasCategory| (-116 |#1|) (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-116 |#1|) (QUOTE (-899)))) (|HasCategory| (-116 |#1|) (QUOTE (-144)))))
(-118 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4383)))
+((|HasAttribute| |#1| (QUOTE -4384)))
(-119 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
@@ -414,15 +414,15 @@ NIL
NIL
(-121 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-122 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-123)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
(-124 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -430,22 +430,22 @@ NIL
NIL
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4382 . T) (-4383 . T))
+((-4383 . T) (-4384 . T))
NIL
(-126 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-127 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-128)
((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity \\spad{`n'}. The array can then store up to \\spad{`n'} bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,{}n)} sets the number of active bytes in the `buf'. Error if \\spad{`n'} is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#buf} returns the number of active elements in the buffer.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0.")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) (-3986 (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-129) (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-129) (QUOTE (-1087)))) (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129)))))) (-3996 (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))) (|HasCategory| (-129) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-129) (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-129) (QUOTE (-1087)))) (|HasCategory| (-129) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-129) (QUOTE (-1087))) (|HasCategory| (-129) (LIST (QUOTE -308) (QUOTE (-129))))))
(-129)
-((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
+((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample()} returns a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
NIL
(-130)
@@ -462,13 +462,13 @@ NIL
NIL
(-133)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4384 "*") . T))
+(((-4385 "*") . T))
NIL
-(-134 |minix| -4269 S T$)
+(-134 |minix| -4352 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-135 |minix| -4269 R)
+(-135 |minix| -4352 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -490,8 +490,8 @@ NIL
NIL
(-140)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4382 . T) (-4372 . T) (-4383 . T))
-((-3986 (-12 (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+((-4383 . T) (-4373 . T) (-4384 . T))
+((-3996 (-12 (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-367))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
(-141 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -506,7 +506,7 @@ NIL
NIL
(-144)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-145 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -514,9 +514,9 @@ NIL
NIL
(-146)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4379 . T))
+((-4380 . T))
NIL
-(-147 -3160 UP UPUP)
+(-147 -3198 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -527,14 +527,14 @@ NIL
(-149 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasAttribute| |#1| (QUOTE -4382)))
+((|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasAttribute| |#1| (QUOTE -4383)))
(-150 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
NIL
(-151 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4377 . T) (-4376 . T) (-4379 . T))
+((-4378 . T) (-4377 . T) (-4380 . T))
NIL
(-152)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -556,7 +556,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-157 R -3160)
+(-157 R -3198)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -587,10 +587,10 @@ NIL
(-164 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-992))) (|HasCategory| |#2| (QUOTE (-1185))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4378)) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-841))))
+((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-992))) (|HasCategory| |#2| (QUOTE (-1185))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4379)) (|HasAttribute| |#2| (QUOTE -4382)) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-841))))
(-165 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")))
-((-4375 -3986 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4378 |has| |#1| (-6 -4378)) (-4381 |has| |#1| (-6 -4381)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 -3996 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4379 |has| |#1| (-6 -4379)) (-4382 |has| |#1| (-6 -4382)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-166 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -602,8 +602,8 @@ NIL
NIL
(-168 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4375 -3986 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4378 |has| |#1| (-6 -4378)) (-4381 |has| |#1| (-6 -4381)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-819)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1185)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-899))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-899))))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (QUOTE (-1048))) (-12 (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasAttribute| |#1| (QUOTE -4378)) (|HasAttribute| |#1| (QUOTE -4381)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-348)))))
+((-4376 -3996 (|has| |#1| (-550)) (-12 (|has| |#1| (-306)) (|has| |#1| (-899)))) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4379 |has| |#1| (-6 -4379)) (-4382 |has| |#1| (-6 -4382)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-367)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-819)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-1185)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-899))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-899))))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| |#1| (QUOTE (-1048))) (-12 (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-1185)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-232))) (-12 (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasAttribute| |#1| (QUOTE -4379)) (|HasAttribute| |#1| (QUOTE -4382)) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-348)))))
(-169 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -614,7 +614,7 @@ NIL
NIL
(-171)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-172)
((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations.")))
@@ -622,7 +622,7 @@ NIL
NIL
(-173 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4384 "*") . T) (-4375 . T) (-4380 . T) (-4374 . T) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") . T) (-4376 . T) (-4381 . T) (-4375 . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-174)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -676,7 +676,7 @@ NIL
((|constructor| (NIL "This domain provides implementations for constructors.")))
NIL
NIL
-(-187 R -3160)
+(-187 R -3198)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -784,23 +784,23 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-214 -3160 UP UPUP R)
+(-214 -3198 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-215 -3160 FP)
+(-215 -3198 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-216)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3986 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3996 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
(-217)
((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition \\spad{`d'}.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition \\spad{`d'}. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any.")))
NIL
NIL
-(-218 R -3160)
+(-218 R -3198)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -814,19 +814,19 @@ NIL
NIL
(-221 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-222 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4379 . T))
+((-4380 . T))
NIL
-(-223 R -3160)
+(-223 R -3198)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-224)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-1399 . T) (-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-1394 . T) (-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-225)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -834,15 +834,15 @@ NIL
NIL
(-226 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4384 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4385 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-227 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-228 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4383 . T))
+((-4384 . T))
NIL
(-229 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
@@ -850,7 +850,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))))
(-230 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-231 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -858,36 +858,36 @@ NIL
NIL
(-232)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-233 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4382)))
+((|HasAttribute| |#1| (QUOTE -4383)))
(-234 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4383 . T))
+((-4384 . T))
NIL
(-235)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-236 S -4269 R)
+(-236 S -4352 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839))) (|HasAttribute| |#3| (QUOTE -4379)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-1087))))
-(-237 -4269 R)
+((|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839))) (|HasAttribute| |#3| (QUOTE -4380)) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-1087))))
+(-237 -4352 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4376 |has| |#2| (-1039)) (-4377 |has| |#2| (-1039)) (-4379 |has| |#2| (-6 -4379)) ((-4384 "*") |has| |#2| (-171)) (-4382 . T))
+((-4377 |has| |#2| (-1039)) (-4378 |has| |#2| (-1039)) (-4380 |has| |#2| (-6 -4380)) ((-4385 "*") |has| |#2| (-171)) (-4383 . T))
NIL
-(-238 -4269 A B)
+(-238 -4352 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-239 -4269 R)
+(-239 -4352 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4376 |has| |#2| (-1039)) (-4377 |has| |#2| (-1039)) (-4379 |has| |#2| (-6 -4379)) ((-4384 "*") |has| |#2| (-171)) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3986 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3986 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4379)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+((-4377 |has| |#2| (-1039)) (-4378 |has| |#2| (-1039)) (-4380 |has| |#2| (-6 -4380)) ((-4385 "*") |has| |#2| (-171)) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3996 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3996 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
(-240)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -898,7 +898,7 @@ NIL
NIL
(-242)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4375 . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-243 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
@@ -906,16 +906,16 @@ NIL
NIL
(-244 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-245 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-246 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4384 "*") |has| |#2| (-171)) (-4375 |has| |#2| (-550)) (-4380 |has| |#2| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(((-4385 "*") |has| |#2| (-171)) (-4376 |has| |#2| (-550)) (-4381 |has| |#2| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
(-247)
((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object \\spad{`d'}.")))
NIL
@@ -926,23 +926,23 @@ NIL
NIL
(-249 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4379 -3986 (-2146 (|has| |#4| (-1039)) (|has| |#4| (-232))) (-2146 (|has| |#4| (-1039)) (|has| |#4| (-890 (-1163)))) (|has| |#4| (-6 -4379)) (-2146 (|has| |#4| (-1039)) (|has| |#4| (-631 (-558))))) (-4376 |has| |#4| (-1039)) (-4377 |has| |#4| (-1039)) ((-4384 "*") |has| |#4| (-171)) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#4| (QUOTE (-362))) (-3986 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1039)))) (-3986 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (QUOTE (-784))) (-3986 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (QUOTE (-839)))) (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-171))) (-3986 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3986 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-171)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-232)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-717)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-784)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-839)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1087))))) (-3986 (-12 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1039))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (-3986 (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-717))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3986 (|HasCategory| |#4| (QUOTE (-1039))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1087)))) (-3986 (|HasAttribute| |#4| (QUOTE -4379)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))))
+((-4380 -3996 (-2113 (|has| |#4| (-1039)) (|has| |#4| (-232))) (-2113 (|has| |#4| (-1039)) (|has| |#4| (-890 (-1163)))) (|has| |#4| (-6 -4380)) (-2113 (|has| |#4| (-1039)) (|has| |#4| (-631 (-558))))) (-4377 |has| |#4| (-1039)) (-4378 |has| |#4| (-1039)) ((-4385 "*") |has| |#4| (-171)) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#4| (QUOTE (-362))) (-3996 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-1039)))) (-3996 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-362)))) (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (QUOTE (-784))) (-3996 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (QUOTE (-839)))) (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (QUOTE (-171))) (-3996 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3996 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-171)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-232)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-362)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-367)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-717)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-784)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-839)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1087))))) (-3996 (-12 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1039))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-717))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-784))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-839))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (-3996 (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (|HasCategory| |#4| (QUOTE (-717))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3996 (|HasCategory| |#4| (QUOTE (-1039))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1087)))) (-3996 (|HasAttribute| |#4| (QUOTE -4380)) (-12 (|HasCategory| |#4| (QUOTE (-232))) (|HasCategory| |#4| (QUOTE (-1039)))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1039))) (|HasCategory| |#4| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#4| (QUOTE (-130))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))))
(-250 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4379 -3986 (-2146 (|has| |#3| (-1039)) (|has| |#3| (-232))) (-2146 (|has| |#3| (-1039)) (|has| |#3| (-890 (-1163)))) (|has| |#3| (-6 -4379)) (-2146 (|has| |#3| (-1039)) (|has| |#3| (-631 (-558))))) (-4376 |has| |#3| (-1039)) (-4377 |has| |#3| (-1039)) ((-4384 "*") |has| |#3| (-171)) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#3| (QUOTE (-362))) (-3986 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3986 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-784))) (-3986 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839)))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-171))) (-3986 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3986 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-717)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-839)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087))))) (-3986 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3986 (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-717))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3986 (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (-3986 (|HasAttribute| |#3| (QUOTE -4379)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
+((-4380 -3996 (-2113 (|has| |#3| (-1039)) (|has| |#3| (-232))) (-2113 (|has| |#3| (-1039)) (|has| |#3| (-890 (-1163)))) (|has| |#3| (-6 -4380)) (-2113 (|has| |#3| (-1039)) (|has| |#3| (-631 (-558))))) (-4377 |has| |#3| (-1039)) (-4378 |has| |#3| (-1039)) ((-4385 "*") |has| |#3| (-171)) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#3| (QUOTE (-362))) (-3996 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3996 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-784))) (-3996 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839)))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-171))) (-3996 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3996 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-717)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-839)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087))))) (-3996 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3996 (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-717))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3996 (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (-3996 (|HasAttribute| |#3| (QUOTE -4380)) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
(-251 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-232))))
(-252 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
NIL
(-253 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4382 . T) (-4383 . T))
+((-4383 . T) (-4384 . T))
NIL
(-254)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -982,8 +982,8 @@ NIL
NIL
(-263 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#3| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#3| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-264 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -1028,11 +1028,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-275 R -3160)
+(-275 R -3198)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-276 R -3160)
+(-276 R -3198)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -1054,7 +1054,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))))
(-281 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4383 . T))
+((-4384 . T))
NIL
(-282 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1075,18 +1075,18 @@ NIL
(-286 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4383)))
+((|HasAttribute| |#1| (QUOTE -4384)))
(-287 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-288 S R |Mod| -4218 -2596 |exactQuo|)
+(-288 S R |Mod| -4160 -3743 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-289)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4375 . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-290)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1102,21 +1102,21 @@ NIL
NIL
(-293 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4379 -3986 (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4376 |has| |#1| (-1039)) (-4377 |has| |#1| (-1039)))
-((|HasCategory| |#1| (QUOTE (-362))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3986 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717)))) (|HasCategory| |#1| (QUOTE (-471))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-1087)))) (-3986 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-301))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471)))) (-3986 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717)))) (-3986 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-171))))
+((-4380 -3996 (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4377 |has| |#1| (-1039)) (-4378 |has| |#1| (-1039)))
+((|HasCategory| |#1| (QUOTE (-362))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3996 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717)))) (|HasCategory| |#1| (QUOTE (-471))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-1087)))) (-3996 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-301))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-471)))) (-3996 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717)))) (-3996 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-171))))
(-294 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2957) (|devaluate| |#2|)))))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3528) (|devaluate| |#2|)))))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
(-295)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-296 -3160 S)
+(-296 -3198 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-297 E -3160)
+(-297 E -3198)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1154,7 +1154,7 @@ NIL
NIL
(-306)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-307 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1164,7 +1164,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-309 -3160)
+(-309 -3198)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1178,8 +1178,8 @@ NIL
NIL
(-312 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-1012))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-811))) (-3986 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-811))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-841)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-1138))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-232))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -308) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-306))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-543))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (-12 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| $ (QUOTE (-144)))) (-3986 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (-12 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| $ (QUOTE (-144))))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-1012))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-811))) (-3996 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-811))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-841)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-1138))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-232))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -308) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (LIST (QUOTE -285) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1232) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-306))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-543))) (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (-12 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| $ (QUOTE (-144)))) (-3996 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-144))) (-12 (|HasCategory| (-1232 |#1| |#2| |#3| |#4|) (QUOTE (-899))) (|HasCategory| $ (QUOTE (-144))))))
(-313 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1190,9 +1190,9 @@ NIL
NIL
(-315 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4379 -3986 (-2146 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (-12 (|has| |#1| (-550)) (-3986 (-2146 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (|has| |#1| (-1039)) (|has| |#1| (-471)))) (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) ((-4384 "*") |has| |#1| (-550)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-550)) (-4374 |has| |#1| (-550)))
-((-3986 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (-3986 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1099)))) (-3986 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))))) (-3986 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1099)))) (-3986 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))))) (-3986 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
-(-316 R -3160)
+((-4380 -3996 (-2113 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (-12 (|has| |#1| (-550)) (-3996 (-2113 (|has| |#1| (-1039)) (|has| |#1| (-631 (-558)))) (|has| |#1| (-1039)) (|has| |#1| (-471)))) (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) ((-4385 "*") |has| |#1| (-550)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-550)) (-4375 |has| |#1| (-550)))
+((-3996 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (-3996 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-1039)))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1099)))) (-3996 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))))) (-3996 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1099)))) (-3996 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))))) (-3996 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#1| (QUOTE (-1039)))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1099))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
+(-316 R -3198)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1202,8 +1202,8 @@ NIL
NIL
(-318 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -2540) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -3826) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -2560) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3710) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2664) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
(-319 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1214,7 +1214,7 @@ NIL
NIL
(-321 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
((|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-783))))
(-322 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
@@ -1230,19 +1230,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))))
(-325 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-326 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
-(-327 S -3160)
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+(-327 S -3198)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))))
-(-328 -3160)
+(-328 -3198)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-329)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")))
@@ -1260,15 +1260,15 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-333 S -3160 UP UPUP R)
+(-333 S -3198 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-334 -3160 UP UPUP R)
+(-334 -3198 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-335 -3160 UP UPUP R)
+(-335 -3198 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
@@ -1282,32 +1282,32 @@ NIL
NIL
(-338 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-378)))) (|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
(-339 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-340 S -3160 UP UPUP)
+(-340 S -3198 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-362))))
-(-341 -3160 UP UPUP)
+(-341 -3198 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4375 |has| (-406 |#2|) (-362)) (-4380 |has| (-406 |#2|) (-362)) (-4374 |has| (-406 |#2|) (-362)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 |has| (-406 |#2|) (-362)) (-4381 |has| (-406 |#2|) (-362)) (-4375 |has| (-406 |#2|) (-362)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-342 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
(-343 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-344 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-345 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1322,33 +1322,33 @@ NIL
NIL
(-348)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
-(-349 R UP -3160)
+(-349 R UP -3198)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-350 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
(-351 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-352 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-353 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (|HasCategory| (-900 |#1|) (QUOTE (-144))) (|HasCategory| (-900 |#1|) (QUOTE (-367)))) (|HasCategory| (-900 |#1|) (QUOTE (-146))) (|HasCategory| (-900 |#1|) (QUOTE (-367))) (|HasCategory| (-900 |#1|) (QUOTE (-144))))
(-354 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
-(-355 -3160 GF)
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+(-355 -3198 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1356,21 +1356,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-357 -3160 FP FPP)
+(-357 -3198 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-358 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-144))))
(-359 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-360 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-361 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1378,7 +1378,7 @@ NIL
NIL
(-362)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-363 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1394,7 +1394,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-550))))
(-366 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4379 |has| |#1| (-550)) (-4377 . T) (-4376 . T))
+((-4380 |has| |#1| (-550)) (-4378 . T) (-4377 . T))
NIL
(-367)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1406,7 +1406,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-362))))
(-369 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-370 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1415,14 +1415,14 @@ NIL
(-371 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4383)) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))))
+((|HasAttribute| |#1| (QUOTE -4384)) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))))
(-372 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4382 . T))
+((-4383 . T))
NIL
(-373 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4377 . T) (-4376 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4378 . T) (-4377 . T))
NIL
(-374 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1434,7 +1434,7 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))))
(-376 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4379 . T))
+((-4380 . T))
NIL
(-377 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1442,7 +1442,7 @@ NIL
NIL
(-378)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4365 . T) (-4373 . T) (-1399 . T) (-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4366 . T) (-4374 . T) (-1394 . T) (-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-379 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1450,11 +1450,11 @@ NIL
NIL
(-380 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
((|HasCategory| |#1| (QUOTE (-171))))
(-381 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
NIL
(-382)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
@@ -1466,7 +1466,7 @@ NIL
NIL
(-384 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
((|HasCategory| |#1| (QUOTE (-171))))
(-385 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
@@ -1474,7 +1474,7 @@ NIL
((|HasCategory| |#1| (QUOTE (-841))))
(-386)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-387)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1486,13 +1486,13 @@ NIL
NIL
(-389 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
NIL
(-390)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-391 -3160 UP UPUP R)
+(-391 -3198 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1516,11 +1516,11 @@ NIL
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-397 -3072 |returnType| -3987 |symbols|)
+(-397 -3149 |returnType| -1315 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-398 -3160 UP)
+(-398 -3198 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
@@ -1534,15 +1534,15 @@ NIL
NIL
(-401)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-402 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4365)) (|HasAttribute| |#1| (QUOTE -4373)))
+((|HasAttribute| |#1| (QUOTE -4366)) (|HasAttribute| |#1| (QUOTE -4374)))
(-403)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-1399 . T) (-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-1394 . T) (-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-404 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1554,15 +1554,15 @@ NIL
NIL
(-406 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4369 -12 (|has| |#1| (-6 -4380)) (|has| |#1| (-450)) (|has| |#1| (-6 -4369))) (-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-811))) (-3986 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-841)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819))))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-543))) (-12 (|HasAttribute| |#1| (QUOTE -4380)) (|HasAttribute| |#1| (QUOTE -4369)) (|HasCategory| |#1| (QUOTE (-450)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+((-4370 -12 (|has| |#1| (-6 -4381)) (|has| |#1| (-450)) (|has| |#1| (-6 -4370))) (-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-811))) (-3996 (|HasCategory| |#1| (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-841)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819))))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-819)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-543))) (-12 (|HasAttribute| |#1| (QUOTE -4381)) (|HasAttribute| |#1| (QUOTE -4370)) (|HasCategory| |#1| (QUOTE (-450)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-407 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-408 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-409 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
@@ -1576,11 +1576,11 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-412 R -3160 UP A)
+(-412 R -3198 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4379 . T))
+((-4380 . T))
NIL
-(-413 R -3160 UP A |ibasis|)
+(-413 R -3198 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
((|HasCategory| |#4| (LIST (QUOTE -1028) (|devaluate| |#2|))))
@@ -1594,12 +1594,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-362))))
(-416 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4379 |has| |#1| (-550)) (-4377 . T) (-4376 . T))
+((-4380 |has| |#1| (-550)) (-4378 . T) (-4377 . T))
NIL
(-417 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -308) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-1204))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1204)))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-450))))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -308) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -285) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-1204))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-1204)))) (|HasCategory| |#1| (QUOTE (-1012))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-450))))
(-418 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1626,17 +1626,17 @@ NIL
((|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-367))))
(-424 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4382 . T) (-4372 . T) (-4383 . T))
+((-4383 . T) (-4373 . T) (-4384 . T))
NIL
-(-425 R -3160)
+(-425 R -3198)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-426 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4369 -12 (|has| |#1| (-6 -4369)) (|has| |#2| (-6 -4369))) (-4376 . T) (-4377 . T) (-4379 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4369)) (|HasAttribute| |#2| (QUOTE -4369))))
-(-427 R -3160)
+((-4370 -12 (|has| |#1| (-6 -4370)) (|has| |#2| (-6 -4370))) (-4377 . T) (-4378 . T) (-4380 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4370)) (|HasAttribute| |#2| (QUOTE -4370))))
+(-427 R -3198)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
@@ -1646,17 +1646,17 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-1099))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))))
(-429 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4379 -3986 (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) ((-4384 "*") |has| |#1| (-550)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-550)) (-4374 |has| |#1| (-550)))
+((-4380 -3996 (|has| |#1| (-1039)) (|has| |#1| (-471))) (-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) ((-4385 "*") |has| |#1| (-550)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-550)) (-4375 |has| |#1| (-550)))
NIL
-(-430 R -3160)
+(-430 R -3198)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-431 R -3160)
+(-431 R -3198)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-432 R -3160)
+(-432 R -3198)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1664,7 +1664,7 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-434 R -3160 UP)
+(-434 R -3198 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
((|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-48)))))
@@ -1692,7 +1692,7 @@ NIL
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-441 R UP -3160)
+(-441 R UP -3198)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1730,16 +1730,16 @@ NIL
NIL
(-450)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-451 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4379 |has| (-406 (-942 |#1|)) (-550)) (-4377 . T) (-4376 . T))
+((-4380 |has| (-406 (-942 |#1|)) (-550)) (-4378 . T) (-4377 . T))
((|HasCategory| (-406 (-942 |#1|)) (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| (-406 (-942 |#1|)) (QUOTE (-550))))
(-452 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4384 "*") |has| |#2| (-171)) (-4375 |has| |#2| (-550)) (-4380 |has| |#2| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(((-4385 "*") |has| |#2| (-171)) (-4376 |has| |#2| (-550)) (-4381 |has| |#2| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
(-453 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1766,7 +1766,7 @@ NIL
NIL
(-459 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
NIL
(-460 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1774,7 +1774,7 @@ NIL
NIL
(-461 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
(-462 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
@@ -1804,7 +1804,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-469 |lv| -3160 R)
+(-469 |lv| -3198 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1814,23 +1814,23 @@ NIL
NIL
(-471)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-472 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -2540) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -3826) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -2560) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3710) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2664) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
(-473 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4383 . T))
-((-12 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2957) (|devaluate| |#2|)))))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-841))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))))
+((-4384 . T))
+((-12 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3528) (|devaluate| |#2|)))))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-841))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))))
(-474 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
(-475)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-476)
((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'.")))
@@ -1838,29 +1838,29 @@ NIL
NIL
(-477 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2957) (|devaluate| |#2|)))))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3528) (|devaluate| |#2|)))))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
(-478)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-479 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4384 "*") |has| |#2| (-171)) (-4375 |has| |#2| (-550)) (-4380 |has| |#2| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
-(-480 -4269 S)
+(((-4385 "*") |has| |#2| (-171)) (-4376 |has| |#2| (-550)) (-4381 |has| |#2| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(-480 -4352 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4376 |has| |#2| (-1039)) (-4377 |has| |#2| (-1039)) (-4379 |has| |#2| (-6 -4379)) ((-4384 "*") |has| |#2| (-171)) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3986 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3986 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4379)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+((-4377 |has| |#2| (-1039)) (-4378 |has| |#2| (-1039)) (-4380 |has| |#2| (-6 -4380)) ((-4385 "*") |has| |#2| (-171)) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3996 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3996 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
(-481)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|Identifier|))) "\\spad{headAst(f,{}[x1,{}..,{}xn])} constructs a function definition header.")))
NIL
NIL
(-482 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-483 -3160 UP UPUP R)
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+(-483 -3198 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1870,12 +1870,12 @@ NIL
NIL
(-485)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3986 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3996 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
(-486 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4382)) (|HasAttribute| |#1| (QUOTE -4383)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))))
+((|HasAttribute| |#1| (QUOTE -4383)) (|HasAttribute| |#1| (QUOTE -4384)) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))))
(-487 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
@@ -1896,33 +1896,33 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-492 -3160 UP |AlExt| |AlPol|)
+(-492 -3198 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-493)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| $ (QUOTE (-1039))) (|HasCategory| $ (LIST (QUOTE -1028) (QUOTE (-558)))))
(-494 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-495 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-496 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-497 R UP -3160)
+(-497 R UP -3198)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-498 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
((-12 (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -308) (QUOTE (-112))))) (|HasCategory| (-112) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-112) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-112) (QUOTE (-1087))) (|HasCategory| (-112) (LIST (QUOTE -605) (QUOTE (-853)))))
(-499 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
@@ -1936,7 +1936,7 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-502 -3160 |Expon| |VarSet| |DPoly|)
+(-502 -3198 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-1163)))))
@@ -1986,36 +1986,36 @@ NIL
((|HasCategory| |#2| (QUOTE (-783))))
(-514 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-515)
((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'.")))
NIL
NIL
(-516 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (|HasCategory| (-575 |#1|) (QUOTE (-144))) (|HasCategory| (-575 |#1|) (QUOTE (-367)))) (|HasCategory| (-575 |#1|) (QUOTE (-146))) (|HasCategory| (-575 |#1|) (QUOTE (-367))) (|HasCategory| (-575 |#1|) (QUOTE (-144))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (|HasCategory| (-575 |#1|) (QUOTE (-144))) (|HasCategory| (-575 |#1|) (QUOTE (-367)))) (|HasCategory| (-575 |#1|) (QUOTE (-146))) (|HasCategory| (-575 |#1|) (QUOTE (-367))) (|HasCategory| (-575 |#1|) (QUOTE (-144))))
(-517 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-518 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-519 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4383)))
+((|HasAttribute| |#3| (QUOTE -4384)))
(-520 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4383)))
+((|HasAttribute| |#7| (QUOTE -4384)))
(-521 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4384 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4385 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-522)
((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'.")))
NIL
@@ -2048,7 +2048,7 @@ NIL
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-530 K -3160 |Par|)
+(-530 K -3198 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
@@ -2072,7 +2072,7 @@ NIL
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-536 K -3160 |Par|)
+(-536 K -3198 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
@@ -2102,17 +2102,17 @@ NIL
NIL
(-543)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4380 . T) (-4381 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4381 . T) (-4382 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-544 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2957) (|devaluate| |#2|)))))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
-(-545 R -3160)
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3528) (|devaluate| |#2|)))))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+(-545 R -3198)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-546 R0 -3160 UP UPUP R)
+(-546 R0 -3198 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
@@ -2122,7 +2122,7 @@ NIL
NIL
(-548 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-1399 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-1394 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-549 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
@@ -2130,9 +2130,9 @@ NIL
NIL
(-550)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
-(-551 R -3160)
+(-551 R -3198)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
@@ -2144,7 +2144,7 @@ NIL
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-554 R -3160 L)
+(-554 R -3198 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -646) (|devaluate| |#2|))))
@@ -2152,31 +2152,31 @@ NIL
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-556 -3160 UP UPUP R)
+(-556 -3198 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-557 -3160 UP)
+(-557 -3198 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
(-558)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4364 . T) (-4370 . T) (-4374 . T) (-4369 . T) (-4380 . T) (-4381 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4365 . T) (-4371 . T) (-4375 . T) (-4370 . T) (-4381 . T) (-4382 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-559)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-560 R -3160 L)
+(-560 R -3198 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -646) (|devaluate| |#2|))))
-(-561 R -3160)
+(-561 R -3198)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1126)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-621)))))
-(-562 -3160 UP)
+(-562 -3198 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
@@ -2184,27 +2184,27 @@ NIL
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-564 -3160)
+(-564 -3198)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
(-565 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-1399 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-1394 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-566)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-567 R -3160)
+(-567 R -3198)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-283))) (|HasCategory| |#2| (QUOTE (-621))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-283)))) (|HasCategory| |#1| (QUOTE (-550))))
-(-568 -3160 UP)
+(-568 -3198 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-569 R -3160)
+(-569 R -3198)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
@@ -2226,27 +2226,27 @@ NIL
NIL
(-574 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-575 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367))))
(-576)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-577 R -3160)
+(-577 R -3198)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-578 E -3160)
+(-578 E -3198)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-579 -3160)
+(-579 -3198)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
((|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-1163)))))
(-580 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
@@ -2274,19 +2274,19 @@ NIL
NIL
(-586 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-3986 (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087)))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (-3996 (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087)))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
(-587 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
(-588 |Coef|)
((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (|HasCategory| (-558) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2540) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (|HasCategory| (-558) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2560) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))))
(-589 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4377 |has| |#1| (-550)) (-4376 |has| |#1| (-550)) ((-4384 "*") |has| |#1| (-550)) (-4375 |has| |#1| (-550)) (-4379 . T))
+((-4378 |has| |#1| (-550)) (-4377 |has| |#1| (-550)) ((-4385 "*") |has| |#1| (-550)) (-4376 |has| |#1| (-550)) (-4380 . T))
((|HasCategory| |#1| (QUOTE (-550))))
(-590 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
@@ -2296,7 +2296,7 @@ NIL
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-592 R -3160 FG)
+(-592 R -3198 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
@@ -2306,12 +2306,12 @@ NIL
NIL
(-594 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-595 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4383)) (|HasCategory| |#2| (QUOTE (-841))) (|HasAttribute| |#1| (QUOTE -4382)) (|HasCategory| |#3| (QUOTE (-1087))))
+((|HasAttribute| |#1| (QUOTE -4384)) (|HasCategory| |#2| (QUOTE (-841))) (|HasAttribute| |#1| (QUOTE -4383)) (|HasCategory| |#3| (QUOTE (-1087))))
(-596 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
@@ -2326,19 +2326,19 @@ NIL
NIL
(-599 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4379 -3986 (-2146 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))) (-4377 . T) (-4376 . T))
-((-3986 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
+((-4380 -3996 (-2113 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))) (-4378 . T) (-4377 . T))
+((-3996 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
(-600 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -2957) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| (-1145) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -3528) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| (-1145) (QUOTE (-841))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))))
(-601 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
(-602 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4383 . T))
+((-4384 . T))
NIL
(-603 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
@@ -2356,7 +2356,7 @@ NIL
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-607 -3160 UP)
+(-607 -3198 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
@@ -2378,19 +2378,19 @@ NIL
NIL
(-612 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-613 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| |#1| (QUOTE (-839))))
-(-614 R -3160)
+(-614 R -3198)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
(-615 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4377 . T) (-4376 . T) ((-4384 "*") . T) (-4375 . T) (-4379 . T))
+((-4378 . T) (-4377 . T) ((-4385 "*") . T) (-4376 . T) (-4380 . T))
((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))
(-616 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
@@ -2406,7 +2406,7 @@ NIL
NIL
(-619 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-620 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
@@ -2416,30 +2416,30 @@ NIL
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-622 R -3160)
+(-622 R -3198)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-623 |lv| -3160)
+(-623 |lv| -3198)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
(-624)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4383 . T))
-((-12 (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -2957) (QUOTE (-52))))))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-1145) (QUOTE (-841))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 (-52))) (QUOTE (-1087))))
+((-4384 . T))
+((-12 (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -3528) (QUOTE (-52))))))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-1145) (QUOTE (-841))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 (-52))) (QUOTE (-1087))))
(-625 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-362))))
(-626 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4377 . T) (-4376 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4378 . T) (-4377 . T))
NIL
(-627 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4379 -3986 (-2146 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))) (-4377 . T) (-4376 . T))
-((-3986 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
+((-4380 -3996 (-2113 (|has| |#2| (-366 |#1|)) (|has| |#1| (-550))) (-12 (|has| |#2| (-416 |#1|)) (|has| |#1| (-550)))) (-4378 . T) (-4377 . T))
+((-3996 (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -416) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -366) (|devaluate| |#1|))))
(-628 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
@@ -2451,10 +2451,10 @@ NIL
(-630 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-2137 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362))))
+((-2104 (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-362))))
(-631 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-632 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
@@ -2470,16 +2470,16 @@ NIL
NIL
(-635 S)
((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-819))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-636 T$)
((|constructor| (NIL "This domain represents AST for Spad literals.")))
NIL
NIL
(-637 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-638 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
@@ -2491,22 +2491,22 @@ NIL
(-640 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4383)))
+((|HasAttribute| |#1| (QUOTE -4384)))
(-641 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
NIL
-(-642 R -3160 L)
+(-642 R -3198 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
(-643 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
(-644 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
(-645 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
@@ -2514,15 +2514,15 @@ NIL
((|HasCategory| |#2| (QUOTE (-362))))
(-646 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
NIL
-(-647 -3160 UP)
+(-647 -3198 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-648 A -3058)
+(-648 A -2680)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
(-649 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
@@ -2538,7 +2538,7 @@ NIL
NIL
(-652 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
((|HasCategory| |#1| (QUOTE (-782))))
(-653 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
@@ -2546,7 +2546,7 @@ NIL
NIL
(-654 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4377 . T) (-4376 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4378 . T) (-4377 . T))
((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-171))))
(-655 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
@@ -2554,13 +2554,13 @@ NIL
NIL
(-656 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
-(-657 -3160)
+(-657 -3198)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-658 -3160 |Row| |Col| M)
+(-658 -3198 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
@@ -2570,8 +2570,8 @@ NIL
NIL
(-660 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4379 . T) (-4382 . T) (-4376 . T) (-4377 . T))
-((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4384 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-550))) (-3986 (|HasAttribute| |#2| (QUOTE (-4384 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
+((-4380 . T) (-4383 . T) (-4377 . T) (-4378 . T))
+((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4385 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-550))) (-3996 (|HasAttribute| |#2| (QUOTE (-4385 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
(-661)
((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'.")))
NIL
@@ -2591,7 +2591,7 @@ NIL
(-665 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-666)
((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition \\spad{`m'}.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition \\spad{`m'}. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any.")))
NIL
@@ -2635,10 +2635,10 @@ NIL
(-676 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4384 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-550))))
+((|HasAttribute| |#2| (QUOTE (-4385 "*"))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-550))))
(-677 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4382 . T) (-4383 . T))
+((-4383 . T) (-4384 . T))
NIL
(-678 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
@@ -2646,17 +2646,17 @@ NIL
((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))))
(-679 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4382 . T) (-4383 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4384 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4383 . T) (-4384 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-550))) (|HasAttribute| |#1| (QUOTE (-4385 "*"))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-680 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
(-681 T$)
-((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")))
+((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "autoCoerce is a courtesy coercion function used by the compiler in case it knows that \\spad{`x'} really is a \\spad{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "maybe(\\spad{x}) injects the value \\spad{`x'} into \\%.")))
NIL
NIL
-(-682 S -3160 FLAF FLAS)
+(-682 S -3198 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
@@ -2666,11 +2666,11 @@ NIL
NIL
(-684)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4375 . T) (-4380 |has| (-689) (-362)) (-4374 |has| (-689) (-362)) (-4381 |has| (-689) (-6 -4381)) (-4378 |has| (-689) (-6 -4378)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| (-689) (QUOTE (-146))) (|HasCategory| (-689) (QUOTE (-144))) (|HasCategory| (-689) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-689) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-689) (QUOTE (-367))) (|HasCategory| (-689) (QUOTE (-362))) (-3986 (|HasCategory| (-689) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-689) (QUOTE (-362)))) (|HasCategory| (-689) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-689) (QUOTE (-232))) (-3986 (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-348)))) (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (LIST (QUOTE -285) (QUOTE (-689)) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -308) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-689) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-689) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-689) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (-3986 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-348)))) (|HasCategory| (-689) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-689) (QUOTE (-1012))) (|HasCategory| (-689) (QUOTE (-1185))) (-12 (|HasCategory| (-689) (QUOTE (-992))) (|HasCategory| (-689) (QUOTE (-1185)))) (-3986 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-362))) (-12 (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (QUOTE (-899))))) (-3986 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (-12 (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-899)))) (-12 (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (QUOTE (-899))))) (|HasCategory| (-689) (QUOTE (-543))) (-12 (|HasCategory| (-689) (QUOTE (-1048))) (|HasCategory| (-689) (QUOTE (-1185)))) (|HasCategory| (-689) (QUOTE (-1048))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899))) (-3986 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-362)))) (-3986 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-550)))) (-12 (|HasCategory| (-689) (QUOTE (-232))) (|HasCategory| (-689) (QUOTE (-362)))) (-12 (|HasCategory| (-689) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-689) (QUOTE (-362)))) (|HasCategory| (-689) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-689) (QUOTE (-841))) (|HasCategory| (-689) (QUOTE (-550))) (|HasAttribute| (-689) (QUOTE -4381)) (|HasAttribute| (-689) (QUOTE -4378)) (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-144)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-348)))))
+((-4376 . T) (-4381 |has| (-689) (-362)) (-4375 |has| (-689) (-362)) (-4382 |has| (-689) (-6 -4382)) (-4379 |has| (-689) (-6 -4379)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| (-689) (QUOTE (-146))) (|HasCategory| (-689) (QUOTE (-144))) (|HasCategory| (-689) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-689) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-689) (QUOTE (-367))) (|HasCategory| (-689) (QUOTE (-362))) (-3996 (|HasCategory| (-689) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-689) (QUOTE (-362)))) (|HasCategory| (-689) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-689) (QUOTE (-232))) (-3996 (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-348)))) (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (LIST (QUOTE -285) (QUOTE (-689)) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -308) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-689)))) (|HasCategory| (-689) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-689) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-689) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-689) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (-3996 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-348)))) (|HasCategory| (-689) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-689) (QUOTE (-1012))) (|HasCategory| (-689) (QUOTE (-1185))) (-12 (|HasCategory| (-689) (QUOTE (-992))) (|HasCategory| (-689) (QUOTE (-1185)))) (-3996 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-362))) (-12 (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (QUOTE (-899))))) (-3996 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (-12 (|HasCategory| (-689) (QUOTE (-362))) (|HasCategory| (-689) (QUOTE (-899)))) (-12 (|HasCategory| (-689) (QUOTE (-348))) (|HasCategory| (-689) (QUOTE (-899))))) (|HasCategory| (-689) (QUOTE (-543))) (-12 (|HasCategory| (-689) (QUOTE (-1048))) (|HasCategory| (-689) (QUOTE (-1185)))) (|HasCategory| (-689) (QUOTE (-1048))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899))) (-3996 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-362)))) (-3996 (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-550)))) (-12 (|HasCategory| (-689) (QUOTE (-232))) (|HasCategory| (-689) (QUOTE (-362)))) (-12 (|HasCategory| (-689) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-689) (QUOTE (-362)))) (|HasCategory| (-689) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-689) (QUOTE (-841))) (|HasCategory| (-689) (QUOTE (-550))) (|HasAttribute| (-689) (QUOTE -4382)) (|HasAttribute| (-689) (QUOTE -4379)) (-12 (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-144)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-689) (QUOTE (-306))) (|HasCategory| (-689) (QUOTE (-899)))) (|HasCategory| (-689) (QUOTE (-348)))))
(-685 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4383 . T))
+((-4384 . T))
NIL
(-686 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
@@ -2680,13 +2680,13 @@ NIL
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-688 OV E -3160 PG)
+(-688 OV E -3198 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
(-689)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-1399 . T) (-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-1394 . T) (-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-690 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
@@ -2694,7 +2694,7 @@ NIL
NIL
(-691)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4381 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4382 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-692 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
@@ -2716,7 +2716,7 @@ NIL
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-697 S -2897 I)
+(-697 S -2922 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
@@ -2726,7 +2726,7 @@ NIL
NIL
(-699 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-700 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
@@ -2736,25 +2736,25 @@ NIL
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-702 R |Mod| -4218 -2596 |exactQuo|)
+(-702 R |Mod| -4160 -3743 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-703 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4378 |has| |#1| (-362)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4379 |has| |#1| (-362)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-704 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
(-705 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) (-4379 . T))
+((-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) (-4380 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))))
-(-706 R |Mod| -4218 -2596 |exactQuo|)
+(-706 R |Mod| -4160 -3743 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4379 . T))
+((-4380 . T))
NIL
(-707 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
@@ -2762,11 +2762,11 @@ NIL
NIL
(-708 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
NIL
-(-709 -3160)
+(-709 -3198)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-710 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
@@ -2790,7 +2790,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-348))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))))
(-715 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4375 |has| |#1| (-362)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 |has| |#1| (-362)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-716 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
@@ -2800,7 +2800,7 @@ NIL
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-718 -3160 UP)
+(-718 -3198 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -2818,8 +2818,8 @@ NIL
NIL
(-722 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4384 "*") |has| |#2| (-171)) (-4375 |has| |#2| (-550)) (-4380 |has| |#2| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(((-4385 "*") |has| |#2| (-171)) (-4376 |has| |#2| (-550)) (-4381 |has| |#2| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-855 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
(-723 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
@@ -2834,15 +2834,15 @@ NIL
NIL
(-726 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) (-4379 . T))
+((-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) (-4380 . T))
((-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-841))))
(-727 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4372 . T) (-4383 . T))
+((-4373 . T) (-4384 . T))
NIL
(-728 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4382 . T) (-4372 . T) (-4383 . T))
+((-4383 . T) (-4373 . T) (-4384 . T))
((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-729)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
@@ -2854,7 +2854,7 @@ NIL
NIL
(-731 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4377 . T) (-4376 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4378 . T) (-4377 . T) (-4380 . T))
NIL
(-732 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
@@ -2870,7 +2870,7 @@ NIL
NIL
(-735 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
NIL
(-736)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
@@ -2952,11 +2952,11 @@ NIL
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-756 -3160)
+(-756 -3198)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-757 P -3160)
+(-757 P -3198)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
@@ -2964,7 +2964,7 @@ NIL
NIL
NIL
NIL
-(-759 UP -3160)
+(-759 UP -3198)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
@@ -2978,9 +2978,9 @@ NIL
NIL
(-762)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4384 "*") . T))
+(((-4385 "*") . T))
NIL
-(-763 R -3160)
+(-763 R -3198)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
@@ -3000,7 +3000,7 @@ NIL
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-768 -3160 |ExtF| |SUEx| |ExtP| |n|)
+(-768 -3198 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
@@ -3014,23 +3014,23 @@ NIL
NIL
(-771 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163))))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2137 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2137 (|HasCategory| |#1| (QUOTE (-543)))) (-2137 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2137 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558))))) (-2137 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2137 (|HasCategory| |#1| (LIST (QUOTE -982) (QUOTE (-558))))))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163))))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2104 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2104 (|HasCategory| |#1| (QUOTE (-543)))) (-2104 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2104 (|HasCategory| |#1| (LIST (QUOTE -38) (QUOTE (-558))))) (-2104 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-1163)))) (-2104 (|HasCategory| |#1| (LIST (QUOTE -982) (QUOTE (-558))))))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-772 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
(-773 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4378 |has| |#1| (-362)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4379 |has| |#1| (-362)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-774 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))
(-775 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
(-776 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
@@ -3082,25 +3082,25 @@ NIL
((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-367))))
(-788 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
NIL
-(-789 -3986 R OS S)
+(-789 -3996 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
(-790 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-3986 (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3986 (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))
+((-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (-3996 (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3996 (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-989 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))))
(-791)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-792 R -3160 L)
+(-792 R -3198 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-793 R -3160)
+(-793 R -3198)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
@@ -3108,7 +3108,7 @@ NIL
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-795 R -3160)
+(-795 R -3198)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
@@ -3116,11 +3116,11 @@ NIL
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-797 -3160 UP UPUP R)
+(-797 -3198 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-798 -3160 UP L LQ)
+(-798 -3198 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
@@ -3128,41 +3128,41 @@ NIL
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-800 -3160 UP L LQ)
+(-800 -3198 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-801 -3160 UP)
+(-801 -3198 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-802 -3160 L UP A LO)
+(-802 -3198 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-803 -3160 UP)
+(-803 -3198 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-804 -3160 LO)
+(-804 -3198 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-805 -3160 LODO)
+(-805 -3198 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-806 -4269 S |f|)
+(-806 -4352 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4376 |has| |#2| (-1039)) (-4377 |has| |#2| (-1039)) (-4379 |has| |#2| (-6 -4379)) ((-4384 "*") |has| |#2| (-171)) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3986 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3986 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4379)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
+((-4377 |has| |#2| (-1039)) (-4378 |has| |#2| (-1039)) (-4380 |has| |#2| (-6 -4380)) ((-4385 "*") |has| |#2| (-171)) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-362))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362)))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-784))) (-3996 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839)))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-171))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1039)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-171)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-232)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-367)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-839)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087))))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-784))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-839))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (QUOTE (-1039)))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3996 (|HasCategory| |#2| (QUOTE (-1039))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1087)))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))))
(-807 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-809 (-1163)) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-808 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")))
-(((-4384 "*") |has| |#2| (-362)) (-4375 |has| |#2| (-362)) (-4380 |has| |#2| (-362)) (-4374 |has| |#2| (-362)) (-4379 . T) (-4377 . T) (-4376 . T))
+(((-4385 "*") |has| |#2| (-362)) (-4376 |has| |#2| (-362)) (-4381 |has| |#2| (-362)) (-4375 |has| |#2| (-362)) (-4380 . T) (-4378 . T) (-4377 . T))
((|HasCategory| |#2| (QUOTE (-362))))
(-809 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
@@ -3174,7 +3174,7 @@ NIL
NIL
(-811)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-812)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
@@ -3202,7 +3202,7 @@ NIL
NIL
(-818 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-232))))
(-819)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
@@ -3214,7 +3214,7 @@ NIL
NIL
(-821 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4382 . T) (-4372 . T) (-4383 . T))
+((-4383 . T) (-4373 . T) (-4384 . T))
NIL
(-822)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
@@ -3226,8 +3226,8 @@ NIL
NIL
(-824 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4379 |has| |#1| (-839)))
-((|HasCategory| |#1| (QUOTE (-839))) (-3986 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3986 (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4380 |has| |#1| (-839)))
+((|HasCategory| |#1| (QUOTE (-839))) (-3996 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3996 (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
(-825 A S)
((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator `op'.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of `op'.")))
NIL
@@ -3238,7 +3238,7 @@ NIL
NIL
(-827 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) (-4379 . T))
+((-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) (-4380 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))))
(-828)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
@@ -3266,13 +3266,13 @@ NIL
NIL
(-834 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4379 |has| |#1| (-839)))
-((|HasCategory| |#1| (QUOTE (-839))) (-3986 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3986 (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
+((-4380 |has| |#1| (-839)))
+((|HasCategory| |#1| (QUOTE (-839))) (-3996 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-839)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3996 (|HasCategory| |#1| (QUOTE (-839))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-21))))
(-835)
((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%.")))
NIL
NIL
-(-836 -4269 S)
+(-836 -4352 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
@@ -3286,7 +3286,7 @@ NIL
NIL
(-839)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-840 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
@@ -3302,19 +3302,19 @@ NIL
((|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))))
(-843 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-844 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
((|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550))))
-(-845 R |sigma| -1310)
+(-845 R |sigma| -4151)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-362))))
-(-846 |x| R |sigma| -1310)
+(-846 |x| R |sigma| -4151)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-362))))
(-847 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
@@ -3354,7 +3354,7 @@ NIL
NIL
(-856 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) (-4379 . T))
+((-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) (-4380 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))))
(-857 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
@@ -3366,24 +3366,24 @@ NIL
NIL
(-859 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-860 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-861 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| (-860 |#1|) (QUOTE (-899))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-860 |#1|) (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-146))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-860 |#1|) (QUOTE (-1012))) (|HasCategory| (-860 |#1|) (QUOTE (-811))) (-3986 (|HasCategory| (-860 |#1|) (QUOTE (-811))) (|HasCategory| (-860 |#1|) (QUOTE (-841)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (QUOTE (-1138))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (QUOTE (-232))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -860) (|devaluate| |#1|)) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (QUOTE (-306))) (|HasCategory| (-860 |#1|) (QUOTE (-543))) (|HasCategory| (-860 |#1|) (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-899)))) (|HasCategory| (-860 |#1|) (QUOTE (-144)))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| (-860 |#1|) (QUOTE (-899))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-860 |#1|) (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-146))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-860 |#1|) (QUOTE (-1012))) (|HasCategory| (-860 |#1|) (QUOTE (-811))) (-3996 (|HasCategory| (-860 |#1|) (QUOTE (-811))) (|HasCategory| (-860 |#1|) (QUOTE (-841)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (QUOTE (-1138))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| (-860 |#1|) (QUOTE (-232))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -308) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (LIST (QUOTE -285) (LIST (QUOTE -860) (|devaluate| |#1|)) (LIST (QUOTE -860) (|devaluate| |#1|)))) (|HasCategory| (-860 |#1|) (QUOTE (-306))) (|HasCategory| (-860 |#1|) (QUOTE (-543))) (|HasCategory| (-860 |#1|) (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-860 |#1|) (QUOTE (-899)))) (|HasCategory| (-860 |#1|) (QUOTE (-144)))))
(-862 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-811))) (-3986 (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-841)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1138))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-811))) (-3996 (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-841)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1138))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-841))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
(-863 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))))
(-864)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
@@ -3439,7 +3439,7 @@ NIL
(-877 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-2137 (|HasCategory| |#2| (QUOTE (-1039)))) (-2137 (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (-2137 (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))
+((-12 (-2104 (|HasCategory| |#2| (QUOTE (-1039)))) (-2104 (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (-12 (|HasCategory| |#2| (QUOTE (-1039))) (-2104 (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))
(-878 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
@@ -3448,7 +3448,7 @@ NIL
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-880 R -2897)
+(-880 R -2922)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
@@ -3472,7 +3472,7 @@ NIL
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-886 UP -3160)
+(-886 UP -3198)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
@@ -3490,19 +3490,19 @@ NIL
NIL
(-890 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-891 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-892 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
(-893 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4379 . T))
+((-4380 . T))
NIL
(-894 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
@@ -3510,8 +3510,8 @@ NIL
NIL
(-895 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4379 . T))
-((-3986 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-841))))
+((-4380 . T))
+((-3996 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-841)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-841))))
(-896 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
@@ -3526,13 +3526,13 @@ NIL
((|HasCategory| |#1| (QUOTE (-144))))
(-899)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-900 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
((|HasCategory| $ (QUOTE (-146))) (|HasCategory| $ (QUOTE (-144))) (|HasCategory| $ (QUOTE (-367))))
-(-901 R0 -3160 UP UPUP R)
+(-901 R0 -3198 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
@@ -3546,7 +3546,7 @@ NIL
NIL
(-904 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-905 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
@@ -3560,7 +3560,7 @@ NIL
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-908 -3160)
+(-908 -3198)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
@@ -3570,17 +3570,17 @@ NIL
NIL
(-910)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-911)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4384 "*") . T))
+(((-4385 "*") . T))
NIL
-(-912 -3160 P)
+(-912 -3198 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-913 |xx| -3160)
+(-913 |xx| -3198)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
@@ -3604,7 +3604,7 @@ NIL
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-919 R -3160)
+(-919 R -3198)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
@@ -3616,7 +3616,7 @@ NIL
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-922 S R -3160)
+(-922 S R -3198)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
@@ -3636,11 +3636,11 @@ NIL
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
((|HasCategory| |#3| (LIST (QUOTE -876) (|devaluate| |#1|))))
-(-927 R -3160 -2897)
+(-927 R -3198 -2922)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-928 -2897)
+(-928 -2922)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
@@ -3662,8 +3662,8 @@ NIL
NIL
(-933 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-934 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
@@ -3683,12 +3683,12 @@ NIL
(-938 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-899))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#4| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-841))))
+((|HasCategory| |#2| (QUOTE (-899))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#4| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#4| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#4| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-841))))
(-939 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
NIL
-(-940 E V R P -3160)
+(-940 E V R P -3198)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
@@ -3698,9 +3698,9 @@ NIL
NIL
(-942 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-943 E V R P -3160)
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1163) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-943 E V R P -3198)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-450))))
@@ -3722,13 +3722,13 @@ NIL
NIL
(-948 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-949)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-950 -3160)
+(-950 -3198)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
@@ -3742,12 +3742,12 @@ NIL
NIL
(-953 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4380)))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-130)))) (|HasAttribute| |#1| (QUOTE -4381)))
(-954 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4379 -12 (|has| |#2| (-471)) (|has| |#1| (-471))))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-841))))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-841)))))
+((-4380 -12 (|has| |#2| (-471)) (|has| |#1| (-471))))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))) (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-841))))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717))))) (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-367)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-471))) (|HasCategory| |#2| (QUOTE (-471)))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-784))) (|HasCategory| |#2| (QUOTE (-784))))) (-12 (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-717)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-130))) (|HasCategory| |#2| (QUOTE (-130)))) (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-841)))))
(-955)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
@@ -3762,7 +3762,7 @@ NIL
NIL
(-958 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4382 . T) (-4383 . T))
+((-4383 . T) (-4384 . T))
NIL
(-959 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
@@ -3782,7 +3782,7 @@ NIL
NIL
(-963 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-964)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
@@ -3794,7 +3794,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-550))))
(-966 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4382 . T))
+((-4383 . T))
NIL
(-967 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
@@ -3810,7 +3810,7 @@ NIL
NIL
(-970 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
(-971 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
@@ -3828,7 +3828,7 @@ NIL
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-975 K R UP -3160)
+(-975 K R UP -3198)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -3858,7 +3858,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-1012))) (|HasCategory| |#2| (QUOTE (-811))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1138))))
(-982 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-983 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
@@ -3870,7 +3870,7 @@ NIL
NIL
(-985 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4382 . T) (-4383 . T))
+((-4383 . T) (-4384 . T))
NIL
(-986 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
@@ -3878,7 +3878,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (QUOTE (-1048))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-289))))
(-987 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4375 |has| |#1| (-289)) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 |has| |#1| (-289)) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-988 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
@@ -3886,12 +3886,12 @@ NIL
NIL
(-989 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4375 |has| |#1| (-289)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362))) (-3986 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-543))))
+((-4376 |has| |#1| (-289)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362))) (-3996 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -285) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1048))) (|HasCategory| |#1| (QUOTE (-543))))
(-990 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-991 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
@@ -3900,14 +3900,14 @@ NIL
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-993 -3160 UP UPUP |radicnd| |n|)
+(-993 -3198 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4375 |has| (-406 |#2|) (-362)) (-4380 |has| (-406 |#2|) (-362)) (-4374 |has| (-406 |#2|) (-362)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-3986 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3986 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-3986 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -631) (QUOTE (-558)))) (-3986 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
+((-4376 |has| (-406 |#2|) (-362)) (-4381 |has| (-406 |#2|) (-362)) (-4375 |has| (-406 |#2|) (-362)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| (-406 |#2|) (QUOTE (-144))) (|HasCategory| (-406 |#2|) (QUOTE (-146))) (|HasCategory| (-406 |#2|) (QUOTE (-348))) (-3996 (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (|HasCategory| (-406 |#2|) (QUOTE (-362))) (|HasCategory| (-406 |#2|) (QUOTE (-367))) (-3996 (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (QUOTE (-348)))) (-3996 (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-348))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -631) (QUOTE (-558)))) (-3996 (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 |#2|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-12 (|HasCategory| (-406 |#2|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))) (-12 (|HasCategory| (-406 |#2|) (QUOTE (-232))) (|HasCategory| (-406 |#2|) (QUOTE (-362)))))
(-994 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3986 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| (-558) (QUOTE (-899))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| (-558) (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-146))) (|HasCategory| (-558) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-1012))) (|HasCategory| (-558) (QUOTE (-811))) (-3996 (|HasCategory| (-558) (QUOTE (-811))) (|HasCategory| (-558) (QUOTE (-841)))) (|HasCategory| (-558) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1138))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| (-558) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| (-558) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-232))) (|HasCategory| (-558) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| (-558) (LIST (QUOTE -512) (QUOTE (-1163)) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -308) (QUOTE (-558)))) (|HasCategory| (-558) (LIST (QUOTE -285) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-306))) (|HasCategory| (-558) (QUOTE (-543))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (LIST (QUOTE -631) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-558) (QUOTE (-899)))) (|HasCategory| (-558) (QUOTE (-144)))))
(-995)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
@@ -3927,7 +3927,7 @@ NIL
(-999 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4383)) (|HasCategory| |#2| (QUOTE (-1087))))
+((|HasAttribute| |#1| (QUOTE -4384)) (|HasCategory| |#2| (QUOTE (-1087))))
(-1000 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
@@ -3938,21 +3938,21 @@ NIL
NIL
(-1002)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4375 . T) (-4380 . T) (-4374 . T) (-4377 . T) (-4376 . T) ((-4384 "*") . T) (-4379 . T))
+((-4376 . T) (-4381 . T) (-4375 . T) (-4378 . T) (-4377 . T) ((-4385 "*") . T) (-4380 . T))
NIL
-(-1003 R -3160)
+(-1003 R -3198)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-1004 R -3160)
+(-1004 R -3198)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-1005 -3160 UP)
+(-1005 -3198 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-1006 -3160 UP)
+(-1006 -3198 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
@@ -3986,9 +3986,9 @@ NIL
NIL
(-1014 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4375 . T) (-4380 . T) (-4374 . T) (-4377 . T) (-4376 . T) ((-4384 "*") . T) (-4379 . T))
-((-3986 (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (QUOTE (-558)))))
-(-1015 -3160 L)
+((-4376 . T) (-4381 . T) (-4375 . T) (-4378 . T) (-4377 . T) ((-4385 "*") . T) (-4380 . T))
+((-3996 (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-406 (-558)) (LIST (QUOTE -1028) (QUOTE (-558)))))
+(-1015 -3198 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
@@ -3998,12 +3998,12 @@ NIL
((|HasCategory| |#1| (QUOTE (-1087))))
(-1017 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
(-1018 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4384 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4385 "*"))))
(-1019 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
@@ -4024,14 +4024,14 @@ NIL
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-1024 -3160 |Expon| |VarSet| |FPol| |LFPol|)
+(-1024 -3198 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1025)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (QUOTE (-1163))) (LIST (QUOTE |:|) (QUOTE -2957) (QUOTE (-52))))))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (QUOTE (-1087))) (|HasCategory| (-1163) (QUOTE (-841))) (|HasCategory| (-52) (QUOTE (-1087))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (QUOTE (-1163))) (LIST (QUOTE |:|) (QUOTE -3528) (QUOTE (-52))))))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (QUOTE (-1087))) (|HasCategory| (-1163) (QUOTE (-841))) (|HasCategory| (-52) (QUOTE (-1087))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))))
(-1026)
((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'.")))
NIL
@@ -4074,7 +4074,7 @@ NIL
NIL
(-1036 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
((-12 (|HasCategory| (-771 |#1| (-855 |#2|)) (QUOTE (-1087))) (|HasCategory| (-771 |#1| (-855 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -771) (|devaluate| |#1|) (LIST (QUOTE -855) (|devaluate| |#2|)))))) (|HasCategory| (-771 |#1| (-855 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-771 |#1| (-855 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| (-855 |#2|) (QUOTE (-367))) (|HasCategory| (-771 |#1| (-855 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
(-1037)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
@@ -4086,9 +4086,9 @@ NIL
NIL
(-1039)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4379 . T))
+((-4380 . T))
NIL
-(-1040 |xx| -3160)
+(-1040 |xx| -3198)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
@@ -4098,12 +4098,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-306))) (|HasCategory| |#4| (QUOTE (-362))) (|HasCategory| |#4| (QUOTE (-550))) (|HasCategory| |#4| (QUOTE (-171))))
(-1042 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4382 . T) (-4377 . T) (-4376 . T))
+((-4383 . T) (-4378 . T) (-4377 . T))
NIL
(-1043 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4382 . T) (-4377 . T) (-4376 . T))
-((-3986 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (QUOTE (-306))) (|HasCategory| |#3| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-171))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4378 . T) (-4377 . T))
+((-3996 (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (QUOTE (-306))) (|HasCategory| |#3| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-171))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))))
(-1044 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
@@ -4122,7 +4122,7 @@ NIL
NIL
(-1048)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1049 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
@@ -4130,19 +4130,19 @@ NIL
NIL
(-1050)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4370 . T) (-4374 . T) (-4369 . T) (-4380 . T) (-4381 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4371 . T) (-4375 . T) (-4370 . T) (-4381 . T) (-4382 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1051)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (QUOTE (-1163))) (LIST (QUOTE |:|) (QUOTE -2957) (QUOTE (-52))))))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (QUOTE (-1087))) (|HasCategory| (-1163) (QUOTE (-841))) (|HasCategory| (-52) (QUOTE (-1087))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 (-1163)) (|:| -2957 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (QUOTE (-1163))) (LIST (QUOTE |:|) (QUOTE -3528) (QUOTE (-52))))))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (QUOTE (-1087))) (|HasCategory| (-52) (QUOTE (-1087)))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| (-52) (QUOTE (-1087))) (|HasCategory| (-52) (LIST (QUOTE -308) (QUOTE (-52))))) (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (QUOTE (-1087))) (|HasCategory| (-1163) (QUOTE (-841))) (|HasCategory| (-52) (QUOTE (-1087))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-52) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 (-1163)) (|:| -3528 (-52))) (LIST (QUOTE -605) (QUOTE (-853)))))
(-1052 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-543))) (|HasCategory| |#2| (LIST (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -982) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-1163)))))
(-1053 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
NIL
(-1054)
((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'.")))
@@ -4166,7 +4166,7 @@ NIL
NIL
(-1059 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
(-1060 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
@@ -4180,11 +4180,11 @@ NIL
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1063 |Base| R -3160)
+(-1063 |Base| R -3198)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1064 |Base| R -3160)
+(-1064 |Base| R -3198)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
@@ -4198,8 +4198,8 @@ NIL
NIL
(-1067 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4375 |has| |#1| (-362)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-348)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))))
+((-4376 |has| |#1| (-362)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-348))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-348)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-367))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-348)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-348))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))))
(-1068 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
@@ -4226,8 +4226,8 @@ NIL
NIL
(-1074 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1075 (-1163)) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-232))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-1075 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
@@ -4270,7 +4270,7 @@ NIL
NIL
(-1085 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4372 . T))
+((-4373 . T))
NIL
(-1086 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
@@ -4286,8 +4286,8 @@ NIL
NIL
(-1089 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4382 . T) (-4372 . T) (-4383 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4383 . T) (-4373 . T) (-4384 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-367))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-1090 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
@@ -4314,7 +4314,7 @@ NIL
NIL
(-1096 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
(-1097)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
@@ -4330,8 +4330,8 @@ NIL
NIL
(-1100 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4376 |has| |#3| (-1039)) (-4377 |has| |#3| (-1039)) (-4379 |has| |#3| (-6 -4379)) ((-4384 "*") |has| |#3| (-171)) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3986 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#3| (QUOTE (-362))) (-3986 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3986 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-784))) (-3986 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839)))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-171))) (-3986 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3986 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-1087)))) (-3986 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3986 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3986 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3986 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-717)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-839)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087))))) (-3986 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3986 (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (|HasAttribute| |#3| (QUOTE -4379)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
+((-4377 |has| |#3| (-1039)) (-4378 |has| |#3| (-1039)) (-4380 |has| |#3| (-6 -4380)) ((-4385 "*") |has| |#3| (-171)) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3996 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#3| (QUOTE (-362))) (-3996 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3996 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-362)))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-784))) (-3996 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839)))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-171))) (-3996 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (-3996 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (QUOTE (-1087)))) (-3996 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3996 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3996 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (QUOTE (-1039)))) (-3996 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-130)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-171)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-232)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-362)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-367)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-717)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-784)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-839)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087))))) (-3996 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-171))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-362))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-717))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-784))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-839))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-841))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-232))) (|HasCategory| |#3| (QUOTE (-1039)))) (-12 (|HasCategory| |#3| (QUOTE (-1039))) (|HasCategory| |#3| (LIST (QUOTE -890) (QUOTE (-1163))))) (-3996 (|HasCategory| |#3| (QUOTE (-1039))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1087)))) (|HasAttribute| |#3| (QUOTE -4380)) (|HasCategory| |#3| (QUOTE (-130))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#3| (QUOTE (-1087))) (|HasCategory| |#3| (LIST (QUOTE -308) (|devaluate| |#3|)))))
(-1101 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
@@ -4340,7 +4340,7 @@ NIL
((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for \\spad{`s'}.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature \\spad{`s'}.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,{}s,{}t)} builds the signature AST \\spad{n:} \\spad{s} \\spad{->} \\spad{t}")))
NIL
NIL
-(-1103 R -3160)
+(-1103 R -3198)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
@@ -4358,19 +4358,19 @@ NIL
NIL
(-1107)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4370 . T) (-4374 . T) (-4369 . T) (-4380 . T) (-4381 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4371 . T) (-4375 . T) (-4370 . T) (-4381 . T) (-4382 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1108 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4382 . T) (-4383 . T))
+((-4383 . T) (-4384 . T))
NIL
(-1109 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4384 "*"))) (|HasCategory| |#3| (QUOTE (-171))))
+((|HasCategory| |#3| (QUOTE (-362))) (|HasAttribute| |#3| (QUOTE (-4385 "*"))) (|HasCategory| |#3| (QUOTE (-171))))
(-1110 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4382 . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4383 . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1111 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
@@ -4378,17 +4378,17 @@ NIL
NIL
(-1112 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-1113 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))))
(-1114 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
-(-1115 UP -3160)
+(-1115 UP -3198)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
@@ -4442,19 +4442,19 @@ NIL
NIL
(-1128 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1127) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087))) (-3986 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1127) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087))))) (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1127) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087))) (-3996 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -308) (LIST (QUOTE -1127) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1127 |#1| |#2|) (QUOTE (-1087))))) (|HasCategory| (-1127 |#1| |#2|) (LIST (QUOTE -605) (QUOTE (-853)))))
(-1129 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}.")))
-((-4379 . T) (-4371 |has| |#2| (-6 (-4384 "*"))) (-4382 . T) (-4376 . T) (-4377 . T))
-((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4384 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-362))) (-3986 (|HasAttribute| |#2| (QUOTE (-4384 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
+((-4380 . T) (-4372 |has| |#2| (-6 (-4385 "*"))) (-4383 . T) (-4377 . T) (-4378 . T))
+((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE (-4385 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (-12 (|HasCategory| |#2| (QUOTE (-232))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (QUOTE (-306))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-362))) (-3996 (|HasAttribute| |#2| (QUOTE (-4385 "*"))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-171))))
(-1130 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
(-1131)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
(-1132 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
@@ -4462,12 +4462,12 @@ NIL
NIL
(-1133 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
(-1134 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-1135 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
@@ -4478,8 +4478,8 @@ NIL
NIL
(-1137 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4383 . T))
-((-12 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2957) (|devaluate| |#2|)))))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-841))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))))
+((-4384 . T))
+((-12 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3528) (|devaluate| |#2|)))))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-841))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))))
(-1138)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
@@ -4502,20 +4502,20 @@ NIL
NIL
(-1143 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4383 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4384 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-1144)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
(-1145)
NIL
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143)))))) (|HasCategory| (-143) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| (-143) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| (-143) (QUOTE (-1087))) (|HasCategory| (-143) (LIST (QUOTE -308) (QUOTE (-143))))))
(-1146 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -2957) (|devaluate| |#1|)))))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-1087)))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (QUOTE (-1087))) (|HasCategory| (-1145) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 (-1145)) (|:| -2957 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (QUOTE (-1145))) (LIST (QUOTE |:|) (QUOTE -3528) (|devaluate| |#1|)))))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-1087)))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (QUOTE (-1087))) (|HasCategory| (-1145) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 (-1145)) (|:| -3528 |#1|)) (LIST (QUOTE -605) (QUOTE (-853)))))
(-1147 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
@@ -4546,9 +4546,9 @@ NIL
NIL
(-1154 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4384 "*") -3986 (-2146 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-811))) (|has| |#1| (-171)) (-2146 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-899)))) (-4375 -3986 (-2146 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-811))) (|has| |#1| (-550)) (-2146 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-899)))) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3986 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3986 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3986 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-3986 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2540) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -3826) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3986 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
-(-1155 R -3160)
+(((-4385 "*") -3996 (-2113 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-811))) (|has| |#1| (-171)) (-2113 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-899)))) (-4376 -3996 (-2113 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-811))) (|has| |#1| (-550)) (-2113 (|has| |#1| (-362)) (|has| (-1161 |#1| |#2| |#3|) (-899)))) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3996 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3996 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3996 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-3996 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2560) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3710) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2664) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3996 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1161 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(-1155 R -3198)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
@@ -4566,16 +4566,16 @@ NIL
NIL
(-1159 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4378 |has| |#1| (-362)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4379 |has| |#1| (-362)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-1138))) (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-232))) (|HasAttribute| |#1| (QUOTE -4381)) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-1160 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -2540) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -3826) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -2560) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3710) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2664) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
(-1161 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|)))) (|HasCategory| (-762) (QUOTE (-1099))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasSignature| |#1| (LIST (QUOTE -2540) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasCategory| |#1| (QUOTE (-362))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -3826) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|)))) (|HasCategory| (-762) (QUOTE (-1099))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasSignature| |#1| (LIST (QUOTE -2560) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasCategory| |#1| (QUOTE (-362))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3710) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2664) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
(-1162)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
@@ -4590,8 +4590,8 @@ NIL
NIL
(-1165 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-6 -4380)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| (-961) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasAttribute| |#1| (QUOTE -4380)))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-6 -4381)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-450))) (-12 (|HasCategory| (-961) (QUOTE (-130))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasAttribute| |#1| (QUOTE -4381)))
(-1166)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
@@ -4622,8 +4622,8 @@ NIL
NIL
(-1173 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4382 . T) (-4383 . T))
-((-12 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2045) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -2957) (|devaluate| |#2|)))))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3986 (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2045 |#1|) (|:| -2957 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4383 . T) (-4384 . T))
+((-12 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -308) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -2055) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -3528) (|devaluate| |#2|)))))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#2| (QUOTE (-1087)))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -606) (QUOTE (-534)))) (-12 (|HasCategory| |#2| (QUOTE (-1087))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-1087))) (-3996 (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#2| (LIST (QUOTE -605) (QUOTE (-853)))) (|HasCategory| (-2 (|:| -2055 |#1|) (|:| -3528 |#2|)) (LIST (QUOTE -605) (QUOTE (-853)))))
(-1174 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
@@ -4634,7 +4634,7 @@ NIL
NIL
(-1176 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4383 . T))
+((-4384 . T))
NIL
(-1177 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
@@ -4674,8 +4674,8 @@ NIL
NIL
(-1186 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4383 . T) (-4382 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
+((-4384 . T) (-4383 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1087))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
(-1187 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
@@ -4684,7 +4684,7 @@ NIL
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1189 R -3160)
+(-1189 R -3198)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -4692,7 +4692,7 @@ NIL
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1191 R -3160)
+(-1191 R -3198)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
((-12 (|HasCategory| |#1| (LIST (QUOTE -606) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -876) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -876) (|devaluate| |#1|)))))
@@ -4702,12 +4702,12 @@ NIL
((|HasCategory| |#4| (QUOTE (-367))))
(-1193 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
(-1194 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-144))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-362))))
(-1195 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
@@ -4720,7 +4720,7 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")))
NIL
((|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))))
-(-1198 -3160)
+(-1198 -3198)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
@@ -4746,7 +4746,7 @@ NIL
NIL
(-1204)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1205 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
@@ -4754,7 +4754,7 @@ NIL
NIL
(-1206 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1207 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
@@ -4762,16 +4762,16 @@ NIL
((|HasCategory| |#2| (QUOTE (-362))))
(-1208 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1209 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-3986 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841))))) (-3986 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2540) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -3826) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (|HasCategory| |#2| (QUOTE (-899))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))) (-3996 (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-146))))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-232)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841))))) (-3996 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-811)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1012)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-1163)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -285) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -308) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -512) (QUOTE (-1163)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2560) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3710) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2664) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-841)))) (|HasCategory| |#2| (QUOTE (-899))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-543)))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-306)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#1| (QUOTE (-144))) (-12 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-144))))))
(-1210 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4384 "*") -3986 (-2146 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-811))) (|has| |#1| (-171)) (-2146 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-899)))) (-4375 -3986 (-2146 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-811))) (|has| |#1| (-550)) (-2146 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-899)))) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
-((-3986 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3986 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3986 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3986 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-3986 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2540) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -3826) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3986 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
+(((-4385 "*") -3996 (-2113 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-811))) (|has| |#1| (-171)) (-2113 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-899)))) (-4376 -3996 (-2113 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-811))) (|has| |#1| (-550)) (-2113 (|has| |#1| (-362)) (|has| (-1238 |#1| |#2| |#3|) (-899)))) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+((-3996 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))) (-3996 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-146))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-146)))) (-3996 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3996 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-232))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1099))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-362))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-1163)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1012))) (|HasCategory| |#1| (QUOTE (-362)))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-3996 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362))))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-1138))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -285) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -308) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -512) (QUOTE (-1163)) (LIST (QUOTE -1238) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2560) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3710) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2664) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-543))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-306))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-144))) (-3996 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-811))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-171)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-899))) (|HasCategory| |#1| (QUOTE (-362)))) (-12 (|HasCategory| (-1238 |#1| |#2| |#3|) (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-362)))) (|HasCategory| |#1| (QUOTE (-144)))))
(-1211 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
@@ -4806,8 +4806,8 @@ NIL
NIL
(-1219 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4384 "*") |has| |#2| (-171)) (-4375 |has| |#2| (-550)) (-4378 |has| |#2| (-362)) (-4380 |has| |#2| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3986 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3986 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4380)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3986 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
+(((-4385 "*") |has| |#2| (-171)) (-4376 |has| |#2| (-550)) (-4379 |has| |#2| (-362)) (-4381 |has| |#2| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#2| (QUOTE (-899))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-550)))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-378)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-378))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -876) (QUOTE (-558)))) (|HasCategory| |#2| (LIST (QUOTE -876) (QUOTE (-558))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-378)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -606) (LIST (QUOTE -882) (QUOTE (-558)))))) (-12 (|HasCategory| (-1069) (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#2| (LIST (QUOTE -606) (QUOTE (-534))))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (LIST (QUOTE -631) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-146))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (QUOTE (-558)))) (-3996 (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| |#2| (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (-3996 (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-1138))) (|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasCategory| |#2| (QUOTE (-232))) (|HasAttribute| |#2| (QUOTE -4381)) (|HasCategory| |#2| (QUOTE (-450))) (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (-3996 (-12 (|HasCategory| $ (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-899)))) (|HasCategory| |#2| (QUOTE (-144)))))
(-1220 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
@@ -4818,15 +4818,15 @@ NIL
((|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))) (|HasCategory| |#2| (QUOTE (-450))) (|HasCategory| |#2| (QUOTE (-550))) (|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (QUOTE (-1138))))
(-1222 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4378 |has| |#1| (-362)) (-4380 |has| |#1| (-6 -4380)) (-4377 . T) (-4376 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4379 |has| |#1| (-362)) (-4381 |has| |#1| (-6 -4381)) (-4378 . T) (-4377 . T) (-4380 . T))
NIL
(-1223 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1099))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2540) (LIST (|devaluate| |#2|) (QUOTE (-1163))))))
+((|HasCategory| |#2| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1099))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2560) (LIST (|devaluate| |#2|) (QUOTE (-1163))))))
(-1224 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1225 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
@@ -4838,7 +4838,7 @@ NIL
NIL
(-1227 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1228 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
@@ -4846,24 +4846,24 @@ NIL
NIL
(-1229 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1230 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -2540) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -3826) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -2560) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3710) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2664) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))))
(-1231 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4380 |has| |#1| (-362)) (-4374 |has| |#1| (-362)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3986 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -2540) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -3826) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4381 |has| |#1| (-362)) (-4375 |has| |#1| (-362)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#1| (QUOTE (-171))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-406 (-558)) (QUOTE (-1099))) (|HasCategory| |#1| (QUOTE (-362))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-3996 (|HasCategory| |#1| (QUOTE (-362))) (|HasCategory| |#1| (QUOTE (-550)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasSignature| |#1| (LIST (QUOTE -2560) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -406) (QUOTE (-558)))))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3710) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2664) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
(-1232 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4384 "*") |has| (-1231 |#2| |#3| |#4|) (-171)) (-4375 |has| (-1231 |#2| |#3| |#4|) (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-171))) (-3986 (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-362))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-450))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-550))))
+(((-4385 "*") |has| (-1231 |#2| |#3| |#4|) (-171)) (-4376 |has| (-1231 |#2| |#3| |#4|) (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-144))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-146))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-171))) (-3996 (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558)))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| (-1231 |#2| |#3| |#4|) (LIST (QUOTE -1028) (QUOTE (-558)))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-362))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-450))) (|HasCategory| (-1231 |#2| |#3| |#4|) (QUOTE (-550))))
(-1233 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4383)))
+((|HasAttribute| |#1| (QUOTE -4384)))
(-1234 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
@@ -4875,20 +4875,20 @@ NIL
(-1236 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-1185))) (|HasSignature| |#2| (LIST (QUOTE -3826) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -2296) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1163))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))))
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-949))) (|HasCategory| |#2| (QUOTE (-1185))) (|HasSignature| |#2| (LIST (QUOTE -2664) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -3710) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1163))))) (|HasCategory| |#2| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-362))))
(-1237 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1238 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4384 "*") |has| |#1| (-171)) (-4375 |has| |#1| (-550)) (-4376 . T) (-4377 . T) (-4379 . T))
-((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3986 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|)))) (|HasCategory| (-762) (QUOTE (-1099))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasSignature| |#1| (LIST (QUOTE -2540) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasCategory| |#1| (QUOTE (-362))) (-3986 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -2296) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -3826) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
+(((-4385 "*") |has| |#1| (-171)) (-4376 |has| |#1| (-550)) (-4377 . T) (-4378 . T) (-4380 . T))
+((|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-550))) (-3996 (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-550)))) (|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-144))) (|HasCategory| |#1| (QUOTE (-146))) (-12 (|HasCategory| |#1| (LIST (QUOTE -890) (QUOTE (-1163)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-762)) (|devaluate| |#1|)))) (|HasCategory| (-762) (QUOTE (-1099))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasSignature| |#1| (LIST (QUOTE -2560) (LIST (|devaluate| |#1|) (QUOTE (-1163)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-762))))) (|HasCategory| |#1| (QUOTE (-362))) (-3996 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-949))) (|HasCategory| |#1| (QUOTE (-1185))) (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -38) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasSignature| |#1| (LIST (QUOTE -3710) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1163))))) (|HasSignature| |#1| (LIST (QUOTE -2664) (LIST (LIST (QUOTE -635) (QUOTE (-1163))) (|devaluate| |#1|)))))))
(-1239 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1240 -3160 UP L UTS)
+(-1240 -3198 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
((|HasCategory| |#1| (QUOTE (-550))))
@@ -4906,7 +4906,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-992))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (QUOTE (-717))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
(-1244 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
NIL
(-1245 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
@@ -4914,8 +4914,8 @@ NIL
NIL
(-1246 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4383 . T) (-4382 . T))
-((-3986 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3986 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3986 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
+((-4384 . T) (-4383 . T))
+((-3996 (-12 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|))))) (-3996 (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853))))) (|HasCategory| |#1| (LIST (QUOTE -606) (QUOTE (-534)))) (-3996 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087)))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-717))) (|HasCategory| |#1| (QUOTE (-1039))) (-12 (|HasCategory| |#1| (QUOTE (-992))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -605) (QUOTE (-853)))) (-12 (|HasCategory| |#1| (QUOTE (-1087))) (|HasCategory| |#1| (LIST (QUOTE -308) (|devaluate| |#1|)))))
(-1247)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
@@ -4942,13 +4942,13 @@ NIL
NIL
(-1253 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4377 . T) (-4376 . T))
+((-4378 . T) (-4377 . T))
NIL
(-1254 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1255 K R UP -3160)
+(-1255 K R UP -3198)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
@@ -4962,56 +4962,56 @@ NIL
NIL
(-1258 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")))
-((-4377 |has| |#1| (-171)) (-4376 |has| |#1| (-171)) (-4379 . T))
+((-4378 |has| |#1| (-171)) (-4377 |has| |#1| (-171)) (-4380 . T))
((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))))
(-1259 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4383 . T) (-4382 . T))
+((-4384 . T) (-4383 . T))
((-12 (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#4| (LIST (QUOTE -308) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -606) (QUOTE (-534)))) (|HasCategory| |#4| (QUOTE (-1087))) (|HasCategory| |#1| (QUOTE (-550))) (|HasCategory| |#3| (QUOTE (-367))) (|HasCategory| |#4| (LIST (QUOTE -605) (QUOTE (-853)))))
(-1260 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")))
-((-4376 . T) (-4377 . T) (-4379 . T))
+((-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1261 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4379 . T) (-4375 |has| |#2| (-6 -4375)) (-4377 . T) (-4376 . T))
-((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4375)))
+((-4380 . T) (-4376 |has| |#2| (-6 -4376)) (-4378 . T) (-4377 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4376)))
(-1262 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
(-1263 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4375 |has| |#2| (-6 -4375)) (-4377 . T) (-4376 . T) (-4379 . T))
+((-4376 |has| |#2| (-6 -4376)) (-4378 . T) (-4377 . T) (-4380 . T))
NIL
-(-1264 S -3160)
+(-1264 S -3198)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-367))) (|HasCategory| |#2| (QUOTE (-144))) (|HasCategory| |#2| (QUOTE (-146))))
-(-1265 -3160)
+(-1265 -3198)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4374 . T) (-4380 . T) (-4375 . T) ((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+((-4375 . T) (-4381 . T) (-4376 . T) ((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
(-1266 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4375 |has| |#2| (-6 -4375)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -708) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasAttribute| |#2| (QUOTE -4375)))
+((-4376 |has| |#2| (-6 -4376)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasCategory| |#2| (LIST (QUOTE -708) (LIST (QUOTE -406) (QUOTE (-558))))) (|HasAttribute| |#2| (QUOTE -4376)))
(-1267 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4375 |has| |#2| (-6 -4375)) (-4377 . T) (-4376 . T) (-4379 . T))
+((-4376 |has| |#2| (-6 -4376)) (-4378 . T) (-4377 . T) (-4380 . T))
NIL
(-1268 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4375 |has| |#1| (-6 -4375)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4375)))
+((-4376 |has| |#1| (-6 -4376)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasAttribute| |#1| (QUOTE -4376)))
(-1269 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4379 . T) (-4380 |has| |#1| (-6 -4380)) (-4375 |has| |#1| (-6 -4375)) (-4377 . T) (-4376 . T))
-((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4379)) (|HasAttribute| |#1| (QUOTE -4380)) (|HasAttribute| |#1| (QUOTE -4375)))
+((-4380 . T) (-4381 |has| |#1| (-6 -4381)) (-4376 |has| |#1| (-6 -4376)) (-4378 . T) (-4377 . T))
+((|HasCategory| |#1| (QUOTE (-171))) (|HasCategory| |#1| (QUOTE (-362))) (|HasAttribute| |#1| (QUOTE -4380)) (|HasAttribute| |#1| (QUOTE -4381)) (|HasAttribute| |#1| (QUOTE -4376)))
(-1270 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4375 |has| |#2| (-6 -4375)) (-4377 . T) (-4376 . T) (-4379 . T))
-((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4375)))
+((-4376 |has| |#2| (-6 -4376)) (-4378 . T) (-4377 . T) (-4380 . T))
+((|HasCategory| |#2| (QUOTE (-171))) (|HasAttribute| |#2| (QUOTE -4376)))
(-1271 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
@@ -5026,7 +5026,7 @@ NIL
NIL
(-1274 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4384 "*") . T) (-4376 . T) (-4377 . T) (-4379 . T))
+(((-4385 "*") . T) (-4377 . T) (-4378 . T) (-4380 . T))
NIL
NIL
NIL
@@ -5044,4 +5044,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2276533 2276538 2276543 2276548) (-2 NIL 2276513 2276518 2276523 2276528) (-1 NIL 2276493 2276498 2276503 2276508) (0 NIL 2276473 2276478 2276483 2276488) (-1274 "ZMOD.spad" 2276282 2276295 2276411 2276468) (-1273 "ZLINDEP.spad" 2275326 2275337 2276272 2276277) (-1272 "ZDSOLVE.spad" 2265175 2265197 2275316 2275321) (-1271 "YSTREAM.spad" 2264668 2264679 2265165 2265170) (-1270 "XRPOLY.spad" 2263888 2263908 2264524 2264593) (-1269 "XPR.spad" 2261679 2261692 2263606 2263705) (-1268 "XPOLY.spad" 2261234 2261245 2261535 2261604) (-1267 "XPOLYC.spad" 2260551 2260567 2261160 2261229) (-1266 "XPBWPOLY.spad" 2258988 2259008 2260331 2260400) (-1265 "XF.spad" 2257449 2257464 2258890 2258983) (-1264 "XF.spad" 2255890 2255907 2257333 2257338) (-1263 "XFALG.spad" 2252914 2252930 2255816 2255885) (-1262 "XEXPPKG.spad" 2252165 2252191 2252904 2252909) (-1261 "XDPOLY.spad" 2251779 2251795 2252021 2252090) (-1260 "XALG.spad" 2251439 2251450 2251735 2251774) (-1259 "WUTSET.spad" 2247278 2247295 2251085 2251112) (-1258 "WP.spad" 2246477 2246521 2247136 2247203) (-1257 "WHILEAST.spad" 2246275 2246284 2246467 2246472) (-1256 "WHEREAST.spad" 2245946 2245955 2246265 2246270) (-1255 "WFFINTBS.spad" 2243509 2243531 2245936 2245941) (-1254 "WEIER.spad" 2241723 2241734 2243499 2243504) (-1253 "VSPACE.spad" 2241396 2241407 2241691 2241718) (-1252 "VSPACE.spad" 2241089 2241102 2241386 2241391) (-1251 "VOID.spad" 2240766 2240775 2241079 2241084) (-1250 "VIEW.spad" 2238388 2238397 2240756 2240761) (-1249 "VIEWDEF.spad" 2233585 2233594 2238378 2238383) (-1248 "VIEW3D.spad" 2217420 2217429 2233575 2233580) (-1247 "VIEW2D.spad" 2205157 2205166 2217410 2217415) (-1246 "VECTOR.spad" 2203832 2203843 2204083 2204110) (-1245 "VECTOR2.spad" 2202459 2202472 2203822 2203827) (-1244 "VECTCAT.spad" 2200359 2200370 2202427 2202454) (-1243 "VECTCAT.spad" 2198067 2198080 2200137 2200142) (-1242 "VARIABLE.spad" 2197847 2197862 2198057 2198062) (-1241 "UTYPE.spad" 2197491 2197500 2197837 2197842) (-1240 "UTSODETL.spad" 2196784 2196808 2197447 2197452) (-1239 "UTSODE.spad" 2194972 2194992 2196774 2196779) (-1238 "UTS.spad" 2189761 2189789 2193439 2193536) (-1237 "UTSCAT.spad" 2187212 2187228 2189659 2189756) (-1236 "UTSCAT.spad" 2184307 2184325 2186756 2186761) (-1235 "UTS2.spad" 2183900 2183935 2184297 2184302) (-1234 "URAGG.spad" 2178532 2178543 2183890 2183895) (-1233 "URAGG.spad" 2173128 2173141 2178488 2178493) (-1232 "UPXSSING.spad" 2170771 2170797 2172209 2172342) (-1231 "UPXS.spad" 2167919 2167947 2168903 2169052) (-1230 "UPXSCONS.spad" 2165676 2165696 2166051 2166200) (-1229 "UPXSCCA.spad" 2164241 2164261 2165522 2165671) (-1228 "UPXSCCA.spad" 2162948 2162970 2164231 2164236) (-1227 "UPXSCAT.spad" 2161529 2161545 2162794 2162943) (-1226 "UPXS2.spad" 2161070 2161123 2161519 2161524) (-1225 "UPSQFREE.spad" 2159482 2159496 2161060 2161065) (-1224 "UPSCAT.spad" 2157075 2157099 2159380 2159477) (-1223 "UPSCAT.spad" 2154374 2154400 2156681 2156686) (-1222 "UPOLYC.spad" 2149352 2149363 2154216 2154369) (-1221 "UPOLYC.spad" 2144222 2144235 2149088 2149093) (-1220 "UPOLYC2.spad" 2143691 2143710 2144212 2144217) (-1219 "UP.spad" 2140848 2140863 2141241 2141394) (-1218 "UPMP.spad" 2139738 2139751 2140838 2140843) (-1217 "UPDIVP.spad" 2139301 2139315 2139728 2139733) (-1216 "UPDECOMP.spad" 2137538 2137552 2139291 2139296) (-1215 "UPCDEN.spad" 2136745 2136761 2137528 2137533) (-1214 "UP2.spad" 2136107 2136128 2136735 2136740) (-1213 "UNISEG.spad" 2135460 2135471 2136026 2136031) (-1212 "UNISEG2.spad" 2134953 2134966 2135416 2135421) (-1211 "UNIFACT.spad" 2134054 2134066 2134943 2134948) (-1210 "ULS.spad" 2124606 2124634 2125699 2126128) (-1209 "ULSCONS.spad" 2117000 2117020 2117372 2117521) (-1208 "ULSCCAT.spad" 2114729 2114749 2116846 2116995) (-1207 "ULSCCAT.spad" 2112566 2112588 2114685 2114690) (-1206 "ULSCAT.spad" 2110782 2110798 2112412 2112561) (-1205 "ULS2.spad" 2110294 2110347 2110772 2110777) (-1204 "UFD.spad" 2109359 2109368 2110220 2110289) (-1203 "UFD.spad" 2108486 2108497 2109349 2109354) (-1202 "UDVO.spad" 2107333 2107342 2108476 2108481) (-1201 "UDPO.spad" 2104760 2104771 2107289 2107294) (-1200 "TYPE.spad" 2104692 2104701 2104750 2104755) (-1199 "TYPEAST.spad" 2104611 2104620 2104682 2104687) (-1198 "TWOFACT.spad" 2103261 2103276 2104601 2104606) (-1197 "TUPLE.spad" 2102745 2102756 2103160 2103165) (-1196 "TUBETOOL.spad" 2099582 2099591 2102735 2102740) (-1195 "TUBE.spad" 2098223 2098240 2099572 2099577) (-1194 "TS.spad" 2096812 2096828 2097788 2097885) (-1193 "TSETCAT.spad" 2083939 2083956 2096780 2096807) (-1192 "TSETCAT.spad" 2071052 2071071 2083895 2083900) (-1191 "TRMANIP.spad" 2065418 2065435 2070758 2070763) (-1190 "TRIMAT.spad" 2064377 2064402 2065408 2065413) (-1189 "TRIGMNIP.spad" 2062894 2062911 2064367 2064372) (-1188 "TRIGCAT.spad" 2062406 2062415 2062884 2062889) (-1187 "TRIGCAT.spad" 2061916 2061927 2062396 2062401) (-1186 "TREE.spad" 2060487 2060498 2061523 2061550) (-1185 "TRANFUN.spad" 2060318 2060327 2060477 2060482) (-1184 "TRANFUN.spad" 2060147 2060158 2060308 2060313) (-1183 "TOPSP.spad" 2059821 2059830 2060137 2060142) (-1182 "TOOLSIGN.spad" 2059484 2059495 2059811 2059816) (-1181 "TEXTFILE.spad" 2058041 2058050 2059474 2059479) (-1180 "TEX.spad" 2055173 2055182 2058031 2058036) (-1179 "TEX1.spad" 2054729 2054740 2055163 2055168) (-1178 "TEMUTL.spad" 2054284 2054293 2054719 2054724) (-1177 "TBCMPPK.spad" 2052377 2052400 2054274 2054279) (-1176 "TBAGG.spad" 2051413 2051436 2052357 2052372) (-1175 "TBAGG.spad" 2050457 2050482 2051403 2051408) (-1174 "TANEXP.spad" 2049833 2049844 2050447 2050452) (-1173 "TABLE.spad" 2048244 2048267 2048514 2048541) (-1172 "TABLEAU.spad" 2047725 2047736 2048234 2048239) (-1171 "TABLBUMP.spad" 2044508 2044519 2047715 2047720) (-1170 "SYSTEM.spad" 2043782 2043791 2044498 2044503) (-1169 "SYSSOLP.spad" 2041255 2041266 2043772 2043777) (-1168 "SYNTAX.spad" 2037525 2037534 2041245 2041250) (-1167 "SYMTAB.spad" 2035581 2035590 2037515 2037520) (-1166 "SYMS.spad" 2031566 2031575 2035571 2035576) (-1165 "SYMPOLY.spad" 2030573 2030584 2030655 2030782) (-1164 "SYMFUNC.spad" 2030048 2030059 2030563 2030568) (-1163 "SYMBOL.spad" 2027475 2027484 2030038 2030043) (-1162 "SWITCH.spad" 2024232 2024241 2027465 2027470) (-1161 "SUTS.spad" 2021131 2021159 2022699 2022796) (-1160 "SUPXS.spad" 2018266 2018294 2019263 2019412) (-1159 "SUP.spad" 2015035 2015046 2015816 2015969) (-1158 "SUPFRACF.spad" 2014140 2014158 2015025 2015030) (-1157 "SUP2.spad" 2013530 2013543 2014130 2014135) (-1156 "SUMRF.spad" 2012496 2012507 2013520 2013525) (-1155 "SUMFS.spad" 2012129 2012146 2012486 2012491) (-1154 "SULS.spad" 2002668 2002696 2003774 2004203) (-1153 "SUCHTAST.spad" 2002437 2002446 2002658 2002663) (-1152 "SUCH.spad" 2002117 2002132 2002427 2002432) (-1151 "SUBSPACE.spad" 1994124 1994139 2002107 2002112) (-1150 "SUBRESP.spad" 1993284 1993298 1994080 1994085) (-1149 "STTF.spad" 1989383 1989399 1993274 1993279) (-1148 "STTFNC.spad" 1985851 1985867 1989373 1989378) (-1147 "STTAYLOR.spad" 1978249 1978260 1985732 1985737) (-1146 "STRTBL.spad" 1976754 1976771 1976903 1976930) (-1145 "STRING.spad" 1976163 1976172 1976177 1976204) (-1144 "STRICAT.spad" 1975951 1975960 1976131 1976158) (-1143 "STREAM.spad" 1972809 1972820 1975476 1975491) (-1142 "STREAM3.spad" 1972354 1972369 1972799 1972804) (-1141 "STREAM2.spad" 1971422 1971435 1972344 1972349) (-1140 "STREAM1.spad" 1971126 1971137 1971412 1971417) (-1139 "STINPROD.spad" 1970032 1970048 1971116 1971121) (-1138 "STEP.spad" 1969233 1969242 1970022 1970027) (-1137 "STBL.spad" 1967759 1967787 1967926 1967941) (-1136 "STAGG.spad" 1966834 1966845 1967749 1967754) (-1135 "STAGG.spad" 1965907 1965920 1966824 1966829) (-1134 "STACK.spad" 1965258 1965269 1965514 1965541) (-1133 "SREGSET.spad" 1962962 1962979 1964904 1964931) (-1132 "SRDCMPK.spad" 1961507 1961527 1962952 1962957) (-1131 "SRAGG.spad" 1956604 1956613 1961475 1961502) (-1130 "SRAGG.spad" 1951721 1951732 1956594 1956599) (-1129 "SQMATRIX.spad" 1949337 1949355 1950253 1950340) (-1128 "SPLTREE.spad" 1943889 1943902 1948773 1948800) (-1127 "SPLNODE.spad" 1940477 1940490 1943879 1943884) (-1126 "SPFCAT.spad" 1939254 1939263 1940467 1940472) (-1125 "SPECOUT.spad" 1937804 1937813 1939244 1939249) (-1124 "SPADXPT.spad" 1929943 1929952 1937794 1937799) (-1123 "spad-parser.spad" 1929408 1929417 1929933 1929938) (-1122 "SPADAST.spad" 1929109 1929118 1929398 1929403) (-1121 "SPACEC.spad" 1913122 1913133 1929099 1929104) (-1120 "SPACE3.spad" 1912898 1912909 1913112 1913117) (-1119 "SORTPAK.spad" 1912443 1912456 1912854 1912859) (-1118 "SOLVETRA.spad" 1910200 1910211 1912433 1912438) (-1117 "SOLVESER.spad" 1908720 1908731 1910190 1910195) (-1116 "SOLVERAD.spad" 1904730 1904741 1908710 1908715) (-1115 "SOLVEFOR.spad" 1903150 1903168 1904720 1904725) (-1114 "SNTSCAT.spad" 1902750 1902767 1903118 1903145) (-1113 "SMTS.spad" 1901010 1901036 1902315 1902412) (-1112 "SMP.spad" 1898449 1898469 1898839 1898966) (-1111 "SMITH.spad" 1897292 1897317 1898439 1898444) (-1110 "SMATCAT.spad" 1895402 1895432 1897236 1897287) (-1109 "SMATCAT.spad" 1893444 1893476 1895280 1895285) (-1108 "SKAGG.spad" 1892405 1892416 1893412 1893439) (-1107 "SINT.spad" 1891231 1891240 1892271 1892400) (-1106 "SIMPAN.spad" 1890959 1890968 1891221 1891226) (-1105 "SIG.spad" 1890287 1890296 1890949 1890954) (-1104 "SIGNRF.spad" 1889395 1889406 1890277 1890282) (-1103 "SIGNEF.spad" 1888664 1888681 1889385 1889390) (-1102 "SIGAST.spad" 1888045 1888054 1888654 1888659) (-1101 "SHP.spad" 1885963 1885978 1888001 1888006) (-1100 "SHDP.spad" 1875674 1875701 1876183 1876314) (-1099 "SGROUP.spad" 1875282 1875291 1875664 1875669) (-1098 "SGROUP.spad" 1874888 1874899 1875272 1875277) (-1097 "SGCF.spad" 1867769 1867778 1874878 1874883) (-1096 "SFRTCAT.spad" 1866697 1866714 1867737 1867764) (-1095 "SFRGCD.spad" 1865760 1865780 1866687 1866692) (-1094 "SFQCMPK.spad" 1860397 1860417 1865750 1865755) (-1093 "SFORT.spad" 1859832 1859846 1860387 1860392) (-1092 "SEXOF.spad" 1859675 1859715 1859822 1859827) (-1091 "SEX.spad" 1859567 1859576 1859665 1859670) (-1090 "SEXCAT.spad" 1857118 1857158 1859557 1859562) (-1089 "SET.spad" 1855418 1855429 1856539 1856578) (-1088 "SETMN.spad" 1853852 1853869 1855408 1855413) (-1087 "SETCAT.spad" 1853337 1853346 1853842 1853847) (-1086 "SETCAT.spad" 1852820 1852831 1853327 1853332) (-1085 "SETAGG.spad" 1849341 1849352 1852800 1852815) (-1084 "SETAGG.spad" 1845870 1845883 1849331 1849336) (-1083 "SEQAST.spad" 1845573 1845582 1845860 1845865) (-1082 "SEGXCAT.spad" 1844695 1844708 1845563 1845568) (-1081 "SEG.spad" 1844508 1844519 1844614 1844619) (-1080 "SEGCAT.spad" 1843415 1843426 1844498 1844503) (-1079 "SEGBIND.spad" 1842487 1842498 1843370 1843375) (-1078 "SEGBIND2.spad" 1842183 1842196 1842477 1842482) (-1077 "SEGAST.spad" 1841897 1841906 1842173 1842178) (-1076 "SEG2.spad" 1841322 1841335 1841853 1841858) (-1075 "SDVAR.spad" 1840598 1840609 1841312 1841317) (-1074 "SDPOL.spad" 1837988 1837999 1838279 1838406) (-1073 "SCPKG.spad" 1836067 1836078 1837978 1837983) (-1072 "SCOPE.spad" 1835212 1835221 1836057 1836062) (-1071 "SCACHE.spad" 1833894 1833905 1835202 1835207) (-1070 "SASTCAT.spad" 1833803 1833812 1833884 1833889) (-1069 "SAOS.spad" 1833675 1833684 1833793 1833798) (-1068 "SAERFFC.spad" 1833388 1833408 1833665 1833670) (-1067 "SAE.spad" 1831563 1831579 1832174 1832309) (-1066 "SAEFACT.spad" 1831264 1831284 1831553 1831558) (-1065 "RURPK.spad" 1828905 1828921 1831254 1831259) (-1064 "RULESET.spad" 1828346 1828370 1828895 1828900) (-1063 "RULE.spad" 1826550 1826574 1828336 1828341) (-1062 "RULECOLD.spad" 1826402 1826415 1826540 1826545) (-1061 "RSTRCAST.spad" 1826119 1826128 1826392 1826397) (-1060 "RSETGCD.spad" 1822497 1822517 1826109 1826114) (-1059 "RSETCAT.spad" 1812281 1812298 1822465 1822492) (-1058 "RSETCAT.spad" 1802085 1802104 1812271 1812276) (-1057 "RSDCMPK.spad" 1800537 1800557 1802075 1802080) (-1056 "RRCC.spad" 1798921 1798951 1800527 1800532) (-1055 "RRCC.spad" 1797303 1797335 1798911 1798916) (-1054 "RPTAST.spad" 1797005 1797014 1797293 1797298) (-1053 "RPOLCAT.spad" 1776365 1776380 1796873 1797000) (-1052 "RPOLCAT.spad" 1755439 1755456 1775949 1775954) (-1051 "ROUTINE.spad" 1751302 1751311 1754086 1754113) (-1050 "ROMAN.spad" 1750630 1750639 1751168 1751297) (-1049 "ROIRC.spad" 1749710 1749742 1750620 1750625) (-1048 "RNS.spad" 1748613 1748622 1749612 1749705) (-1047 "RNS.spad" 1747602 1747613 1748603 1748608) (-1046 "RNG.spad" 1747337 1747346 1747592 1747597) (-1045 "RMODULE.spad" 1746975 1746986 1747327 1747332) (-1044 "RMCAT2.spad" 1746383 1746440 1746965 1746970) (-1043 "RMATRIX.spad" 1745207 1745226 1745550 1745589) (-1042 "RMATCAT.spad" 1740740 1740771 1745163 1745202) (-1041 "RMATCAT.spad" 1736163 1736196 1740588 1740593) (-1040 "RINTERP.spad" 1736051 1736071 1736153 1736158) (-1039 "RING.spad" 1735521 1735530 1736031 1736046) (-1038 "RING.spad" 1734999 1735010 1735511 1735516) (-1037 "RIDIST.spad" 1734383 1734392 1734989 1734994) (-1036 "RGCHAIN.spad" 1732962 1732978 1733868 1733895) (-1035 "RGBCSPC.spad" 1732743 1732755 1732952 1732957) (-1034 "RGBCMDL.spad" 1732273 1732285 1732733 1732738) (-1033 "RF.spad" 1729887 1729898 1732263 1732268) (-1032 "RFFACTOR.spad" 1729349 1729360 1729877 1729882) (-1031 "RFFACT.spad" 1729084 1729096 1729339 1729344) (-1030 "RFDIST.spad" 1728072 1728081 1729074 1729079) (-1029 "RETSOL.spad" 1727489 1727502 1728062 1728067) (-1028 "RETRACT.spad" 1726917 1726928 1727479 1727484) (-1027 "RETRACT.spad" 1726343 1726356 1726907 1726912) (-1026 "RETAST.spad" 1726155 1726164 1726333 1726338) (-1025 "RESULT.spad" 1724215 1724224 1724802 1724829) (-1024 "RESRING.spad" 1723562 1723609 1724153 1724210) (-1023 "RESLATC.spad" 1722886 1722897 1723552 1723557) (-1022 "REPSQ.spad" 1722615 1722626 1722876 1722881) (-1021 "REP.spad" 1720167 1720176 1722605 1722610) (-1020 "REPDB.spad" 1719872 1719883 1720157 1720162) (-1019 "REP2.spad" 1709444 1709455 1719714 1719719) (-1018 "REP1.spad" 1703434 1703445 1709394 1709399) (-1017 "REGSET.spad" 1701231 1701248 1703080 1703107) (-1016 "REF.spad" 1700560 1700571 1701186 1701191) (-1015 "REDORDER.spad" 1699736 1699753 1700550 1700555) (-1014 "RECLOS.spad" 1698519 1698539 1699223 1699316) (-1013 "REALSOLV.spad" 1697651 1697660 1698509 1698514) (-1012 "REAL.spad" 1697523 1697532 1697641 1697646) (-1011 "REAL0Q.spad" 1694805 1694820 1697513 1697518) (-1010 "REAL0.spad" 1691633 1691648 1694795 1694800) (-1009 "RDUCEAST.spad" 1691354 1691363 1691623 1691628) (-1008 "RDIV.spad" 1691005 1691030 1691344 1691349) (-1007 "RDIST.spad" 1690568 1690579 1690995 1691000) (-1006 "RDETRS.spad" 1689364 1689382 1690558 1690563) (-1005 "RDETR.spad" 1687471 1687489 1689354 1689359) (-1004 "RDEEFS.spad" 1686544 1686561 1687461 1687466) (-1003 "RDEEF.spad" 1685540 1685557 1686534 1686539) (-1002 "RCFIELD.spad" 1682726 1682735 1685442 1685535) (-1001 "RCFIELD.spad" 1679998 1680009 1682716 1682721) (-1000 "RCAGG.spad" 1677910 1677921 1679988 1679993) (-999 "RCAGG.spad" 1675750 1675762 1677829 1677834) (-998 "RATRET.spad" 1675111 1675121 1675740 1675745) (-997 "RATFACT.spad" 1674804 1674815 1675101 1675106) (-996 "RANDSRC.spad" 1674124 1674132 1674794 1674799) (-995 "RADUTIL.spad" 1673879 1673887 1674114 1674119) (-994 "RADIX.spad" 1670781 1670794 1672346 1672439) (-993 "RADFF.spad" 1669195 1669231 1669313 1669469) (-992 "RADCAT.spad" 1668789 1668797 1669185 1669190) (-991 "RADCAT.spad" 1668381 1668391 1668779 1668784) (-990 "QUEUE.spad" 1667724 1667734 1667988 1668015) (-989 "QUAT.spad" 1666306 1666316 1666648 1666713) (-988 "QUATCT2.spad" 1665925 1665943 1666296 1666301) (-987 "QUATCAT.spad" 1664090 1664100 1665855 1665920) (-986 "QUATCAT.spad" 1662006 1662018 1663773 1663778) (-985 "QUAGG.spad" 1660832 1660842 1661974 1662001) (-984 "QQUTAST.spad" 1660601 1660609 1660822 1660827) (-983 "QFORM.spad" 1660064 1660078 1660591 1660596) (-982 "QFCAT.spad" 1658767 1658777 1659966 1660059) (-981 "QFCAT.spad" 1657061 1657073 1658262 1658267) (-980 "QFCAT2.spad" 1656752 1656768 1657051 1657056) (-979 "QEQUAT.spad" 1656309 1656317 1656742 1656747) (-978 "QCMPACK.spad" 1651056 1651075 1656299 1656304) (-977 "QALGSET.spad" 1647131 1647163 1650970 1650975) (-976 "QALGSET2.spad" 1645127 1645145 1647121 1647126) (-975 "PWFFINTB.spad" 1642437 1642458 1645117 1645122) (-974 "PUSHVAR.spad" 1641766 1641785 1642427 1642432) (-973 "PTRANFN.spad" 1637892 1637902 1641756 1641761) (-972 "PTPACK.spad" 1634980 1634990 1637882 1637887) (-971 "PTFUNC2.spad" 1634801 1634815 1634970 1634975) (-970 "PTCAT.spad" 1634050 1634060 1634769 1634796) (-969 "PSQFR.spad" 1633357 1633381 1634040 1634045) (-968 "PSEUDLIN.spad" 1632215 1632225 1633347 1633352) (-967 "PSETPK.spad" 1617648 1617664 1632093 1632098) (-966 "PSETCAT.spad" 1611568 1611591 1617628 1617643) (-965 "PSETCAT.spad" 1605462 1605487 1611524 1611529) (-964 "PSCURVE.spad" 1604445 1604453 1605452 1605457) (-963 "PSCAT.spad" 1603212 1603241 1604343 1604440) (-962 "PSCAT.spad" 1602069 1602100 1603202 1603207) (-961 "PRTITION.spad" 1601014 1601022 1602059 1602064) (-960 "PRTDAST.spad" 1600733 1600741 1601004 1601009) (-959 "PRS.spad" 1590295 1590312 1600689 1600694) (-958 "PRQAGG.spad" 1589726 1589736 1590263 1590290) (-957 "PROPLOG.spad" 1589129 1589137 1589716 1589721) (-956 "PROPFRML.spad" 1587047 1587058 1589119 1589124) (-955 "PROPERTY.spad" 1586541 1586549 1587037 1587042) (-954 "PRODUCT.spad" 1584221 1584233 1584507 1584562) (-953 "PR.spad" 1582607 1582619 1583312 1583439) (-952 "PRINT.spad" 1582359 1582367 1582597 1582602) (-951 "PRIMES.spad" 1580610 1580620 1582349 1582354) (-950 "PRIMELT.spad" 1578591 1578605 1580600 1580605) (-949 "PRIMCAT.spad" 1578214 1578222 1578581 1578586) (-948 "PRIMARR.spad" 1577219 1577229 1577397 1577424) (-947 "PRIMARR2.spad" 1575942 1575954 1577209 1577214) (-946 "PREASSOC.spad" 1575314 1575326 1575932 1575937) (-945 "PPCURVE.spad" 1574451 1574459 1575304 1575309) (-944 "PORTNUM.spad" 1574226 1574234 1574441 1574446) (-943 "POLYROOT.spad" 1573055 1573077 1574182 1574187) (-942 "POLY.spad" 1570352 1570362 1570869 1570996) (-941 "POLYLIFT.spad" 1569613 1569636 1570342 1570347) (-940 "POLYCATQ.spad" 1567715 1567737 1569603 1569608) (-939 "POLYCAT.spad" 1561121 1561142 1567583 1567710) (-938 "POLYCAT.spad" 1553829 1553852 1560293 1560298) (-937 "POLY2UP.spad" 1553277 1553291 1553819 1553824) (-936 "POLY2.spad" 1552872 1552884 1553267 1553272) (-935 "POLUTIL.spad" 1551813 1551842 1552828 1552833) (-934 "POLTOPOL.spad" 1550561 1550576 1551803 1551808) (-933 "POINT.spad" 1549400 1549410 1549487 1549514) (-932 "PNTHEORY.spad" 1546066 1546074 1549390 1549395) (-931 "PMTOOLS.spad" 1544823 1544837 1546056 1546061) (-930 "PMSYM.spad" 1544368 1544378 1544813 1544818) (-929 "PMQFCAT.spad" 1543955 1543969 1544358 1544363) (-928 "PMPRED.spad" 1543424 1543438 1543945 1543950) (-927 "PMPREDFS.spad" 1542868 1542890 1543414 1543419) (-926 "PMPLCAT.spad" 1541938 1541956 1542800 1542805) (-925 "PMLSAGG.spad" 1541519 1541533 1541928 1541933) (-924 "PMKERNEL.spad" 1541086 1541098 1541509 1541514) (-923 "PMINS.spad" 1540662 1540672 1541076 1541081) (-922 "PMFS.spad" 1540235 1540253 1540652 1540657) (-921 "PMDOWN.spad" 1539521 1539535 1540225 1540230) (-920 "PMASS.spad" 1538533 1538541 1539511 1539516) (-919 "PMASSFS.spad" 1537502 1537518 1538523 1538528) (-918 "PLOTTOOL.spad" 1537282 1537290 1537492 1537497) (-917 "PLOT.spad" 1532113 1532121 1537272 1537277) (-916 "PLOT3D.spad" 1528533 1528541 1532103 1532108) (-915 "PLOT1.spad" 1527674 1527684 1528523 1528528) (-914 "PLEQN.spad" 1514890 1514917 1527664 1527669) (-913 "PINTERP.spad" 1514506 1514525 1514880 1514885) (-912 "PINTERPA.spad" 1514288 1514304 1514496 1514501) (-911 "PI.spad" 1513895 1513903 1514262 1514283) (-910 "PID.spad" 1512851 1512859 1513821 1513890) (-909 "PICOERCE.spad" 1512508 1512518 1512841 1512846) (-908 "PGROEB.spad" 1511105 1511119 1512498 1512503) (-907 "PGE.spad" 1502358 1502366 1511095 1511100) (-906 "PGCD.spad" 1501240 1501257 1502348 1502353) (-905 "PFRPAC.spad" 1500383 1500393 1501230 1501235) (-904 "PFR.spad" 1497040 1497050 1500285 1500378) (-903 "PFOTOOLS.spad" 1496298 1496314 1497030 1497035) (-902 "PFOQ.spad" 1495668 1495686 1496288 1496293) (-901 "PFO.spad" 1495087 1495114 1495658 1495663) (-900 "PF.spad" 1494661 1494673 1494892 1494985) (-899 "PFECAT.spad" 1492327 1492335 1494587 1494656) (-898 "PFECAT.spad" 1490021 1490031 1492283 1492288) (-897 "PFBRU.spad" 1487891 1487903 1490011 1490016) (-896 "PFBR.spad" 1485429 1485452 1487881 1487886) (-895 "PERM.spad" 1481110 1481120 1485259 1485274) (-894 "PERMGRP.spad" 1475846 1475856 1481100 1481105) (-893 "PERMCAT.spad" 1474398 1474408 1475826 1475841) (-892 "PERMAN.spad" 1472930 1472944 1474388 1474393) (-891 "PENDTREE.spad" 1472269 1472279 1472559 1472564) (-890 "PDRING.spad" 1470760 1470770 1472249 1472264) (-889 "PDRING.spad" 1469259 1469271 1470750 1470755) (-888 "PDEPROB.spad" 1468274 1468282 1469249 1469254) (-887 "PDEPACK.spad" 1462276 1462284 1468264 1468269) (-886 "PDECOMP.spad" 1461738 1461755 1462266 1462271) (-885 "PDECAT.spad" 1460092 1460100 1461728 1461733) (-884 "PCOMP.spad" 1459943 1459956 1460082 1460087) (-883 "PBWLB.spad" 1458525 1458542 1459933 1459938) (-882 "PATTERN.spad" 1452956 1452966 1458515 1458520) (-881 "PATTERN2.spad" 1452692 1452704 1452946 1452951) (-880 "PATTERN1.spad" 1450994 1451010 1452682 1452687) (-879 "PATRES.spad" 1448541 1448553 1450984 1450989) (-878 "PATRES2.spad" 1448203 1448217 1448531 1448536) (-877 "PATMATCH.spad" 1446360 1446391 1447911 1447916) (-876 "PATMAB.spad" 1445785 1445795 1446350 1446355) (-875 "PATLRES.spad" 1444869 1444883 1445775 1445780) (-874 "PATAB.spad" 1444633 1444643 1444859 1444864) (-873 "PARTPERM.spad" 1441995 1442003 1444623 1444628) (-872 "PARSURF.spad" 1441423 1441451 1441985 1441990) (-871 "PARSU2.spad" 1441218 1441234 1441413 1441418) (-870 "script-parser.spad" 1440738 1440746 1441208 1441213) (-869 "PARSCURV.spad" 1440166 1440194 1440728 1440733) (-868 "PARSC2.spad" 1439955 1439971 1440156 1440161) (-867 "PARPCURV.spad" 1439413 1439441 1439945 1439950) (-866 "PARPC2.spad" 1439202 1439218 1439403 1439408) (-865 "PAN2EXPR.spad" 1438614 1438622 1439192 1439197) (-864 "PALETTE.spad" 1437584 1437592 1438604 1438609) (-863 "PAIR.spad" 1436567 1436580 1437172 1437177) (-862 "PADICRC.spad" 1433897 1433915 1435072 1435165) (-861 "PADICRAT.spad" 1431912 1431924 1432133 1432226) (-860 "PADIC.spad" 1431607 1431619 1431838 1431907) (-859 "PADICCT.spad" 1430148 1430160 1431533 1431602) (-858 "PADEPAC.spad" 1428827 1428846 1430138 1430143) (-857 "PADE.spad" 1427567 1427583 1428817 1428822) (-856 "OWP.spad" 1426807 1426837 1427425 1427492) (-855 "OVAR.spad" 1426588 1426611 1426797 1426802) (-854 "OUT.spad" 1425672 1425680 1426578 1426583) (-853 "OUTFORM.spad" 1414968 1414976 1425662 1425667) (-852 "OUTBFILE.spad" 1414386 1414394 1414958 1414963) (-851 "OUTBCON.spad" 1413664 1413672 1414376 1414381) (-850 "OUTBCON.spad" 1412940 1412950 1413654 1413659) (-849 "OSI.spad" 1412415 1412423 1412930 1412935) (-848 "OSGROUP.spad" 1412333 1412341 1412405 1412410) (-847 "ORTHPOL.spad" 1410794 1410804 1412250 1412255) (-846 "OREUP.spad" 1410247 1410275 1410474 1410513) (-845 "ORESUP.spad" 1409546 1409570 1409927 1409966) (-844 "OREPCTO.spad" 1407365 1407377 1409466 1409471) (-843 "OREPCAT.spad" 1401422 1401432 1407321 1407360) (-842 "OREPCAT.spad" 1395369 1395381 1401270 1401275) (-841 "ORDSET.spad" 1394535 1394543 1395359 1395364) (-840 "ORDSET.spad" 1393699 1393709 1394525 1394530) (-839 "ORDRING.spad" 1393089 1393097 1393679 1393694) (-838 "ORDRING.spad" 1392487 1392497 1393079 1393084) (-837 "ORDMON.spad" 1392342 1392350 1392477 1392482) (-836 "ORDFUNS.spad" 1391468 1391484 1392332 1392337) (-835 "ORDFIN.spad" 1391288 1391296 1391458 1391463) (-834 "ORDCOMP.spad" 1389753 1389763 1390835 1390864) (-833 "ORDCOMP2.spad" 1389038 1389050 1389743 1389748) (-832 "OPTPROB.spad" 1387676 1387684 1389028 1389033) (-831 "OPTPACK.spad" 1380061 1380069 1387666 1387671) (-830 "OPTCAT.spad" 1377736 1377744 1380051 1380056) (-829 "OPSIG.spad" 1377388 1377396 1377726 1377731) (-828 "OPQUERY.spad" 1376937 1376945 1377378 1377383) (-827 "OP.spad" 1376679 1376689 1376759 1376826) (-826 "OPERCAT.spad" 1376267 1376277 1376669 1376674) (-825 "OPERCAT.spad" 1375853 1375865 1376257 1376262) (-824 "ONECOMP.spad" 1374598 1374608 1375400 1375429) (-823 "ONECOMP2.spad" 1374016 1374028 1374588 1374593) (-822 "OMSERVER.spad" 1373018 1373026 1374006 1374011) (-821 "OMSAGG.spad" 1372806 1372816 1372974 1373013) (-820 "OMPKG.spad" 1371418 1371426 1372796 1372801) (-819 "OM.spad" 1370383 1370391 1371408 1371413) (-818 "OMLO.spad" 1369808 1369820 1370269 1370308) (-817 "OMEXPR.spad" 1369642 1369652 1369798 1369803) (-816 "OMERR.spad" 1369185 1369193 1369632 1369637) (-815 "OMERRK.spad" 1368219 1368227 1369175 1369180) (-814 "OMENC.spad" 1367563 1367571 1368209 1368214) (-813 "OMDEV.spad" 1361852 1361860 1367553 1367558) (-812 "OMCONN.spad" 1361261 1361269 1361842 1361847) (-811 "OINTDOM.spad" 1361024 1361032 1361187 1361256) (-810 "OFMONOID.spad" 1357211 1357221 1361014 1361019) (-809 "ODVAR.spad" 1356472 1356482 1357201 1357206) (-808 "ODR.spad" 1356116 1356142 1356284 1356433) (-807 "ODPOL.spad" 1353462 1353472 1353802 1353929) (-806 "ODP.spad" 1343309 1343329 1343682 1343813) (-805 "ODETOOLS.spad" 1341892 1341911 1343299 1343304) (-804 "ODESYS.spad" 1339542 1339559 1341882 1341887) (-803 "ODERTRIC.spad" 1335483 1335500 1339499 1339504) (-802 "ODERED.spad" 1334870 1334894 1335473 1335478) (-801 "ODERAT.spad" 1332421 1332438 1334860 1334865) (-800 "ODEPRRIC.spad" 1329312 1329334 1332411 1332416) (-799 "ODEPROB.spad" 1328569 1328577 1329302 1329307) (-798 "ODEPRIM.spad" 1325843 1325865 1328559 1328564) (-797 "ODEPAL.spad" 1325219 1325243 1325833 1325838) (-796 "ODEPACK.spad" 1311821 1311829 1325209 1325214) (-795 "ODEINT.spad" 1311252 1311268 1311811 1311816) (-794 "ODEIFTBL.spad" 1308647 1308655 1311242 1311247) (-793 "ODEEF.spad" 1304014 1304030 1308637 1308642) (-792 "ODECONST.spad" 1303533 1303551 1304004 1304009) (-791 "ODECAT.spad" 1302129 1302137 1303523 1303528) (-790 "OCT.spad" 1300267 1300277 1300983 1301022) (-789 "OCTCT2.spad" 1299911 1299932 1300257 1300262) (-788 "OC.spad" 1297685 1297695 1299867 1299906) (-787 "OC.spad" 1295184 1295196 1297368 1297373) (-786 "OCAMON.spad" 1295032 1295040 1295174 1295179) (-785 "OASGP.spad" 1294847 1294855 1295022 1295027) (-784 "OAMONS.spad" 1294367 1294375 1294837 1294842) (-783 "OAMON.spad" 1294228 1294236 1294357 1294362) (-782 "OAGROUP.spad" 1294090 1294098 1294218 1294223) (-781 "NUMTUBE.spad" 1293677 1293693 1294080 1294085) (-780 "NUMQUAD.spad" 1281539 1281547 1293667 1293672) (-779 "NUMODE.spad" 1272675 1272683 1281529 1281534) (-778 "NUMINT.spad" 1270233 1270241 1272665 1272670) (-777 "NUMFMT.spad" 1269073 1269081 1270223 1270228) (-776 "NUMERIC.spad" 1261145 1261155 1268878 1268883) (-775 "NTSCAT.spad" 1259647 1259663 1261113 1261140) (-774 "NTPOLFN.spad" 1259192 1259202 1259564 1259569) (-773 "NSUP.spad" 1252202 1252212 1256742 1256895) (-772 "NSUP2.spad" 1251594 1251606 1252192 1252197) (-771 "NSMP.spad" 1247789 1247808 1248097 1248224) (-770 "NREP.spad" 1246161 1246175 1247779 1247784) (-769 "NPCOEF.spad" 1245407 1245427 1246151 1246156) (-768 "NORMRETR.spad" 1245005 1245044 1245397 1245402) (-767 "NORMPK.spad" 1242907 1242926 1244995 1245000) (-766 "NORMMA.spad" 1242595 1242621 1242897 1242902) (-765 "NONE.spad" 1242336 1242344 1242585 1242590) (-764 "NONE1.spad" 1242012 1242022 1242326 1242331) (-763 "NODE1.spad" 1241481 1241497 1242002 1242007) (-762 "NNI.spad" 1240368 1240376 1241455 1241476) (-761 "NLINSOL.spad" 1238990 1239000 1240358 1240363) (-760 "NIPROB.spad" 1237531 1237539 1238980 1238985) (-759 "NFINTBAS.spad" 1234991 1235008 1237521 1237526) (-758 "NETCLT.spad" 1234965 1234976 1234981 1234986) (-757 "NCODIV.spad" 1233163 1233179 1234955 1234960) (-756 "NCNTFRAC.spad" 1232805 1232819 1233153 1233158) (-755 "NCEP.spad" 1230965 1230979 1232795 1232800) (-754 "NASRING.spad" 1230561 1230569 1230955 1230960) (-753 "NASRING.spad" 1230155 1230165 1230551 1230556) (-752 "NARNG.spad" 1229499 1229507 1230145 1230150) (-751 "NARNG.spad" 1228841 1228851 1229489 1229494) (-750 "NAGSP.spad" 1227914 1227922 1228831 1228836) (-749 "NAGS.spad" 1217439 1217447 1227904 1227909) (-748 "NAGF07.spad" 1215832 1215840 1217429 1217434) (-747 "NAGF04.spad" 1210064 1210072 1215822 1215827) (-746 "NAGF02.spad" 1203873 1203881 1210054 1210059) (-745 "NAGF01.spad" 1199476 1199484 1203863 1203868) (-744 "NAGE04.spad" 1192936 1192944 1199466 1199471) (-743 "NAGE02.spad" 1183278 1183286 1192926 1192931) (-742 "NAGE01.spad" 1179162 1179170 1183268 1183273) (-741 "NAGD03.spad" 1177082 1177090 1179152 1179157) (-740 "NAGD02.spad" 1169613 1169621 1177072 1177077) (-739 "NAGD01.spad" 1163726 1163734 1169603 1169608) (-738 "NAGC06.spad" 1159513 1159521 1163716 1163721) (-737 "NAGC05.spad" 1157982 1157990 1159503 1159508) (-736 "NAGC02.spad" 1157237 1157245 1157972 1157977) (-735 "NAALG.spad" 1156772 1156782 1157205 1157232) (-734 "NAALG.spad" 1156327 1156339 1156762 1156767) (-733 "MULTSQFR.spad" 1153285 1153302 1156317 1156322) (-732 "MULTFACT.spad" 1152668 1152685 1153275 1153280) (-731 "MTSCAT.spad" 1150702 1150723 1152566 1152663) (-730 "MTHING.spad" 1150359 1150369 1150692 1150697) (-729 "MSYSCMD.spad" 1149793 1149801 1150349 1150354) (-728 "MSET.spad" 1147735 1147745 1149499 1149538) (-727 "MSETAGG.spad" 1147580 1147590 1147703 1147730) (-726 "MRING.spad" 1144551 1144563 1147288 1147355) (-725 "MRF2.spad" 1144119 1144133 1144541 1144546) (-724 "MRATFAC.spad" 1143665 1143682 1144109 1144114) (-723 "MPRFF.spad" 1141695 1141714 1143655 1143660) (-722 "MPOLY.spad" 1139130 1139145 1139489 1139616) (-721 "MPCPF.spad" 1138394 1138413 1139120 1139125) (-720 "MPC3.spad" 1138209 1138249 1138384 1138389) (-719 "MPC2.spad" 1137851 1137884 1138199 1138204) (-718 "MONOTOOL.spad" 1136186 1136203 1137841 1137846) (-717 "MONOID.spad" 1135505 1135513 1136176 1136181) (-716 "MONOID.spad" 1134822 1134832 1135495 1135500) (-715 "MONOGEN.spad" 1133568 1133581 1134682 1134817) (-714 "MONOGEN.spad" 1132336 1132351 1133452 1133457) (-713 "MONADWU.spad" 1130350 1130358 1132326 1132331) (-712 "MONADWU.spad" 1128362 1128372 1130340 1130345) (-711 "MONAD.spad" 1127506 1127514 1128352 1128357) (-710 "MONAD.spad" 1126648 1126658 1127496 1127501) (-709 "MOEBIUS.spad" 1125334 1125348 1126628 1126643) (-708 "MODULE.spad" 1125204 1125214 1125302 1125329) (-707 "MODULE.spad" 1125094 1125106 1125194 1125199) (-706 "MODRING.spad" 1124425 1124464 1125074 1125089) (-705 "MODOP.spad" 1123084 1123096 1124247 1124314) (-704 "MODMONOM.spad" 1122813 1122831 1123074 1123079) (-703 "MODMON.spad" 1119572 1119588 1120291 1120444) (-702 "MODFIELD.spad" 1118930 1118969 1119474 1119567) (-701 "MMLFORM.spad" 1117790 1117798 1118920 1118925) (-700 "MMAP.spad" 1117530 1117564 1117780 1117785) (-699 "MLO.spad" 1115957 1115967 1117486 1117525) (-698 "MLIFT.spad" 1114529 1114546 1115947 1115952) (-697 "MKUCFUNC.spad" 1114062 1114080 1114519 1114524) (-696 "MKRECORD.spad" 1113664 1113677 1114052 1114057) (-695 "MKFUNC.spad" 1113045 1113055 1113654 1113659) (-694 "MKFLCFN.spad" 1112001 1112011 1113035 1113040) (-693 "MKCHSET.spad" 1111866 1111876 1111991 1111996) (-692 "MKBCFUNC.spad" 1111351 1111369 1111856 1111861) (-691 "MINT.spad" 1110790 1110798 1111253 1111346) (-690 "MHROWRED.spad" 1109291 1109301 1110780 1110785) (-689 "MFLOAT.spad" 1107807 1107815 1109181 1109286) (-688 "MFINFACT.spad" 1107207 1107229 1107797 1107802) (-687 "MESH.spad" 1104939 1104947 1107197 1107202) (-686 "MDDFACT.spad" 1103132 1103142 1104929 1104934) (-685 "MDAGG.spad" 1102419 1102429 1103112 1103127) (-684 "MCMPLX.spad" 1098405 1098413 1099019 1099208) (-683 "MCDEN.spad" 1097613 1097625 1098395 1098400) (-682 "MCALCFN.spad" 1094715 1094741 1097603 1097608) (-681 "MAYBE.spad" 1093964 1093975 1094705 1094710) (-680 "MATSTOR.spad" 1091240 1091250 1093954 1093959) (-679 "MATRIX.spad" 1089944 1089954 1090428 1090455) (-678 "MATLIN.spad" 1087270 1087294 1089828 1089833) (-677 "MATCAT.spad" 1078855 1078877 1087238 1087265) (-676 "MATCAT.spad" 1070312 1070336 1078697 1078702) (-675 "MATCAT2.spad" 1069580 1069628 1070302 1070307) (-674 "MAPPKG3.spad" 1068479 1068493 1069570 1069575) (-673 "MAPPKG2.spad" 1067813 1067825 1068469 1068474) (-672 "MAPPKG1.spad" 1066631 1066641 1067803 1067808) (-671 "MAPPAST.spad" 1065944 1065952 1066621 1066626) (-670 "MAPHACK3.spad" 1065752 1065766 1065934 1065939) (-669 "MAPHACK2.spad" 1065517 1065529 1065742 1065747) (-668 "MAPHACK1.spad" 1065147 1065157 1065507 1065512) (-667 "MAGMA.spad" 1062937 1062954 1065137 1065142) (-666 "MACROAST.spad" 1062516 1062524 1062927 1062932) (-665 "M3D.spad" 1060212 1060222 1061894 1061899) (-664 "LZSTAGG.spad" 1057440 1057450 1060202 1060207) (-663 "LZSTAGG.spad" 1054666 1054678 1057430 1057435) (-662 "LWORD.spad" 1051371 1051388 1054656 1054661) (-661 "LSTAST.spad" 1051155 1051163 1051361 1051366) (-660 "LSQM.spad" 1049381 1049395 1049779 1049830) (-659 "LSPP.spad" 1048914 1048931 1049371 1049376) (-658 "LSMP.spad" 1047754 1047782 1048904 1048909) (-657 "LSMP1.spad" 1045558 1045572 1047744 1047749) (-656 "LSAGG.spad" 1045227 1045237 1045526 1045553) (-655 "LSAGG.spad" 1044916 1044928 1045217 1045222) (-654 "LPOLY.spad" 1043870 1043889 1044772 1044841) (-653 "LPEFRAC.spad" 1043127 1043137 1043860 1043865) (-652 "LO.spad" 1042528 1042542 1043061 1043088) (-651 "LOGIC.spad" 1042130 1042138 1042518 1042523) (-650 "LOGIC.spad" 1041730 1041740 1042120 1042125) (-649 "LODOOPS.spad" 1040648 1040660 1041720 1041725) (-648 "LODO.spad" 1040032 1040048 1040328 1040367) (-647 "LODOF.spad" 1039076 1039093 1039989 1039994) (-646 "LODOCAT.spad" 1037734 1037744 1039032 1039071) (-645 "LODOCAT.spad" 1036390 1036402 1037690 1037695) (-644 "LODO2.spad" 1035663 1035675 1036070 1036109) (-643 "LODO1.spad" 1035063 1035073 1035343 1035382) (-642 "LODEEF.spad" 1033835 1033853 1035053 1035058) (-641 "LNAGG.spad" 1029637 1029647 1033825 1033830) (-640 "LNAGG.spad" 1025403 1025415 1029593 1029598) (-639 "LMOPS.spad" 1022139 1022156 1025393 1025398) (-638 "LMODULE.spad" 1021781 1021791 1022129 1022134) (-637 "LMDICT.spad" 1021064 1021074 1021332 1021359) (-636 "LITERAL.spad" 1020970 1020981 1021054 1021059) (-635 "LIST.spad" 1018688 1018698 1020117 1020144) (-634 "LIST3.spad" 1017979 1017993 1018678 1018683) (-633 "LIST2.spad" 1016619 1016631 1017969 1017974) (-632 "LIST2MAP.spad" 1013496 1013508 1016609 1016614) (-631 "LINEXP.spad" 1012928 1012938 1013476 1013491) (-630 "LINDEP.spad" 1011705 1011717 1012840 1012845) (-629 "LIMITRF.spad" 1009619 1009629 1011695 1011700) (-628 "LIMITPS.spad" 1008502 1008515 1009609 1009614) (-627 "LIE.spad" 1006516 1006528 1007792 1007937) (-626 "LIECAT.spad" 1005992 1006002 1006442 1006511) (-625 "LIECAT.spad" 1005496 1005508 1005948 1005953) (-624 "LIB.spad" 1003544 1003552 1004155 1004170) (-623 "LGROBP.spad" 1000897 1000916 1003534 1003539) (-622 "LF.spad" 999816 999832 1000887 1000892) (-621 "LFCAT.spad" 998835 998843 999806 999811) (-620 "LEXTRIPK.spad" 994338 994353 998825 998830) (-619 "LEXP.spad" 992341 992368 994318 994333) (-618 "LETAST.spad" 992040 992048 992331 992336) (-617 "LEADCDET.spad" 990424 990441 992030 992035) (-616 "LAZM3PK.spad" 989128 989150 990414 990419) (-615 "LAUPOL.spad" 987817 987830 988721 988790) (-614 "LAPLACE.spad" 987390 987406 987807 987812) (-613 "LA.spad" 986830 986844 987312 987351) (-612 "LALG.spad" 986606 986616 986810 986825) (-611 "LALG.spad" 986390 986402 986596 986601) (-610 "KVTFROM.spad" 986125 986135 986380 986385) (-609 "KTVLOGIC.spad" 985548 985556 986115 986120) (-608 "KRCFROM.spad" 985286 985296 985538 985543) (-607 "KOVACIC.spad" 983999 984016 985276 985281) (-606 "KONVERT.spad" 983721 983731 983989 983994) (-605 "KOERCE.spad" 983458 983468 983711 983716) (-604 "KERNEL.spad" 981993 982003 983242 983247) (-603 "KERNEL2.spad" 981696 981708 981983 981988) (-602 "KDAGG.spad" 980799 980821 981676 981691) (-601 "KDAGG.spad" 979910 979934 980789 980794) (-600 "KAFILE.spad" 978873 978889 979108 979135) (-599 "JORDAN.spad" 976700 976712 978163 978308) (-598 "JOINAST.spad" 976394 976402 976690 976695) (-597 "JAVACODE.spad" 976260 976268 976384 976389) (-596 "IXAGG.spad" 974383 974407 976250 976255) (-595 "IXAGG.spad" 972361 972387 974230 974235) (-594 "IVECTOR.spad" 971132 971147 971287 971314) (-593 "ITUPLE.spad" 970277 970287 971122 971127) (-592 "ITRIGMNP.spad" 969088 969107 970267 970272) (-591 "ITFUN3.spad" 968582 968596 969078 969083) (-590 "ITFUN2.spad" 968312 968324 968572 968577) (-589 "ITAYLOR.spad" 966104 966119 968148 968273) (-588 "ISUPS.spad" 958515 958530 965078 965175) (-587 "ISUMP.spad" 958012 958028 958505 958510) (-586 "ISTRING.spad" 957015 957028 957181 957208) (-585 "ISAST.spad" 956734 956742 957005 957010) (-584 "IRURPK.spad" 955447 955466 956724 956729) (-583 "IRSN.spad" 953407 953415 955437 955442) (-582 "IRRF2F.spad" 951882 951892 953363 953368) (-581 "IRREDFFX.spad" 951483 951494 951872 951877) (-580 "IROOT.spad" 949814 949824 951473 951478) (-579 "IR.spad" 947603 947617 949669 949696) (-578 "IR2.spad" 946623 946639 947593 947598) (-577 "IR2F.spad" 945823 945839 946613 946618) (-576 "IPRNTPK.spad" 945583 945591 945813 945818) (-575 "IPF.spad" 945148 945160 945388 945481) (-574 "IPADIC.spad" 944909 944935 945074 945143) (-573 "IP4ADDR.spad" 944457 944465 944899 944904) (-572 "IOMODE.spad" 944078 944086 944447 944452) (-571 "IOBFILE.spad" 943439 943447 944068 944073) (-570 "IOBCON.spad" 943304 943312 943429 943434) (-569 "INVLAPLA.spad" 942949 942965 943294 943299) (-568 "INTTR.spad" 936195 936212 942939 942944) (-567 "INTTOOLS.spad" 933906 933922 935769 935774) (-566 "INTSLPE.spad" 933212 933220 933896 933901) (-565 "INTRVL.spad" 932778 932788 933126 933207) (-564 "INTRF.spad" 931142 931156 932768 932773) (-563 "INTRET.spad" 930574 930584 931132 931137) (-562 "INTRAT.spad" 929249 929266 930564 930569) (-561 "INTPM.spad" 927612 927628 928892 928897) (-560 "INTPAF.spad" 925380 925398 927544 927549) (-559 "INTPACK.spad" 915690 915698 925370 925375) (-558 "INT.spad" 915051 915059 915544 915685) (-557 "INTHERTR.spad" 914317 914334 915041 915046) (-556 "INTHERAL.spad" 913983 914007 914307 914312) (-555 "INTHEORY.spad" 910396 910404 913973 913978) (-554 "INTG0.spad" 903859 903877 910328 910333) (-553 "INTFTBL.spad" 897888 897896 903849 903854) (-552 "INTFACT.spad" 896947 896957 897878 897883) (-551 "INTEF.spad" 895262 895278 896937 896942) (-550 "INTDOM.spad" 893877 893885 895188 895257) (-549 "INTDOM.spad" 892554 892564 893867 893872) (-548 "INTCAT.spad" 890807 890817 892468 892549) (-547 "INTBIT.spad" 890310 890318 890797 890802) (-546 "INTALG.spad" 889492 889519 890300 890305) (-545 "INTAF.spad" 888984 889000 889482 889487) (-544 "INTABL.spad" 887502 887533 887665 887692) (-543 "INS.spad" 884969 884977 887404 887497) (-542 "INS.spad" 882522 882532 884959 884964) (-541 "INPSIGN.spad" 881956 881969 882512 882517) (-540 "INPRODPF.spad" 881022 881041 881946 881951) (-539 "INPRODFF.spad" 880080 880104 881012 881017) (-538 "INNMFACT.spad" 879051 879068 880070 880075) (-537 "INMODGCD.spad" 878535 878565 879041 879046) (-536 "INFSP.spad" 876820 876842 878525 878530) (-535 "INFPROD0.spad" 875870 875889 876810 876815) (-534 "INFORM.spad" 873031 873039 875860 875865) (-533 "INFORM1.spad" 872656 872666 873021 873026) (-532 "INFINITY.spad" 872208 872216 872646 872651) (-531 "INETCLTS.spad" 872185 872193 872198 872203) (-530 "INEP.spad" 870717 870739 872175 872180) (-529 "INDE.spad" 870446 870463 870707 870712) (-528 "INCRMAPS.spad" 869867 869877 870436 870441) (-527 "INBFILE.spad" 868939 868947 869857 869862) (-526 "INBFF.spad" 864709 864720 868929 868934) (-525 "INBCON.spad" 863953 863961 864699 864704) (-524 "INBCON.spad" 863195 863205 863943 863948) (-523 "INAST.spad" 862860 862868 863185 863190) (-522 "IMPTAST.spad" 862568 862576 862850 862855) (-521 "IMATRIX.spad" 861513 861539 862025 862052) (-520 "IMATQF.spad" 860607 860651 861469 861474) (-519 "IMATLIN.spad" 859212 859236 860563 860568) (-518 "ILIST.spad" 857868 857883 858395 858422) (-517 "IIARRAY2.spad" 857256 857294 857475 857502) (-516 "IFF.spad" 856666 856682 856937 857030) (-515 "IFAST.spad" 856280 856288 856656 856661) (-514 "IFARRAY.spad" 853767 853782 855463 855490) (-513 "IFAMON.spad" 853629 853646 853723 853728) (-512 "IEVALAB.spad" 853018 853030 853619 853624) (-511 "IEVALAB.spad" 852405 852419 853008 853013) (-510 "IDPO.spad" 852203 852215 852395 852400) (-509 "IDPOAMS.spad" 851959 851971 852193 852198) (-508 "IDPOAM.spad" 851679 851691 851949 851954) (-507 "IDPC.spad" 850613 850625 851669 851674) (-506 "IDPAM.spad" 850358 850370 850603 850608) (-505 "IDPAG.spad" 850105 850117 850348 850353) (-504 "IDENT.spad" 849877 849885 850095 850100) (-503 "IDECOMP.spad" 847114 847132 849867 849872) (-502 "IDEAL.spad" 842037 842076 847049 847054) (-501 "ICDEN.spad" 841188 841204 842027 842032) (-500 "ICARD.spad" 840377 840385 841178 841183) (-499 "IBPTOOLS.spad" 838970 838987 840367 840372) (-498 "IBITS.spad" 838169 838182 838606 838633) (-497 "IBATOOL.spad" 835044 835063 838159 838164) (-496 "IBACHIN.spad" 833531 833546 835034 835039) (-495 "IARRAY2.spad" 832519 832545 833138 833165) (-494 "IARRAY1.spad" 831564 831579 831702 831729) (-493 "IAN.spad" 829777 829785 831380 831473) (-492 "IALGFACT.spad" 829378 829411 829767 829772) (-491 "HYPCAT.spad" 828802 828810 829368 829373) (-490 "HYPCAT.spad" 828224 828234 828792 828797) (-489 "HOSTNAME.spad" 828032 828040 828214 828219) (-488 "HOMOTOP.spad" 827775 827785 828022 828027) (-487 "HOAGG.spad" 825043 825053 827765 827770) (-486 "HOAGG.spad" 822086 822098 824810 824815) (-485 "HEXADEC.spad" 820188 820196 820553 820646) (-484 "HEUGCD.spad" 819203 819214 820178 820183) (-483 "HELLFDIV.spad" 818793 818817 819193 819198) (-482 "HEAP.spad" 818185 818195 818400 818427) (-481 "HEADAST.spad" 817716 817724 818175 818180) (-480 "HDP.spad" 807559 807575 807936 808067) (-479 "HDMP.spad" 804735 804750 805353 805480) (-478 "HB.spad" 802972 802980 804725 804730) (-477 "HASHTBL.spad" 801442 801473 801653 801680) (-476 "HASAST.spad" 801158 801166 801432 801437) (-475 "HACKPI.spad" 800641 800649 801060 801153) (-474 "GTSET.spad" 799580 799596 800287 800314) (-473 "GSTBL.spad" 798099 798134 798273 798288) (-472 "GSERIES.spad" 795266 795293 796231 796380) (-471 "GROUP.spad" 794535 794543 795246 795261) (-470 "GROUP.spad" 793812 793822 794525 794530) (-469 "GROEBSOL.spad" 792300 792321 793802 793807) (-468 "GRMOD.spad" 790871 790883 792290 792295) (-467 "GRMOD.spad" 789440 789454 790861 790866) (-466 "GRIMAGE.spad" 782045 782053 789430 789435) (-465 "GRDEF.spad" 780424 780432 782035 782040) (-464 "GRAY.spad" 778883 778891 780414 780419) (-463 "GRALG.spad" 777930 777942 778873 778878) (-462 "GRALG.spad" 776975 776989 777920 777925) (-461 "GPOLSET.spad" 776429 776452 776657 776684) (-460 "GOSPER.spad" 775694 775712 776419 776424) (-459 "GMODPOL.spad" 774832 774859 775662 775689) (-458 "GHENSEL.spad" 773901 773915 774822 774827) (-457 "GENUPS.spad" 770002 770015 773891 773896) (-456 "GENUFACT.spad" 769579 769589 769992 769997) (-455 "GENPGCD.spad" 769163 769180 769569 769574) (-454 "GENMFACT.spad" 768615 768634 769153 769158) (-453 "GENEEZ.spad" 766554 766567 768605 768610) (-452 "GDMP.spad" 763572 763589 764348 764475) (-451 "GCNAALG.spad" 757467 757494 763366 763433) (-450 "GCDDOM.spad" 756639 756647 757393 757462) (-449 "GCDDOM.spad" 755873 755883 756629 756634) (-448 "GB.spad" 753391 753429 755829 755834) (-447 "GBINTERN.spad" 749411 749449 753381 753386) (-446 "GBF.spad" 745168 745206 749401 749406) (-445 "GBEUCLID.spad" 743042 743080 745158 745163) (-444 "GAUSSFAC.spad" 742339 742347 743032 743037) (-443 "GALUTIL.spad" 740661 740671 742295 742300) (-442 "GALPOLYU.spad" 739107 739120 740651 740656) (-441 "GALFACTU.spad" 737272 737291 739097 739102) (-440 "GALFACT.spad" 727405 727416 737262 737267) (-439 "FVFUN.spad" 724428 724436 727395 727400) (-438 "FVC.spad" 723480 723488 724418 724423) (-437 "FUNCTION.spad" 723329 723341 723470 723475) (-436 "FT.spad" 721622 721630 723319 723324) (-435 "FTEM.spad" 720785 720793 721612 721617) (-434 "FSUPFACT.spad" 719685 719704 720721 720726) (-433 "FST.spad" 717771 717779 719675 719680) (-432 "FSRED.spad" 717249 717265 717761 717766) (-431 "FSPRMELT.spad" 716073 716089 717206 717211) (-430 "FSPECF.spad" 714150 714166 716063 716068) (-429 "FS.spad" 708212 708222 713925 714145) (-428 "FS.spad" 702052 702064 707767 707772) (-427 "FSINT.spad" 701710 701726 702042 702047) (-426 "FSERIES.spad" 700897 700909 701530 701629) (-425 "FSCINT.spad" 700210 700226 700887 700892) (-424 "FSAGG.spad" 699327 699337 700166 700205) (-423 "FSAGG.spad" 698406 698418 699247 699252) (-422 "FSAGG2.spad" 697105 697121 698396 698401) (-421 "FS2UPS.spad" 691588 691622 697095 697100) (-420 "FS2.spad" 691233 691249 691578 691583) (-419 "FS2EXPXP.spad" 690356 690379 691223 691228) (-418 "FRUTIL.spad" 689298 689308 690346 690351) (-417 "FR.spad" 682992 683002 688322 688391) (-416 "FRNAALG.spad" 678079 678089 682934 682987) (-415 "FRNAALG.spad" 673178 673190 678035 678040) (-414 "FRNAAF2.spad" 672632 672650 673168 673173) (-413 "FRMOD.spad" 672026 672056 672563 672568) (-412 "FRIDEAL.spad" 671221 671242 672006 672021) (-411 "FRIDEAL2.spad" 670823 670855 671211 671216) (-410 "FRETRCT.spad" 670334 670344 670813 670818) (-409 "FRETRCT.spad" 669711 669723 670192 670197) (-408 "FRAMALG.spad" 668039 668052 669667 669706) (-407 "FRAMALG.spad" 666399 666414 668029 668034) (-406 "FRAC.spad" 663498 663508 663901 664074) (-405 "FRAC2.spad" 663101 663113 663488 663493) (-404 "FR2.spad" 662435 662447 663091 663096) (-403 "FPS.spad" 659244 659252 662325 662430) (-402 "FPS.spad" 656081 656091 659164 659169) (-401 "FPC.spad" 655123 655131 655983 656076) (-400 "FPC.spad" 654251 654261 655113 655118) (-399 "FPATMAB.spad" 654013 654023 654241 654246) (-398 "FPARFRAC.spad" 652486 652503 654003 654008) (-397 "FORTRAN.spad" 650992 651035 652476 652481) (-396 "FORT.spad" 649921 649929 650982 650987) (-395 "FORTFN.spad" 647091 647099 649911 649916) (-394 "FORTCAT.spad" 646775 646783 647081 647086) (-393 "FORMULA.spad" 644239 644247 646765 646770) (-392 "FORMULA1.spad" 643718 643728 644229 644234) (-391 "FORDER.spad" 643409 643433 643708 643713) (-390 "FOP.spad" 642610 642618 643399 643404) (-389 "FNLA.spad" 642034 642056 642578 642605) (-388 "FNCAT.spad" 640621 640629 642024 642029) (-387 "FNAME.spad" 640513 640521 640611 640616) (-386 "FMTC.spad" 640311 640319 640439 640508) (-385 "FMONOID.spad" 637366 637376 640267 640272) (-384 "FM.spad" 637061 637073 637300 637327) (-383 "FMFUN.spad" 634091 634099 637051 637056) (-382 "FMC.spad" 633143 633151 634081 634086) (-381 "FMCAT.spad" 630797 630815 633111 633138) (-380 "FM1.spad" 630154 630166 630731 630758) (-379 "FLOATRP.spad" 627875 627889 630144 630149) (-378 "FLOAT.spad" 621163 621171 627741 627870) (-377 "FLOATCP.spad" 618580 618594 621153 621158) (-376 "FLINEXP.spad" 618292 618302 618560 618575) (-375 "FLINEXP.spad" 617958 617970 618228 618233) (-374 "FLASORT.spad" 617278 617290 617948 617953) (-373 "FLALG.spad" 614924 614943 617204 617273) (-372 "FLAGG.spad" 611942 611952 614904 614919) (-371 "FLAGG.spad" 608861 608873 611825 611830) (-370 "FLAGG2.spad" 607542 607558 608851 608856) (-369 "FINRALG.spad" 605571 605584 607498 607537) (-368 "FINRALG.spad" 603526 603541 605455 605460) (-367 "FINITE.spad" 602678 602686 603516 603521) (-366 "FINAALG.spad" 591659 591669 602620 602673) (-365 "FINAALG.spad" 580652 580664 591615 591620) (-364 "FILE.spad" 580235 580245 580642 580647) (-363 "FILECAT.spad" 578753 578770 580225 580230) (-362 "FIELD.spad" 578159 578167 578655 578748) (-361 "FIELD.spad" 577651 577661 578149 578154) (-360 "FGROUP.spad" 576260 576270 577631 577646) (-359 "FGLMICPK.spad" 575047 575062 576250 576255) (-358 "FFX.spad" 574422 574437 574763 574856) (-357 "FFSLPE.spad" 573911 573932 574412 574417) (-356 "FFPOLY.spad" 565163 565174 573901 573906) (-355 "FFPOLY2.spad" 564223 564240 565153 565158) (-354 "FFP.spad" 563620 563640 563939 564032) (-353 "FF.spad" 563068 563084 563301 563394) (-352 "FFNBX.spad" 561580 561600 562784 562877) (-351 "FFNBP.spad" 560093 560110 561296 561389) (-350 "FFNB.spad" 558558 558579 559774 559867) (-349 "FFINTBAS.spad" 555972 555991 558548 558553) (-348 "FFIELDC.spad" 553547 553555 555874 555967) (-347 "FFIELDC.spad" 551208 551218 553537 553542) (-346 "FFHOM.spad" 549956 549973 551198 551203) (-345 "FFF.spad" 547391 547402 549946 549951) (-344 "FFCGX.spad" 546238 546258 547107 547200) (-343 "FFCGP.spad" 545127 545147 545954 546047) (-342 "FFCG.spad" 543919 543940 544808 544901) (-341 "FFCAT.spad" 536946 536968 543758 543914) (-340 "FFCAT.spad" 530052 530076 536866 536871) (-339 "FFCAT2.spad" 529797 529837 530042 530047) (-338 "FEXPR.spad" 521506 521552 529553 529592) (-337 "FEVALAB.spad" 521212 521222 521496 521501) (-336 "FEVALAB.spad" 520703 520715 520989 520994) (-335 "FDIV.spad" 520145 520169 520693 520698) (-334 "FDIVCAT.spad" 518187 518211 520135 520140) (-333 "FDIVCAT.spad" 516227 516253 518177 518182) (-332 "FDIV2.spad" 515881 515921 516217 516222) (-331 "FCPAK1.spad" 514434 514442 515871 515876) (-330 "FCOMP.spad" 513813 513823 514424 514429) (-329 "FC.spad" 503728 503736 513803 513808) (-328 "FAXF.spad" 496663 496677 503630 503723) (-327 "FAXF.spad" 489650 489666 496619 496624) (-326 "FARRAY.spad" 487796 487806 488833 488860) (-325 "FAMR.spad" 485916 485928 487694 487791) (-324 "FAMR.spad" 484020 484034 485800 485805) (-323 "FAMONOID.spad" 483670 483680 483974 483979) (-322 "FAMONC.spad" 481892 481904 483660 483665) (-321 "FAGROUP.spad" 481498 481508 481788 481815) (-320 "FACUTIL.spad" 479694 479711 481488 481493) (-319 "FACTFUNC.spad" 478870 478880 479684 479689) (-318 "EXPUPXS.spad" 475703 475726 477002 477151) (-317 "EXPRTUBE.spad" 472931 472939 475693 475698) (-316 "EXPRODE.spad" 469803 469819 472921 472926) (-315 "EXPR.spad" 465078 465088 465792 466199) (-314 "EXPR2UPS.spad" 461170 461183 465068 465073) (-313 "EXPR2.spad" 460873 460885 461160 461165) (-312 "EXPEXPAN.spad" 457811 457836 458445 458538) (-311 "EXIT.spad" 457482 457490 457801 457806) (-310 "EXITAST.spad" 457218 457226 457472 457477) (-309 "EVALCYC.spad" 456676 456690 457208 457213) (-308 "EVALAB.spad" 456240 456250 456666 456671) (-307 "EVALAB.spad" 455802 455814 456230 456235) (-306 "EUCDOM.spad" 453344 453352 455728 455797) (-305 "EUCDOM.spad" 450948 450958 453334 453339) (-304 "ESTOOLS.spad" 442788 442796 450938 450943) (-303 "ESTOOLS2.spad" 442389 442403 442778 442783) (-302 "ESTOOLS1.spad" 442074 442085 442379 442384) (-301 "ES.spad" 434621 434629 442064 442069) (-300 "ES.spad" 427074 427084 434519 434524) (-299 "ESCONT.spad" 423847 423855 427064 427069) (-298 "ESCONT1.spad" 423596 423608 423837 423842) (-297 "ES2.spad" 423091 423107 423586 423591) (-296 "ES1.spad" 422657 422673 423081 423086) (-295 "ERROR.spad" 419978 419986 422647 422652) (-294 "EQTBL.spad" 418450 418472 418659 418686) (-293 "EQ.spad" 413324 413334 416123 416235) (-292 "EQ2.spad" 413040 413052 413314 413319) (-291 "EP.spad" 409354 409364 413030 413035) (-290 "ENV.spad" 408056 408064 409344 409349) (-289 "ENTIRER.spad" 407724 407732 408000 408051) (-288 "EMR.spad" 406925 406966 407650 407719) (-287 "ELTAGG.spad" 405165 405184 406915 406920) (-286 "ELTAGG.spad" 403369 403390 405121 405126) (-285 "ELTAB.spad" 402816 402834 403359 403364) (-284 "ELFUTS.spad" 402195 402214 402806 402811) (-283 "ELEMFUN.spad" 401884 401892 402185 402190) (-282 "ELEMFUN.spad" 401571 401581 401874 401879) (-281 "ELAGG.spad" 399514 399524 401551 401566) (-280 "ELAGG.spad" 397394 397406 399433 399438) (-279 "ELABEXPR.spad" 396325 396333 397384 397389) (-278 "EFUPXS.spad" 393101 393131 396281 396286) (-277 "EFULS.spad" 389937 389960 393057 393062) (-276 "EFSTRUC.spad" 387892 387908 389927 389932) (-275 "EF.spad" 382658 382674 387882 387887) (-274 "EAB.spad" 380934 380942 382648 382653) (-273 "E04UCFA.spad" 380470 380478 380924 380929) (-272 "E04NAFA.spad" 380047 380055 380460 380465) (-271 "E04MBFA.spad" 379627 379635 380037 380042) (-270 "E04JAFA.spad" 379163 379171 379617 379622) (-269 "E04GCFA.spad" 378699 378707 379153 379158) (-268 "E04FDFA.spad" 378235 378243 378689 378694) (-267 "E04DGFA.spad" 377771 377779 378225 378230) (-266 "E04AGNT.spad" 373613 373621 377761 377766) (-265 "DVARCAT.spad" 370298 370308 373603 373608) (-264 "DVARCAT.spad" 366981 366993 370288 370293) (-263 "DSMP.spad" 364412 364426 364717 364844) (-262 "DROPT.spad" 358357 358365 364402 364407) (-261 "DROPT1.spad" 358020 358030 358347 358352) (-260 "DROPT0.spad" 352847 352855 358010 358015) (-259 "DRAWPT.spad" 351002 351010 352837 352842) (-258 "DRAW.spad" 343602 343615 350992 350997) (-257 "DRAWHACK.spad" 342910 342920 343592 343597) (-256 "DRAWCX.spad" 340352 340360 342900 342905) (-255 "DRAWCURV.spad" 339889 339904 340342 340347) (-254 "DRAWCFUN.spad" 329061 329069 339879 339884) (-253 "DQAGG.spad" 327229 327239 329029 329056) (-252 "DPOLCAT.spad" 322570 322586 327097 327224) (-251 "DPOLCAT.spad" 317997 318015 322526 322531) (-250 "DPMO.spad" 310223 310239 310361 310662) (-249 "DPMM.spad" 302462 302480 302587 302888) (-248 "DOMCTOR.spad" 302354 302362 302452 302457) (-247 "DOMAIN.spad" 301485 301493 302344 302349) (-246 "DMP.spad" 298707 298722 299279 299406) (-245 "DLP.spad" 298055 298065 298697 298702) (-244 "DLIST.spad" 296634 296644 297238 297265) (-243 "DLAGG.spad" 295045 295055 296624 296629) (-242 "DIVRING.spad" 294587 294595 294989 295040) (-241 "DIVRING.spad" 294173 294183 294577 294582) (-240 "DISPLAY.spad" 292353 292361 294163 294168) (-239 "DIRPROD.spad" 281933 281949 282573 282704) (-238 "DIRPROD2.spad" 280741 280759 281923 281928) (-237 "DIRPCAT.spad" 279683 279699 280605 280736) (-236 "DIRPCAT.spad" 278354 278372 279278 279283) (-235 "DIOSP.spad" 277179 277187 278344 278349) (-234 "DIOPS.spad" 276163 276173 277159 277174) (-233 "DIOPS.spad" 275121 275133 276119 276124) (-232 "DIFRING.spad" 274413 274421 275101 275116) (-231 "DIFRING.spad" 273713 273723 274403 274408) (-230 "DIFEXT.spad" 272872 272882 273693 273708) (-229 "DIFEXT.spad" 271948 271960 272771 272776) (-228 "DIAGG.spad" 271578 271588 271928 271943) (-227 "DIAGG.spad" 271216 271228 271568 271573) (-226 "DHMATRIX.spad" 269520 269530 270673 270700) (-225 "DFSFUN.spad" 262928 262936 269510 269515) (-224 "DFLOAT.spad" 259649 259657 262818 262923) (-223 "DFINTTLS.spad" 257858 257874 259639 259644) (-222 "DERHAM.spad" 255768 255800 257838 257853) (-221 "DEQUEUE.spad" 255086 255096 255375 255402) (-220 "DEGRED.spad" 254701 254715 255076 255081) (-219 "DEFINTRF.spad" 252226 252236 254691 254696) (-218 "DEFINTEF.spad" 250722 250738 252216 252221) (-217 "DEFAST.spad" 250090 250098 250712 250717) (-216 "DECIMAL.spad" 248196 248204 248557 248650) (-215 "DDFACT.spad" 245995 246012 248186 248191) (-214 "DBLRESP.spad" 245593 245617 245985 245990) (-213 "DBASE.spad" 244247 244257 245583 245588) (-212 "DATAARY.spad" 243709 243722 244237 244242) (-211 "D03FAFA.spad" 243537 243545 243699 243704) (-210 "D03EEFA.spad" 243357 243365 243527 243532) (-209 "D03AGNT.spad" 242437 242445 243347 243352) (-208 "D02EJFA.spad" 241899 241907 242427 242432) (-207 "D02CJFA.spad" 241377 241385 241889 241894) (-206 "D02BHFA.spad" 240867 240875 241367 241372) (-205 "D02BBFA.spad" 240357 240365 240857 240862) (-204 "D02AGNT.spad" 235161 235169 240347 240352) (-203 "D01WGTS.spad" 233480 233488 235151 235156) (-202 "D01TRNS.spad" 233457 233465 233470 233475) (-201 "D01GBFA.spad" 232979 232987 233447 233452) (-200 "D01FCFA.spad" 232501 232509 232969 232974) (-199 "D01ASFA.spad" 231969 231977 232491 232496) (-198 "D01AQFA.spad" 231415 231423 231959 231964) (-197 "D01APFA.spad" 230839 230847 231405 231410) (-196 "D01ANFA.spad" 230333 230341 230829 230834) (-195 "D01AMFA.spad" 229843 229851 230323 230328) (-194 "D01ALFA.spad" 229383 229391 229833 229838) (-193 "D01AKFA.spad" 228909 228917 229373 229378) (-192 "D01AJFA.spad" 228432 228440 228899 228904) (-191 "D01AGNT.spad" 224491 224499 228422 228427) (-190 "CYCLOTOM.spad" 223997 224005 224481 224486) (-189 "CYCLES.spad" 220829 220837 223987 223992) (-188 "CVMP.spad" 220246 220256 220819 220824) (-187 "CTRIGMNP.spad" 218736 218752 220236 220241) (-186 "CTOR.spad" 218636 218644 218726 218731) (-185 "CTORKIND.spad" 218239 218247 218626 218631) (-184 "CTORCAT.spad" 217694 217702 218229 218234) (-183 "CTORCAT.spad" 217147 217157 217684 217689) (-182 "CTORCALL.spad" 216727 216735 217137 217142) (-181 "CSTTOOLS.spad" 215970 215983 216717 216722) (-180 "CRFP.spad" 209674 209687 215960 215965) (-179 "CRCEAST.spad" 209394 209402 209664 209669) (-178 "CRAPACK.spad" 208437 208447 209384 209389) (-177 "CPMATCH.spad" 207937 207952 208362 208367) (-176 "CPIMA.spad" 207642 207661 207927 207932) (-175 "COORDSYS.spad" 202535 202545 207632 207637) (-174 "CONTOUR.spad" 201937 201945 202525 202530) (-173 "CONTFRAC.spad" 197549 197559 201839 201932) (-172 "CONDUIT.spad" 197307 197315 197539 197544) (-171 "COMRING.spad" 196981 196989 197245 197302) (-170 "COMPPROP.spad" 196495 196503 196971 196976) (-169 "COMPLPAT.spad" 196262 196277 196485 196490) (-168 "COMPLEX.spad" 190298 190308 190542 190791) (-167 "COMPLEX2.spad" 190011 190023 190288 190293) (-166 "COMPFACT.spad" 189613 189627 190001 190006) (-165 "COMPCAT.spad" 187751 187761 189359 189608) (-164 "COMPCAT.spad" 185570 185582 187180 187185) (-163 "COMMUPC.spad" 185316 185334 185560 185565) (-162 "COMMONOP.spad" 184849 184857 185306 185311) (-161 "COMM.spad" 184658 184666 184839 184844) (-160 "COMMAAST.spad" 184421 184429 184648 184653) (-159 "COMBOPC.spad" 183326 183334 184411 184416) (-158 "COMBINAT.spad" 182071 182081 183316 183321) (-157 "COMBF.spad" 179439 179455 182061 182066) (-156 "COLOR.spad" 178276 178284 179429 179434) (-155 "COLONAST.spad" 177942 177950 178266 178271) (-154 "CMPLXRT.spad" 177651 177668 177932 177937) (-153 "CLLCTAST.spad" 177313 177321 177641 177646) (-152 "CLIP.spad" 173405 173413 177303 177308) (-151 "CLIF.spad" 172044 172060 173361 173400) (-150 "CLAGG.spad" 168529 168539 172034 172039) (-149 "CLAGG.spad" 164885 164897 168392 168397) (-148 "CINTSLPE.spad" 164210 164223 164875 164880) (-147 "CHVAR.spad" 162288 162310 164200 164205) (-146 "CHARZ.spad" 162203 162211 162268 162283) (-145 "CHARPOL.spad" 161711 161721 162193 162198) (-144 "CHARNZ.spad" 161464 161472 161691 161706) (-143 "CHAR.spad" 159332 159340 161454 161459) (-142 "CFCAT.spad" 158648 158656 159322 159327) (-141 "CDEN.spad" 157806 157820 158638 158643) (-140 "CCLASS.spad" 155955 155963 157217 157256) (-139 "CATEGORY.spad" 155045 155053 155945 155950) (-138 "CATCTOR.spad" 154936 154944 155035 155040) (-137 "CATAST.spad" 154563 154571 154926 154931) (-136 "CASEAST.spad" 154277 154285 154553 154558) (-135 "CARTEN.spad" 149380 149404 154267 154272) (-134 "CARTEN2.spad" 148766 148793 149370 149375) (-133 "CARD.spad" 146055 146063 148740 148761) (-132 "CAPSLAST.spad" 145829 145837 146045 146050) (-131 "CACHSET.spad" 145451 145459 145819 145824) (-130 "CABMON.spad" 145004 145012 145441 145446) (-129 "BYTE.spad" 144325 144333 144994 144999) (-128 "BYTEBUF.spad" 142157 142165 143494 143521) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2276369 2276374 2276379 2276384) (-2 NIL 2276349 2276354 2276359 2276364) (-1 NIL 2276329 2276334 2276339 2276344) (0 NIL 2276309 2276314 2276319 2276324) (-1274 "ZMOD.spad" 2276118 2276131 2276247 2276304) (-1273 "ZLINDEP.spad" 2275162 2275173 2276108 2276113) (-1272 "ZDSOLVE.spad" 2265011 2265033 2275152 2275157) (-1271 "YSTREAM.spad" 2264504 2264515 2265001 2265006) (-1270 "XRPOLY.spad" 2263724 2263744 2264360 2264429) (-1269 "XPR.spad" 2261515 2261528 2263442 2263541) (-1268 "XPOLY.spad" 2261070 2261081 2261371 2261440) (-1267 "XPOLYC.spad" 2260387 2260403 2260996 2261065) (-1266 "XPBWPOLY.spad" 2258824 2258844 2260167 2260236) (-1265 "XF.spad" 2257285 2257300 2258726 2258819) (-1264 "XF.spad" 2255726 2255743 2257169 2257174) (-1263 "XFALG.spad" 2252750 2252766 2255652 2255721) (-1262 "XEXPPKG.spad" 2252001 2252027 2252740 2252745) (-1261 "XDPOLY.spad" 2251615 2251631 2251857 2251926) (-1260 "XALG.spad" 2251275 2251286 2251571 2251610) (-1259 "WUTSET.spad" 2247114 2247131 2250921 2250948) (-1258 "WP.spad" 2246313 2246357 2246972 2247039) (-1257 "WHILEAST.spad" 2246111 2246120 2246303 2246308) (-1256 "WHEREAST.spad" 2245782 2245791 2246101 2246106) (-1255 "WFFINTBS.spad" 2243345 2243367 2245772 2245777) (-1254 "WEIER.spad" 2241559 2241570 2243335 2243340) (-1253 "VSPACE.spad" 2241232 2241243 2241527 2241554) (-1252 "VSPACE.spad" 2240925 2240938 2241222 2241227) (-1251 "VOID.spad" 2240602 2240611 2240915 2240920) (-1250 "VIEW.spad" 2238224 2238233 2240592 2240597) (-1249 "VIEWDEF.spad" 2233421 2233430 2238214 2238219) (-1248 "VIEW3D.spad" 2217256 2217265 2233411 2233416) (-1247 "VIEW2D.spad" 2204993 2205002 2217246 2217251) (-1246 "VECTOR.spad" 2203668 2203679 2203919 2203946) (-1245 "VECTOR2.spad" 2202295 2202308 2203658 2203663) (-1244 "VECTCAT.spad" 2200195 2200206 2202263 2202290) (-1243 "VECTCAT.spad" 2197903 2197916 2199973 2199978) (-1242 "VARIABLE.spad" 2197683 2197698 2197893 2197898) (-1241 "UTYPE.spad" 2197327 2197336 2197673 2197678) (-1240 "UTSODETL.spad" 2196620 2196644 2197283 2197288) (-1239 "UTSODE.spad" 2194808 2194828 2196610 2196615) (-1238 "UTS.spad" 2189597 2189625 2193275 2193372) (-1237 "UTSCAT.spad" 2187048 2187064 2189495 2189592) (-1236 "UTSCAT.spad" 2184143 2184161 2186592 2186597) (-1235 "UTS2.spad" 2183736 2183771 2184133 2184138) (-1234 "URAGG.spad" 2178368 2178379 2183726 2183731) (-1233 "URAGG.spad" 2172964 2172977 2178324 2178329) (-1232 "UPXSSING.spad" 2170607 2170633 2172045 2172178) (-1231 "UPXS.spad" 2167755 2167783 2168739 2168888) (-1230 "UPXSCONS.spad" 2165512 2165532 2165887 2166036) (-1229 "UPXSCCA.spad" 2164077 2164097 2165358 2165507) (-1228 "UPXSCCA.spad" 2162784 2162806 2164067 2164072) (-1227 "UPXSCAT.spad" 2161365 2161381 2162630 2162779) (-1226 "UPXS2.spad" 2160906 2160959 2161355 2161360) (-1225 "UPSQFREE.spad" 2159318 2159332 2160896 2160901) (-1224 "UPSCAT.spad" 2156911 2156935 2159216 2159313) (-1223 "UPSCAT.spad" 2154210 2154236 2156517 2156522) (-1222 "UPOLYC.spad" 2149188 2149199 2154052 2154205) (-1221 "UPOLYC.spad" 2144058 2144071 2148924 2148929) (-1220 "UPOLYC2.spad" 2143527 2143546 2144048 2144053) (-1219 "UP.spad" 2140684 2140699 2141077 2141230) (-1218 "UPMP.spad" 2139574 2139587 2140674 2140679) (-1217 "UPDIVP.spad" 2139137 2139151 2139564 2139569) (-1216 "UPDECOMP.spad" 2137374 2137388 2139127 2139132) (-1215 "UPCDEN.spad" 2136581 2136597 2137364 2137369) (-1214 "UP2.spad" 2135943 2135964 2136571 2136576) (-1213 "UNISEG.spad" 2135296 2135307 2135862 2135867) (-1212 "UNISEG2.spad" 2134789 2134802 2135252 2135257) (-1211 "UNIFACT.spad" 2133890 2133902 2134779 2134784) (-1210 "ULS.spad" 2124442 2124470 2125535 2125964) (-1209 "ULSCONS.spad" 2116836 2116856 2117208 2117357) (-1208 "ULSCCAT.spad" 2114565 2114585 2116682 2116831) (-1207 "ULSCCAT.spad" 2112402 2112424 2114521 2114526) (-1206 "ULSCAT.spad" 2110618 2110634 2112248 2112397) (-1205 "ULS2.spad" 2110130 2110183 2110608 2110613) (-1204 "UFD.spad" 2109195 2109204 2110056 2110125) (-1203 "UFD.spad" 2108322 2108333 2109185 2109190) (-1202 "UDVO.spad" 2107169 2107178 2108312 2108317) (-1201 "UDPO.spad" 2104596 2104607 2107125 2107130) (-1200 "TYPE.spad" 2104528 2104537 2104586 2104591) (-1199 "TYPEAST.spad" 2104447 2104456 2104518 2104523) (-1198 "TWOFACT.spad" 2103097 2103112 2104437 2104442) (-1197 "TUPLE.spad" 2102581 2102592 2102996 2103001) (-1196 "TUBETOOL.spad" 2099418 2099427 2102571 2102576) (-1195 "TUBE.spad" 2098059 2098076 2099408 2099413) (-1194 "TS.spad" 2096648 2096664 2097624 2097721) (-1193 "TSETCAT.spad" 2083775 2083792 2096616 2096643) (-1192 "TSETCAT.spad" 2070888 2070907 2083731 2083736) (-1191 "TRMANIP.spad" 2065254 2065271 2070594 2070599) (-1190 "TRIMAT.spad" 2064213 2064238 2065244 2065249) (-1189 "TRIGMNIP.spad" 2062730 2062747 2064203 2064208) (-1188 "TRIGCAT.spad" 2062242 2062251 2062720 2062725) (-1187 "TRIGCAT.spad" 2061752 2061763 2062232 2062237) (-1186 "TREE.spad" 2060323 2060334 2061359 2061386) (-1185 "TRANFUN.spad" 2060154 2060163 2060313 2060318) (-1184 "TRANFUN.spad" 2059983 2059994 2060144 2060149) (-1183 "TOPSP.spad" 2059657 2059666 2059973 2059978) (-1182 "TOOLSIGN.spad" 2059320 2059331 2059647 2059652) (-1181 "TEXTFILE.spad" 2057877 2057886 2059310 2059315) (-1180 "TEX.spad" 2055009 2055018 2057867 2057872) (-1179 "TEX1.spad" 2054565 2054576 2054999 2055004) (-1178 "TEMUTL.spad" 2054120 2054129 2054555 2054560) (-1177 "TBCMPPK.spad" 2052213 2052236 2054110 2054115) (-1176 "TBAGG.spad" 2051249 2051272 2052193 2052208) (-1175 "TBAGG.spad" 2050293 2050318 2051239 2051244) (-1174 "TANEXP.spad" 2049669 2049680 2050283 2050288) (-1173 "TABLE.spad" 2048080 2048103 2048350 2048377) (-1172 "TABLEAU.spad" 2047561 2047572 2048070 2048075) (-1171 "TABLBUMP.spad" 2044344 2044355 2047551 2047556) (-1170 "SYSTEM.spad" 2043618 2043627 2044334 2044339) (-1169 "SYSSOLP.spad" 2041091 2041102 2043608 2043613) (-1168 "SYNTAX.spad" 2037361 2037370 2041081 2041086) (-1167 "SYMTAB.spad" 2035417 2035426 2037351 2037356) (-1166 "SYMS.spad" 2031402 2031411 2035407 2035412) (-1165 "SYMPOLY.spad" 2030409 2030420 2030491 2030618) (-1164 "SYMFUNC.spad" 2029884 2029895 2030399 2030404) (-1163 "SYMBOL.spad" 2027311 2027320 2029874 2029879) (-1162 "SWITCH.spad" 2024068 2024077 2027301 2027306) (-1161 "SUTS.spad" 2020967 2020995 2022535 2022632) (-1160 "SUPXS.spad" 2018102 2018130 2019099 2019248) (-1159 "SUP.spad" 2014871 2014882 2015652 2015805) (-1158 "SUPFRACF.spad" 2013976 2013994 2014861 2014866) (-1157 "SUP2.spad" 2013366 2013379 2013966 2013971) (-1156 "SUMRF.spad" 2012332 2012343 2013356 2013361) (-1155 "SUMFS.spad" 2011965 2011982 2012322 2012327) (-1154 "SULS.spad" 2002504 2002532 2003610 2004039) (-1153 "SUCHTAST.spad" 2002273 2002282 2002494 2002499) (-1152 "SUCH.spad" 2001953 2001968 2002263 2002268) (-1151 "SUBSPACE.spad" 1993960 1993975 2001943 2001948) (-1150 "SUBRESP.spad" 1993120 1993134 1993916 1993921) (-1149 "STTF.spad" 1989219 1989235 1993110 1993115) (-1148 "STTFNC.spad" 1985687 1985703 1989209 1989214) (-1147 "STTAYLOR.spad" 1978085 1978096 1985568 1985573) (-1146 "STRTBL.spad" 1976590 1976607 1976739 1976766) (-1145 "STRING.spad" 1975999 1976008 1976013 1976040) (-1144 "STRICAT.spad" 1975787 1975796 1975967 1975994) (-1143 "STREAM.spad" 1972645 1972656 1975312 1975327) (-1142 "STREAM3.spad" 1972190 1972205 1972635 1972640) (-1141 "STREAM2.spad" 1971258 1971271 1972180 1972185) (-1140 "STREAM1.spad" 1970962 1970973 1971248 1971253) (-1139 "STINPROD.spad" 1969868 1969884 1970952 1970957) (-1138 "STEP.spad" 1969069 1969078 1969858 1969863) (-1137 "STBL.spad" 1967595 1967623 1967762 1967777) (-1136 "STAGG.spad" 1966670 1966681 1967585 1967590) (-1135 "STAGG.spad" 1965743 1965756 1966660 1966665) (-1134 "STACK.spad" 1965094 1965105 1965350 1965377) (-1133 "SREGSET.spad" 1962798 1962815 1964740 1964767) (-1132 "SRDCMPK.spad" 1961343 1961363 1962788 1962793) (-1131 "SRAGG.spad" 1956440 1956449 1961311 1961338) (-1130 "SRAGG.spad" 1951557 1951568 1956430 1956435) (-1129 "SQMATRIX.spad" 1949173 1949191 1950089 1950176) (-1128 "SPLTREE.spad" 1943725 1943738 1948609 1948636) (-1127 "SPLNODE.spad" 1940313 1940326 1943715 1943720) (-1126 "SPFCAT.spad" 1939090 1939099 1940303 1940308) (-1125 "SPECOUT.spad" 1937640 1937649 1939080 1939085) (-1124 "SPADXPT.spad" 1929779 1929788 1937630 1937635) (-1123 "spad-parser.spad" 1929244 1929253 1929769 1929774) (-1122 "SPADAST.spad" 1928945 1928954 1929234 1929239) (-1121 "SPACEC.spad" 1912958 1912969 1928935 1928940) (-1120 "SPACE3.spad" 1912734 1912745 1912948 1912953) (-1119 "SORTPAK.spad" 1912279 1912292 1912690 1912695) (-1118 "SOLVETRA.spad" 1910036 1910047 1912269 1912274) (-1117 "SOLVESER.spad" 1908556 1908567 1910026 1910031) (-1116 "SOLVERAD.spad" 1904566 1904577 1908546 1908551) (-1115 "SOLVEFOR.spad" 1902986 1903004 1904556 1904561) (-1114 "SNTSCAT.spad" 1902586 1902603 1902954 1902981) (-1113 "SMTS.spad" 1900846 1900872 1902151 1902248) (-1112 "SMP.spad" 1898285 1898305 1898675 1898802) (-1111 "SMITH.spad" 1897128 1897153 1898275 1898280) (-1110 "SMATCAT.spad" 1895238 1895268 1897072 1897123) (-1109 "SMATCAT.spad" 1893280 1893312 1895116 1895121) (-1108 "SKAGG.spad" 1892241 1892252 1893248 1893275) (-1107 "SINT.spad" 1891067 1891076 1892107 1892236) (-1106 "SIMPAN.spad" 1890795 1890804 1891057 1891062) (-1105 "SIG.spad" 1890123 1890132 1890785 1890790) (-1104 "SIGNRF.spad" 1889231 1889242 1890113 1890118) (-1103 "SIGNEF.spad" 1888500 1888517 1889221 1889226) (-1102 "SIGAST.spad" 1887881 1887890 1888490 1888495) (-1101 "SHP.spad" 1885799 1885814 1887837 1887842) (-1100 "SHDP.spad" 1875510 1875537 1876019 1876150) (-1099 "SGROUP.spad" 1875118 1875127 1875500 1875505) (-1098 "SGROUP.spad" 1874724 1874735 1875108 1875113) (-1097 "SGCF.spad" 1867605 1867614 1874714 1874719) (-1096 "SFRTCAT.spad" 1866533 1866550 1867573 1867600) (-1095 "SFRGCD.spad" 1865596 1865616 1866523 1866528) (-1094 "SFQCMPK.spad" 1860233 1860253 1865586 1865591) (-1093 "SFORT.spad" 1859668 1859682 1860223 1860228) (-1092 "SEXOF.spad" 1859511 1859551 1859658 1859663) (-1091 "SEX.spad" 1859403 1859412 1859501 1859506) (-1090 "SEXCAT.spad" 1856954 1856994 1859393 1859398) (-1089 "SET.spad" 1855254 1855265 1856375 1856414) (-1088 "SETMN.spad" 1853688 1853705 1855244 1855249) (-1087 "SETCAT.spad" 1853173 1853182 1853678 1853683) (-1086 "SETCAT.spad" 1852656 1852667 1853163 1853168) (-1085 "SETAGG.spad" 1849177 1849188 1852636 1852651) (-1084 "SETAGG.spad" 1845706 1845719 1849167 1849172) (-1083 "SEQAST.spad" 1845409 1845418 1845696 1845701) (-1082 "SEGXCAT.spad" 1844531 1844544 1845399 1845404) (-1081 "SEG.spad" 1844344 1844355 1844450 1844455) (-1080 "SEGCAT.spad" 1843251 1843262 1844334 1844339) (-1079 "SEGBIND.spad" 1842323 1842334 1843206 1843211) (-1078 "SEGBIND2.spad" 1842019 1842032 1842313 1842318) (-1077 "SEGAST.spad" 1841733 1841742 1842009 1842014) (-1076 "SEG2.spad" 1841158 1841171 1841689 1841694) (-1075 "SDVAR.spad" 1840434 1840445 1841148 1841153) (-1074 "SDPOL.spad" 1837824 1837835 1838115 1838242) (-1073 "SCPKG.spad" 1835903 1835914 1837814 1837819) (-1072 "SCOPE.spad" 1835048 1835057 1835893 1835898) (-1071 "SCACHE.spad" 1833730 1833741 1835038 1835043) (-1070 "SASTCAT.spad" 1833639 1833648 1833720 1833725) (-1069 "SAOS.spad" 1833511 1833520 1833629 1833634) (-1068 "SAERFFC.spad" 1833224 1833244 1833501 1833506) (-1067 "SAE.spad" 1831399 1831415 1832010 1832145) (-1066 "SAEFACT.spad" 1831100 1831120 1831389 1831394) (-1065 "RURPK.spad" 1828741 1828757 1831090 1831095) (-1064 "RULESET.spad" 1828182 1828206 1828731 1828736) (-1063 "RULE.spad" 1826386 1826410 1828172 1828177) (-1062 "RULECOLD.spad" 1826238 1826251 1826376 1826381) (-1061 "RSTRCAST.spad" 1825955 1825964 1826228 1826233) (-1060 "RSETGCD.spad" 1822333 1822353 1825945 1825950) (-1059 "RSETCAT.spad" 1812117 1812134 1822301 1822328) (-1058 "RSETCAT.spad" 1801921 1801940 1812107 1812112) (-1057 "RSDCMPK.spad" 1800373 1800393 1801911 1801916) (-1056 "RRCC.spad" 1798757 1798787 1800363 1800368) (-1055 "RRCC.spad" 1797139 1797171 1798747 1798752) (-1054 "RPTAST.spad" 1796841 1796850 1797129 1797134) (-1053 "RPOLCAT.spad" 1776201 1776216 1796709 1796836) (-1052 "RPOLCAT.spad" 1755275 1755292 1775785 1775790) (-1051 "ROUTINE.spad" 1751138 1751147 1753922 1753949) (-1050 "ROMAN.spad" 1750466 1750475 1751004 1751133) (-1049 "ROIRC.spad" 1749546 1749578 1750456 1750461) (-1048 "RNS.spad" 1748449 1748458 1749448 1749541) (-1047 "RNS.spad" 1747438 1747449 1748439 1748444) (-1046 "RNG.spad" 1747173 1747182 1747428 1747433) (-1045 "RMODULE.spad" 1746811 1746822 1747163 1747168) (-1044 "RMCAT2.spad" 1746219 1746276 1746801 1746806) (-1043 "RMATRIX.spad" 1745043 1745062 1745386 1745425) (-1042 "RMATCAT.spad" 1740576 1740607 1744999 1745038) (-1041 "RMATCAT.spad" 1735999 1736032 1740424 1740429) (-1040 "RINTERP.spad" 1735887 1735907 1735989 1735994) (-1039 "RING.spad" 1735357 1735366 1735867 1735882) (-1038 "RING.spad" 1734835 1734846 1735347 1735352) (-1037 "RIDIST.spad" 1734219 1734228 1734825 1734830) (-1036 "RGCHAIN.spad" 1732798 1732814 1733704 1733731) (-1035 "RGBCSPC.spad" 1732579 1732591 1732788 1732793) (-1034 "RGBCMDL.spad" 1732109 1732121 1732569 1732574) (-1033 "RF.spad" 1729723 1729734 1732099 1732104) (-1032 "RFFACTOR.spad" 1729185 1729196 1729713 1729718) (-1031 "RFFACT.spad" 1728920 1728932 1729175 1729180) (-1030 "RFDIST.spad" 1727908 1727917 1728910 1728915) (-1029 "RETSOL.spad" 1727325 1727338 1727898 1727903) (-1028 "RETRACT.spad" 1726753 1726764 1727315 1727320) (-1027 "RETRACT.spad" 1726179 1726192 1726743 1726748) (-1026 "RETAST.spad" 1725991 1726000 1726169 1726174) (-1025 "RESULT.spad" 1724051 1724060 1724638 1724665) (-1024 "RESRING.spad" 1723398 1723445 1723989 1724046) (-1023 "RESLATC.spad" 1722722 1722733 1723388 1723393) (-1022 "REPSQ.spad" 1722451 1722462 1722712 1722717) (-1021 "REP.spad" 1720003 1720012 1722441 1722446) (-1020 "REPDB.spad" 1719708 1719719 1719993 1719998) (-1019 "REP2.spad" 1709280 1709291 1719550 1719555) (-1018 "REP1.spad" 1703270 1703281 1709230 1709235) (-1017 "REGSET.spad" 1701067 1701084 1702916 1702943) (-1016 "REF.spad" 1700396 1700407 1701022 1701027) (-1015 "REDORDER.spad" 1699572 1699589 1700386 1700391) (-1014 "RECLOS.spad" 1698355 1698375 1699059 1699152) (-1013 "REALSOLV.spad" 1697487 1697496 1698345 1698350) (-1012 "REAL.spad" 1697359 1697368 1697477 1697482) (-1011 "REAL0Q.spad" 1694641 1694656 1697349 1697354) (-1010 "REAL0.spad" 1691469 1691484 1694631 1694636) (-1009 "RDUCEAST.spad" 1691190 1691199 1691459 1691464) (-1008 "RDIV.spad" 1690841 1690866 1691180 1691185) (-1007 "RDIST.spad" 1690404 1690415 1690831 1690836) (-1006 "RDETRS.spad" 1689200 1689218 1690394 1690399) (-1005 "RDETR.spad" 1687307 1687325 1689190 1689195) (-1004 "RDEEFS.spad" 1686380 1686397 1687297 1687302) (-1003 "RDEEF.spad" 1685376 1685393 1686370 1686375) (-1002 "RCFIELD.spad" 1682562 1682571 1685278 1685371) (-1001 "RCFIELD.spad" 1679834 1679845 1682552 1682557) (-1000 "RCAGG.spad" 1677746 1677757 1679824 1679829) (-999 "RCAGG.spad" 1675586 1675598 1677665 1677670) (-998 "RATRET.spad" 1674947 1674957 1675576 1675581) (-997 "RATFACT.spad" 1674640 1674651 1674937 1674942) (-996 "RANDSRC.spad" 1673960 1673968 1674630 1674635) (-995 "RADUTIL.spad" 1673715 1673723 1673950 1673955) (-994 "RADIX.spad" 1670617 1670630 1672182 1672275) (-993 "RADFF.spad" 1669031 1669067 1669149 1669305) (-992 "RADCAT.spad" 1668625 1668633 1669021 1669026) (-991 "RADCAT.spad" 1668217 1668227 1668615 1668620) (-990 "QUEUE.spad" 1667560 1667570 1667824 1667851) (-989 "QUAT.spad" 1666142 1666152 1666484 1666549) (-988 "QUATCT2.spad" 1665761 1665779 1666132 1666137) (-987 "QUATCAT.spad" 1663926 1663936 1665691 1665756) (-986 "QUATCAT.spad" 1661842 1661854 1663609 1663614) (-985 "QUAGG.spad" 1660668 1660678 1661810 1661837) (-984 "QQUTAST.spad" 1660437 1660445 1660658 1660663) (-983 "QFORM.spad" 1659900 1659914 1660427 1660432) (-982 "QFCAT.spad" 1658603 1658613 1659802 1659895) (-981 "QFCAT.spad" 1656897 1656909 1658098 1658103) (-980 "QFCAT2.spad" 1656588 1656604 1656887 1656892) (-979 "QEQUAT.spad" 1656145 1656153 1656578 1656583) (-978 "QCMPACK.spad" 1650892 1650911 1656135 1656140) (-977 "QALGSET.spad" 1646967 1646999 1650806 1650811) (-976 "QALGSET2.spad" 1644963 1644981 1646957 1646962) (-975 "PWFFINTB.spad" 1642273 1642294 1644953 1644958) (-974 "PUSHVAR.spad" 1641602 1641621 1642263 1642268) (-973 "PTRANFN.spad" 1637728 1637738 1641592 1641597) (-972 "PTPACK.spad" 1634816 1634826 1637718 1637723) (-971 "PTFUNC2.spad" 1634637 1634651 1634806 1634811) (-970 "PTCAT.spad" 1633886 1633896 1634605 1634632) (-969 "PSQFR.spad" 1633193 1633217 1633876 1633881) (-968 "PSEUDLIN.spad" 1632051 1632061 1633183 1633188) (-967 "PSETPK.spad" 1617484 1617500 1631929 1631934) (-966 "PSETCAT.spad" 1611404 1611427 1617464 1617479) (-965 "PSETCAT.spad" 1605298 1605323 1611360 1611365) (-964 "PSCURVE.spad" 1604281 1604289 1605288 1605293) (-963 "PSCAT.spad" 1603048 1603077 1604179 1604276) (-962 "PSCAT.spad" 1601905 1601936 1603038 1603043) (-961 "PRTITION.spad" 1600850 1600858 1601895 1601900) (-960 "PRTDAST.spad" 1600569 1600577 1600840 1600845) (-959 "PRS.spad" 1590131 1590148 1600525 1600530) (-958 "PRQAGG.spad" 1589562 1589572 1590099 1590126) (-957 "PROPLOG.spad" 1588965 1588973 1589552 1589557) (-956 "PROPFRML.spad" 1586883 1586894 1588955 1588960) (-955 "PROPERTY.spad" 1586377 1586385 1586873 1586878) (-954 "PRODUCT.spad" 1584057 1584069 1584343 1584398) (-953 "PR.spad" 1582443 1582455 1583148 1583275) (-952 "PRINT.spad" 1582195 1582203 1582433 1582438) (-951 "PRIMES.spad" 1580446 1580456 1582185 1582190) (-950 "PRIMELT.spad" 1578427 1578441 1580436 1580441) (-949 "PRIMCAT.spad" 1578050 1578058 1578417 1578422) (-948 "PRIMARR.spad" 1577055 1577065 1577233 1577260) (-947 "PRIMARR2.spad" 1575778 1575790 1577045 1577050) (-946 "PREASSOC.spad" 1575150 1575162 1575768 1575773) (-945 "PPCURVE.spad" 1574287 1574295 1575140 1575145) (-944 "PORTNUM.spad" 1574062 1574070 1574277 1574282) (-943 "POLYROOT.spad" 1572891 1572913 1574018 1574023) (-942 "POLY.spad" 1570188 1570198 1570705 1570832) (-941 "POLYLIFT.spad" 1569449 1569472 1570178 1570183) (-940 "POLYCATQ.spad" 1567551 1567573 1569439 1569444) (-939 "POLYCAT.spad" 1560957 1560978 1567419 1567546) (-938 "POLYCAT.spad" 1553665 1553688 1560129 1560134) (-937 "POLY2UP.spad" 1553113 1553127 1553655 1553660) (-936 "POLY2.spad" 1552708 1552720 1553103 1553108) (-935 "POLUTIL.spad" 1551649 1551678 1552664 1552669) (-934 "POLTOPOL.spad" 1550397 1550412 1551639 1551644) (-933 "POINT.spad" 1549236 1549246 1549323 1549350) (-932 "PNTHEORY.spad" 1545902 1545910 1549226 1549231) (-931 "PMTOOLS.spad" 1544659 1544673 1545892 1545897) (-930 "PMSYM.spad" 1544204 1544214 1544649 1544654) (-929 "PMQFCAT.spad" 1543791 1543805 1544194 1544199) (-928 "PMPRED.spad" 1543260 1543274 1543781 1543786) (-927 "PMPREDFS.spad" 1542704 1542726 1543250 1543255) (-926 "PMPLCAT.spad" 1541774 1541792 1542636 1542641) (-925 "PMLSAGG.spad" 1541355 1541369 1541764 1541769) (-924 "PMKERNEL.spad" 1540922 1540934 1541345 1541350) (-923 "PMINS.spad" 1540498 1540508 1540912 1540917) (-922 "PMFS.spad" 1540071 1540089 1540488 1540493) (-921 "PMDOWN.spad" 1539357 1539371 1540061 1540066) (-920 "PMASS.spad" 1538369 1538377 1539347 1539352) (-919 "PMASSFS.spad" 1537338 1537354 1538359 1538364) (-918 "PLOTTOOL.spad" 1537118 1537126 1537328 1537333) (-917 "PLOT.spad" 1531949 1531957 1537108 1537113) (-916 "PLOT3D.spad" 1528369 1528377 1531939 1531944) (-915 "PLOT1.spad" 1527510 1527520 1528359 1528364) (-914 "PLEQN.spad" 1514726 1514753 1527500 1527505) (-913 "PINTERP.spad" 1514342 1514361 1514716 1514721) (-912 "PINTERPA.spad" 1514124 1514140 1514332 1514337) (-911 "PI.spad" 1513731 1513739 1514098 1514119) (-910 "PID.spad" 1512687 1512695 1513657 1513726) (-909 "PICOERCE.spad" 1512344 1512354 1512677 1512682) (-908 "PGROEB.spad" 1510941 1510955 1512334 1512339) (-907 "PGE.spad" 1502194 1502202 1510931 1510936) (-906 "PGCD.spad" 1501076 1501093 1502184 1502189) (-905 "PFRPAC.spad" 1500219 1500229 1501066 1501071) (-904 "PFR.spad" 1496876 1496886 1500121 1500214) (-903 "PFOTOOLS.spad" 1496134 1496150 1496866 1496871) (-902 "PFOQ.spad" 1495504 1495522 1496124 1496129) (-901 "PFO.spad" 1494923 1494950 1495494 1495499) (-900 "PF.spad" 1494497 1494509 1494728 1494821) (-899 "PFECAT.spad" 1492163 1492171 1494423 1494492) (-898 "PFECAT.spad" 1489857 1489867 1492119 1492124) (-897 "PFBRU.spad" 1487727 1487739 1489847 1489852) (-896 "PFBR.spad" 1485265 1485288 1487717 1487722) (-895 "PERM.spad" 1480946 1480956 1485095 1485110) (-894 "PERMGRP.spad" 1475682 1475692 1480936 1480941) (-893 "PERMCAT.spad" 1474234 1474244 1475662 1475677) (-892 "PERMAN.spad" 1472766 1472780 1474224 1474229) (-891 "PENDTREE.spad" 1472105 1472115 1472395 1472400) (-890 "PDRING.spad" 1470596 1470606 1472085 1472100) (-889 "PDRING.spad" 1469095 1469107 1470586 1470591) (-888 "PDEPROB.spad" 1468110 1468118 1469085 1469090) (-887 "PDEPACK.spad" 1462112 1462120 1468100 1468105) (-886 "PDECOMP.spad" 1461574 1461591 1462102 1462107) (-885 "PDECAT.spad" 1459928 1459936 1461564 1461569) (-884 "PCOMP.spad" 1459779 1459792 1459918 1459923) (-883 "PBWLB.spad" 1458361 1458378 1459769 1459774) (-882 "PATTERN.spad" 1452792 1452802 1458351 1458356) (-881 "PATTERN2.spad" 1452528 1452540 1452782 1452787) (-880 "PATTERN1.spad" 1450830 1450846 1452518 1452523) (-879 "PATRES.spad" 1448377 1448389 1450820 1450825) (-878 "PATRES2.spad" 1448039 1448053 1448367 1448372) (-877 "PATMATCH.spad" 1446196 1446227 1447747 1447752) (-876 "PATMAB.spad" 1445621 1445631 1446186 1446191) (-875 "PATLRES.spad" 1444705 1444719 1445611 1445616) (-874 "PATAB.spad" 1444469 1444479 1444695 1444700) (-873 "PARTPERM.spad" 1441831 1441839 1444459 1444464) (-872 "PARSURF.spad" 1441259 1441287 1441821 1441826) (-871 "PARSU2.spad" 1441054 1441070 1441249 1441254) (-870 "script-parser.spad" 1440574 1440582 1441044 1441049) (-869 "PARSCURV.spad" 1440002 1440030 1440564 1440569) (-868 "PARSC2.spad" 1439791 1439807 1439992 1439997) (-867 "PARPCURV.spad" 1439249 1439277 1439781 1439786) (-866 "PARPC2.spad" 1439038 1439054 1439239 1439244) (-865 "PAN2EXPR.spad" 1438450 1438458 1439028 1439033) (-864 "PALETTE.spad" 1437420 1437428 1438440 1438445) (-863 "PAIR.spad" 1436403 1436416 1437008 1437013) (-862 "PADICRC.spad" 1433733 1433751 1434908 1435001) (-861 "PADICRAT.spad" 1431748 1431760 1431969 1432062) (-860 "PADIC.spad" 1431443 1431455 1431674 1431743) (-859 "PADICCT.spad" 1429984 1429996 1431369 1431438) (-858 "PADEPAC.spad" 1428663 1428682 1429974 1429979) (-857 "PADE.spad" 1427403 1427419 1428653 1428658) (-856 "OWP.spad" 1426643 1426673 1427261 1427328) (-855 "OVAR.spad" 1426424 1426447 1426633 1426638) (-854 "OUT.spad" 1425508 1425516 1426414 1426419) (-853 "OUTFORM.spad" 1414804 1414812 1425498 1425503) (-852 "OUTBFILE.spad" 1414222 1414230 1414794 1414799) (-851 "OUTBCON.spad" 1413500 1413508 1414212 1414217) (-850 "OUTBCON.spad" 1412776 1412786 1413490 1413495) (-849 "OSI.spad" 1412251 1412259 1412766 1412771) (-848 "OSGROUP.spad" 1412169 1412177 1412241 1412246) (-847 "ORTHPOL.spad" 1410630 1410640 1412086 1412091) (-846 "OREUP.spad" 1410083 1410111 1410310 1410349) (-845 "ORESUP.spad" 1409382 1409406 1409763 1409802) (-844 "OREPCTO.spad" 1407201 1407213 1409302 1409307) (-843 "OREPCAT.spad" 1401258 1401268 1407157 1407196) (-842 "OREPCAT.spad" 1395205 1395217 1401106 1401111) (-841 "ORDSET.spad" 1394371 1394379 1395195 1395200) (-840 "ORDSET.spad" 1393535 1393545 1394361 1394366) (-839 "ORDRING.spad" 1392925 1392933 1393515 1393530) (-838 "ORDRING.spad" 1392323 1392333 1392915 1392920) (-837 "ORDMON.spad" 1392178 1392186 1392313 1392318) (-836 "ORDFUNS.spad" 1391304 1391320 1392168 1392173) (-835 "ORDFIN.spad" 1391124 1391132 1391294 1391299) (-834 "ORDCOMP.spad" 1389589 1389599 1390671 1390700) (-833 "ORDCOMP2.spad" 1388874 1388886 1389579 1389584) (-832 "OPTPROB.spad" 1387512 1387520 1388864 1388869) (-831 "OPTPACK.spad" 1379897 1379905 1387502 1387507) (-830 "OPTCAT.spad" 1377572 1377580 1379887 1379892) (-829 "OPSIG.spad" 1377224 1377232 1377562 1377567) (-828 "OPQUERY.spad" 1376773 1376781 1377214 1377219) (-827 "OP.spad" 1376515 1376525 1376595 1376662) (-826 "OPERCAT.spad" 1376103 1376113 1376505 1376510) (-825 "OPERCAT.spad" 1375689 1375701 1376093 1376098) (-824 "ONECOMP.spad" 1374434 1374444 1375236 1375265) (-823 "ONECOMP2.spad" 1373852 1373864 1374424 1374429) (-822 "OMSERVER.spad" 1372854 1372862 1373842 1373847) (-821 "OMSAGG.spad" 1372642 1372652 1372810 1372849) (-820 "OMPKG.spad" 1371254 1371262 1372632 1372637) (-819 "OM.spad" 1370219 1370227 1371244 1371249) (-818 "OMLO.spad" 1369644 1369656 1370105 1370144) (-817 "OMEXPR.spad" 1369478 1369488 1369634 1369639) (-816 "OMERR.spad" 1369021 1369029 1369468 1369473) (-815 "OMERRK.spad" 1368055 1368063 1369011 1369016) (-814 "OMENC.spad" 1367399 1367407 1368045 1368050) (-813 "OMDEV.spad" 1361688 1361696 1367389 1367394) (-812 "OMCONN.spad" 1361097 1361105 1361678 1361683) (-811 "OINTDOM.spad" 1360860 1360868 1361023 1361092) (-810 "OFMONOID.spad" 1357047 1357057 1360850 1360855) (-809 "ODVAR.spad" 1356308 1356318 1357037 1357042) (-808 "ODR.spad" 1355952 1355978 1356120 1356269) (-807 "ODPOL.spad" 1353298 1353308 1353638 1353765) (-806 "ODP.spad" 1343145 1343165 1343518 1343649) (-805 "ODETOOLS.spad" 1341728 1341747 1343135 1343140) (-804 "ODESYS.spad" 1339378 1339395 1341718 1341723) (-803 "ODERTRIC.spad" 1335319 1335336 1339335 1339340) (-802 "ODERED.spad" 1334706 1334730 1335309 1335314) (-801 "ODERAT.spad" 1332257 1332274 1334696 1334701) (-800 "ODEPRRIC.spad" 1329148 1329170 1332247 1332252) (-799 "ODEPROB.spad" 1328405 1328413 1329138 1329143) (-798 "ODEPRIM.spad" 1325679 1325701 1328395 1328400) (-797 "ODEPAL.spad" 1325055 1325079 1325669 1325674) (-796 "ODEPACK.spad" 1311657 1311665 1325045 1325050) (-795 "ODEINT.spad" 1311088 1311104 1311647 1311652) (-794 "ODEIFTBL.spad" 1308483 1308491 1311078 1311083) (-793 "ODEEF.spad" 1303850 1303866 1308473 1308478) (-792 "ODECONST.spad" 1303369 1303387 1303840 1303845) (-791 "ODECAT.spad" 1301965 1301973 1303359 1303364) (-790 "OCT.spad" 1300103 1300113 1300819 1300858) (-789 "OCTCT2.spad" 1299747 1299768 1300093 1300098) (-788 "OC.spad" 1297521 1297531 1299703 1299742) (-787 "OC.spad" 1295020 1295032 1297204 1297209) (-786 "OCAMON.spad" 1294868 1294876 1295010 1295015) (-785 "OASGP.spad" 1294683 1294691 1294858 1294863) (-784 "OAMONS.spad" 1294203 1294211 1294673 1294678) (-783 "OAMON.spad" 1294064 1294072 1294193 1294198) (-782 "OAGROUP.spad" 1293926 1293934 1294054 1294059) (-781 "NUMTUBE.spad" 1293513 1293529 1293916 1293921) (-780 "NUMQUAD.spad" 1281375 1281383 1293503 1293508) (-779 "NUMODE.spad" 1272511 1272519 1281365 1281370) (-778 "NUMINT.spad" 1270069 1270077 1272501 1272506) (-777 "NUMFMT.spad" 1268909 1268917 1270059 1270064) (-776 "NUMERIC.spad" 1260981 1260991 1268714 1268719) (-775 "NTSCAT.spad" 1259483 1259499 1260949 1260976) (-774 "NTPOLFN.spad" 1259028 1259038 1259400 1259405) (-773 "NSUP.spad" 1252038 1252048 1256578 1256731) (-772 "NSUP2.spad" 1251430 1251442 1252028 1252033) (-771 "NSMP.spad" 1247625 1247644 1247933 1248060) (-770 "NREP.spad" 1245997 1246011 1247615 1247620) (-769 "NPCOEF.spad" 1245243 1245263 1245987 1245992) (-768 "NORMRETR.spad" 1244841 1244880 1245233 1245238) (-767 "NORMPK.spad" 1242743 1242762 1244831 1244836) (-766 "NORMMA.spad" 1242431 1242457 1242733 1242738) (-765 "NONE.spad" 1242172 1242180 1242421 1242426) (-764 "NONE1.spad" 1241848 1241858 1242162 1242167) (-763 "NODE1.spad" 1241317 1241333 1241838 1241843) (-762 "NNI.spad" 1240204 1240212 1241291 1241312) (-761 "NLINSOL.spad" 1238826 1238836 1240194 1240199) (-760 "NIPROB.spad" 1237367 1237375 1238816 1238821) (-759 "NFINTBAS.spad" 1234827 1234844 1237357 1237362) (-758 "NETCLT.spad" 1234801 1234812 1234817 1234822) (-757 "NCODIV.spad" 1232999 1233015 1234791 1234796) (-756 "NCNTFRAC.spad" 1232641 1232655 1232989 1232994) (-755 "NCEP.spad" 1230801 1230815 1232631 1232636) (-754 "NASRING.spad" 1230397 1230405 1230791 1230796) (-753 "NASRING.spad" 1229991 1230001 1230387 1230392) (-752 "NARNG.spad" 1229335 1229343 1229981 1229986) (-751 "NARNG.spad" 1228677 1228687 1229325 1229330) (-750 "NAGSP.spad" 1227750 1227758 1228667 1228672) (-749 "NAGS.spad" 1217275 1217283 1227740 1227745) (-748 "NAGF07.spad" 1215668 1215676 1217265 1217270) (-747 "NAGF04.spad" 1209900 1209908 1215658 1215663) (-746 "NAGF02.spad" 1203709 1203717 1209890 1209895) (-745 "NAGF01.spad" 1199312 1199320 1203699 1203704) (-744 "NAGE04.spad" 1192772 1192780 1199302 1199307) (-743 "NAGE02.spad" 1183114 1183122 1192762 1192767) (-742 "NAGE01.spad" 1178998 1179006 1183104 1183109) (-741 "NAGD03.spad" 1176918 1176926 1178988 1178993) (-740 "NAGD02.spad" 1169449 1169457 1176908 1176913) (-739 "NAGD01.spad" 1163562 1163570 1169439 1169444) (-738 "NAGC06.spad" 1159349 1159357 1163552 1163557) (-737 "NAGC05.spad" 1157818 1157826 1159339 1159344) (-736 "NAGC02.spad" 1157073 1157081 1157808 1157813) (-735 "NAALG.spad" 1156608 1156618 1157041 1157068) (-734 "NAALG.spad" 1156163 1156175 1156598 1156603) (-733 "MULTSQFR.spad" 1153121 1153138 1156153 1156158) (-732 "MULTFACT.spad" 1152504 1152521 1153111 1153116) (-731 "MTSCAT.spad" 1150538 1150559 1152402 1152499) (-730 "MTHING.spad" 1150195 1150205 1150528 1150533) (-729 "MSYSCMD.spad" 1149629 1149637 1150185 1150190) (-728 "MSET.spad" 1147571 1147581 1149335 1149374) (-727 "MSETAGG.spad" 1147416 1147426 1147539 1147566) (-726 "MRING.spad" 1144387 1144399 1147124 1147191) (-725 "MRF2.spad" 1143955 1143969 1144377 1144382) (-724 "MRATFAC.spad" 1143501 1143518 1143945 1143950) (-723 "MPRFF.spad" 1141531 1141550 1143491 1143496) (-722 "MPOLY.spad" 1138966 1138981 1139325 1139452) (-721 "MPCPF.spad" 1138230 1138249 1138956 1138961) (-720 "MPC3.spad" 1138045 1138085 1138220 1138225) (-719 "MPC2.spad" 1137687 1137720 1138035 1138040) (-718 "MONOTOOL.spad" 1136022 1136039 1137677 1137682) (-717 "MONOID.spad" 1135341 1135349 1136012 1136017) (-716 "MONOID.spad" 1134658 1134668 1135331 1135336) (-715 "MONOGEN.spad" 1133404 1133417 1134518 1134653) (-714 "MONOGEN.spad" 1132172 1132187 1133288 1133293) (-713 "MONADWU.spad" 1130186 1130194 1132162 1132167) (-712 "MONADWU.spad" 1128198 1128208 1130176 1130181) (-711 "MONAD.spad" 1127342 1127350 1128188 1128193) (-710 "MONAD.spad" 1126484 1126494 1127332 1127337) (-709 "MOEBIUS.spad" 1125170 1125184 1126464 1126479) (-708 "MODULE.spad" 1125040 1125050 1125138 1125165) (-707 "MODULE.spad" 1124930 1124942 1125030 1125035) (-706 "MODRING.spad" 1124261 1124300 1124910 1124925) (-705 "MODOP.spad" 1122920 1122932 1124083 1124150) (-704 "MODMONOM.spad" 1122649 1122667 1122910 1122915) (-703 "MODMON.spad" 1119408 1119424 1120127 1120280) (-702 "MODFIELD.spad" 1118766 1118805 1119310 1119403) (-701 "MMLFORM.spad" 1117626 1117634 1118756 1118761) (-700 "MMAP.spad" 1117366 1117400 1117616 1117621) (-699 "MLO.spad" 1115793 1115803 1117322 1117361) (-698 "MLIFT.spad" 1114365 1114382 1115783 1115788) (-697 "MKUCFUNC.spad" 1113898 1113916 1114355 1114360) (-696 "MKRECORD.spad" 1113500 1113513 1113888 1113893) (-695 "MKFUNC.spad" 1112881 1112891 1113490 1113495) (-694 "MKFLCFN.spad" 1111837 1111847 1112871 1112876) (-693 "MKCHSET.spad" 1111702 1111712 1111827 1111832) (-692 "MKBCFUNC.spad" 1111187 1111205 1111692 1111697) (-691 "MINT.spad" 1110626 1110634 1111089 1111182) (-690 "MHROWRED.spad" 1109127 1109137 1110616 1110621) (-689 "MFLOAT.spad" 1107643 1107651 1109017 1109122) (-688 "MFINFACT.spad" 1107043 1107065 1107633 1107638) (-687 "MESH.spad" 1104775 1104783 1107033 1107038) (-686 "MDDFACT.spad" 1102968 1102978 1104765 1104770) (-685 "MDAGG.spad" 1102255 1102265 1102948 1102963) (-684 "MCMPLX.spad" 1098241 1098249 1098855 1099044) (-683 "MCDEN.spad" 1097449 1097461 1098231 1098236) (-682 "MCALCFN.spad" 1094551 1094577 1097439 1097444) (-681 "MAYBE.spad" 1093864 1093875 1094541 1094546) (-680 "MATSTOR.spad" 1091140 1091150 1093854 1093859) (-679 "MATRIX.spad" 1089844 1089854 1090328 1090355) (-678 "MATLIN.spad" 1087170 1087194 1089728 1089733) (-677 "MATCAT.spad" 1078755 1078777 1087138 1087165) (-676 "MATCAT.spad" 1070212 1070236 1078597 1078602) (-675 "MATCAT2.spad" 1069480 1069528 1070202 1070207) (-674 "MAPPKG3.spad" 1068379 1068393 1069470 1069475) (-673 "MAPPKG2.spad" 1067713 1067725 1068369 1068374) (-672 "MAPPKG1.spad" 1066531 1066541 1067703 1067708) (-671 "MAPPAST.spad" 1065844 1065852 1066521 1066526) (-670 "MAPHACK3.spad" 1065652 1065666 1065834 1065839) (-669 "MAPHACK2.spad" 1065417 1065429 1065642 1065647) (-668 "MAPHACK1.spad" 1065047 1065057 1065407 1065412) (-667 "MAGMA.spad" 1062837 1062854 1065037 1065042) (-666 "MACROAST.spad" 1062416 1062424 1062827 1062832) (-665 "M3D.spad" 1060112 1060122 1061794 1061799) (-664 "LZSTAGG.spad" 1057340 1057350 1060102 1060107) (-663 "LZSTAGG.spad" 1054566 1054578 1057330 1057335) (-662 "LWORD.spad" 1051271 1051288 1054556 1054561) (-661 "LSTAST.spad" 1051055 1051063 1051261 1051266) (-660 "LSQM.spad" 1049281 1049295 1049679 1049730) (-659 "LSPP.spad" 1048814 1048831 1049271 1049276) (-658 "LSMP.spad" 1047654 1047682 1048804 1048809) (-657 "LSMP1.spad" 1045458 1045472 1047644 1047649) (-656 "LSAGG.spad" 1045127 1045137 1045426 1045453) (-655 "LSAGG.spad" 1044816 1044828 1045117 1045122) (-654 "LPOLY.spad" 1043770 1043789 1044672 1044741) (-653 "LPEFRAC.spad" 1043027 1043037 1043760 1043765) (-652 "LO.spad" 1042428 1042442 1042961 1042988) (-651 "LOGIC.spad" 1042030 1042038 1042418 1042423) (-650 "LOGIC.spad" 1041630 1041640 1042020 1042025) (-649 "LODOOPS.spad" 1040548 1040560 1041620 1041625) (-648 "LODO.spad" 1039932 1039948 1040228 1040267) (-647 "LODOF.spad" 1038976 1038993 1039889 1039894) (-646 "LODOCAT.spad" 1037634 1037644 1038932 1038971) (-645 "LODOCAT.spad" 1036290 1036302 1037590 1037595) (-644 "LODO2.spad" 1035563 1035575 1035970 1036009) (-643 "LODO1.spad" 1034963 1034973 1035243 1035282) (-642 "LODEEF.spad" 1033735 1033753 1034953 1034958) (-641 "LNAGG.spad" 1029537 1029547 1033725 1033730) (-640 "LNAGG.spad" 1025303 1025315 1029493 1029498) (-639 "LMOPS.spad" 1022039 1022056 1025293 1025298) (-638 "LMODULE.spad" 1021681 1021691 1022029 1022034) (-637 "LMDICT.spad" 1020964 1020974 1021232 1021259) (-636 "LITERAL.spad" 1020870 1020881 1020954 1020959) (-635 "LIST.spad" 1018588 1018598 1020017 1020044) (-634 "LIST3.spad" 1017879 1017893 1018578 1018583) (-633 "LIST2.spad" 1016519 1016531 1017869 1017874) (-632 "LIST2MAP.spad" 1013396 1013408 1016509 1016514) (-631 "LINEXP.spad" 1012828 1012838 1013376 1013391) (-630 "LINDEP.spad" 1011605 1011617 1012740 1012745) (-629 "LIMITRF.spad" 1009519 1009529 1011595 1011600) (-628 "LIMITPS.spad" 1008402 1008415 1009509 1009514) (-627 "LIE.spad" 1006416 1006428 1007692 1007837) (-626 "LIECAT.spad" 1005892 1005902 1006342 1006411) (-625 "LIECAT.spad" 1005396 1005408 1005848 1005853) (-624 "LIB.spad" 1003444 1003452 1004055 1004070) (-623 "LGROBP.spad" 1000797 1000816 1003434 1003439) (-622 "LF.spad" 999716 999732 1000787 1000792) (-621 "LFCAT.spad" 998735 998743 999706 999711) (-620 "LEXTRIPK.spad" 994238 994253 998725 998730) (-619 "LEXP.spad" 992241 992268 994218 994233) (-618 "LETAST.spad" 991940 991948 992231 992236) (-617 "LEADCDET.spad" 990324 990341 991930 991935) (-616 "LAZM3PK.spad" 989028 989050 990314 990319) (-615 "LAUPOL.spad" 987717 987730 988621 988690) (-614 "LAPLACE.spad" 987290 987306 987707 987712) (-613 "LA.spad" 986730 986744 987212 987251) (-612 "LALG.spad" 986506 986516 986710 986725) (-611 "LALG.spad" 986290 986302 986496 986501) (-610 "KVTFROM.spad" 986025 986035 986280 986285) (-609 "KTVLOGIC.spad" 985448 985456 986015 986020) (-608 "KRCFROM.spad" 985186 985196 985438 985443) (-607 "KOVACIC.spad" 983899 983916 985176 985181) (-606 "KONVERT.spad" 983621 983631 983889 983894) (-605 "KOERCE.spad" 983358 983368 983611 983616) (-604 "KERNEL.spad" 981893 981903 983142 983147) (-603 "KERNEL2.spad" 981596 981608 981883 981888) (-602 "KDAGG.spad" 980699 980721 981576 981591) (-601 "KDAGG.spad" 979810 979834 980689 980694) (-600 "KAFILE.spad" 978773 978789 979008 979035) (-599 "JORDAN.spad" 976600 976612 978063 978208) (-598 "JOINAST.spad" 976294 976302 976590 976595) (-597 "JAVACODE.spad" 976160 976168 976284 976289) (-596 "IXAGG.spad" 974283 974307 976150 976155) (-595 "IXAGG.spad" 972261 972287 974130 974135) (-594 "IVECTOR.spad" 971032 971047 971187 971214) (-593 "ITUPLE.spad" 970177 970187 971022 971027) (-592 "ITRIGMNP.spad" 968988 969007 970167 970172) (-591 "ITFUN3.spad" 968482 968496 968978 968983) (-590 "ITFUN2.spad" 968212 968224 968472 968477) (-589 "ITAYLOR.spad" 966004 966019 968048 968173) (-588 "ISUPS.spad" 958415 958430 964978 965075) (-587 "ISUMP.spad" 957912 957928 958405 958410) (-586 "ISTRING.spad" 956915 956928 957081 957108) (-585 "ISAST.spad" 956634 956642 956905 956910) (-584 "IRURPK.spad" 955347 955366 956624 956629) (-583 "IRSN.spad" 953307 953315 955337 955342) (-582 "IRRF2F.spad" 951782 951792 953263 953268) (-581 "IRREDFFX.spad" 951383 951394 951772 951777) (-580 "IROOT.spad" 949714 949724 951373 951378) (-579 "IR.spad" 947503 947517 949569 949596) (-578 "IR2.spad" 946523 946539 947493 947498) (-577 "IR2F.spad" 945723 945739 946513 946518) (-576 "IPRNTPK.spad" 945483 945491 945713 945718) (-575 "IPF.spad" 945048 945060 945288 945381) (-574 "IPADIC.spad" 944809 944835 944974 945043) (-573 "IP4ADDR.spad" 944357 944365 944799 944804) (-572 "IOMODE.spad" 943978 943986 944347 944352) (-571 "IOBFILE.spad" 943339 943347 943968 943973) (-570 "IOBCON.spad" 943204 943212 943329 943334) (-569 "INVLAPLA.spad" 942849 942865 943194 943199) (-568 "INTTR.spad" 936095 936112 942839 942844) (-567 "INTTOOLS.spad" 933806 933822 935669 935674) (-566 "INTSLPE.spad" 933112 933120 933796 933801) (-565 "INTRVL.spad" 932678 932688 933026 933107) (-564 "INTRF.spad" 931042 931056 932668 932673) (-563 "INTRET.spad" 930474 930484 931032 931037) (-562 "INTRAT.spad" 929149 929166 930464 930469) (-561 "INTPM.spad" 927512 927528 928792 928797) (-560 "INTPAF.spad" 925280 925298 927444 927449) (-559 "INTPACK.spad" 915590 915598 925270 925275) (-558 "INT.spad" 914951 914959 915444 915585) (-557 "INTHERTR.spad" 914217 914234 914941 914946) (-556 "INTHERAL.spad" 913883 913907 914207 914212) (-555 "INTHEORY.spad" 910296 910304 913873 913878) (-554 "INTG0.spad" 903759 903777 910228 910233) (-553 "INTFTBL.spad" 897788 897796 903749 903754) (-552 "INTFACT.spad" 896847 896857 897778 897783) (-551 "INTEF.spad" 895162 895178 896837 896842) (-550 "INTDOM.spad" 893777 893785 895088 895157) (-549 "INTDOM.spad" 892454 892464 893767 893772) (-548 "INTCAT.spad" 890707 890717 892368 892449) (-547 "INTBIT.spad" 890210 890218 890697 890702) (-546 "INTALG.spad" 889392 889419 890200 890205) (-545 "INTAF.spad" 888884 888900 889382 889387) (-544 "INTABL.spad" 887402 887433 887565 887592) (-543 "INS.spad" 884869 884877 887304 887397) (-542 "INS.spad" 882422 882432 884859 884864) (-541 "INPSIGN.spad" 881856 881869 882412 882417) (-540 "INPRODPF.spad" 880922 880941 881846 881851) (-539 "INPRODFF.spad" 879980 880004 880912 880917) (-538 "INNMFACT.spad" 878951 878968 879970 879975) (-537 "INMODGCD.spad" 878435 878465 878941 878946) (-536 "INFSP.spad" 876720 876742 878425 878430) (-535 "INFPROD0.spad" 875770 875789 876710 876715) (-534 "INFORM.spad" 872931 872939 875760 875765) (-533 "INFORM1.spad" 872556 872566 872921 872926) (-532 "INFINITY.spad" 872108 872116 872546 872551) (-531 "INETCLTS.spad" 872085 872093 872098 872103) (-530 "INEP.spad" 870617 870639 872075 872080) (-529 "INDE.spad" 870346 870363 870607 870612) (-528 "INCRMAPS.spad" 869767 869777 870336 870341) (-527 "INBFILE.spad" 868839 868847 869757 869762) (-526 "INBFF.spad" 864609 864620 868829 868834) (-525 "INBCON.spad" 863853 863861 864599 864604) (-524 "INBCON.spad" 863095 863105 863843 863848) (-523 "INAST.spad" 862760 862768 863085 863090) (-522 "IMPTAST.spad" 862468 862476 862750 862755) (-521 "IMATRIX.spad" 861413 861439 861925 861952) (-520 "IMATQF.spad" 860507 860551 861369 861374) (-519 "IMATLIN.spad" 859112 859136 860463 860468) (-518 "ILIST.spad" 857768 857783 858295 858322) (-517 "IIARRAY2.spad" 857156 857194 857375 857402) (-516 "IFF.spad" 856566 856582 856837 856930) (-515 "IFAST.spad" 856180 856188 856556 856561) (-514 "IFARRAY.spad" 853667 853682 855363 855390) (-513 "IFAMON.spad" 853529 853546 853623 853628) (-512 "IEVALAB.spad" 852918 852930 853519 853524) (-511 "IEVALAB.spad" 852305 852319 852908 852913) (-510 "IDPO.spad" 852103 852115 852295 852300) (-509 "IDPOAMS.spad" 851859 851871 852093 852098) (-508 "IDPOAM.spad" 851579 851591 851849 851854) (-507 "IDPC.spad" 850513 850525 851569 851574) (-506 "IDPAM.spad" 850258 850270 850503 850508) (-505 "IDPAG.spad" 850005 850017 850248 850253) (-504 "IDENT.spad" 849777 849785 849995 850000) (-503 "IDECOMP.spad" 847014 847032 849767 849772) (-502 "IDEAL.spad" 841937 841976 846949 846954) (-501 "ICDEN.spad" 841088 841104 841927 841932) (-500 "ICARD.spad" 840277 840285 841078 841083) (-499 "IBPTOOLS.spad" 838870 838887 840267 840272) (-498 "IBITS.spad" 838069 838082 838506 838533) (-497 "IBATOOL.spad" 834944 834963 838059 838064) (-496 "IBACHIN.spad" 833431 833446 834934 834939) (-495 "IARRAY2.spad" 832419 832445 833038 833065) (-494 "IARRAY1.spad" 831464 831479 831602 831629) (-493 "IAN.spad" 829677 829685 831280 831373) (-492 "IALGFACT.spad" 829278 829311 829667 829672) (-491 "HYPCAT.spad" 828702 828710 829268 829273) (-490 "HYPCAT.spad" 828124 828134 828692 828697) (-489 "HOSTNAME.spad" 827932 827940 828114 828119) (-488 "HOMOTOP.spad" 827675 827685 827922 827927) (-487 "HOAGG.spad" 824943 824953 827665 827670) (-486 "HOAGG.spad" 821986 821998 824710 824715) (-485 "HEXADEC.spad" 820088 820096 820453 820546) (-484 "HEUGCD.spad" 819103 819114 820078 820083) (-483 "HELLFDIV.spad" 818693 818717 819093 819098) (-482 "HEAP.spad" 818085 818095 818300 818327) (-481 "HEADAST.spad" 817616 817624 818075 818080) (-480 "HDP.spad" 807459 807475 807836 807967) (-479 "HDMP.spad" 804635 804650 805253 805380) (-478 "HB.spad" 802872 802880 804625 804630) (-477 "HASHTBL.spad" 801342 801373 801553 801580) (-476 "HASAST.spad" 801058 801066 801332 801337) (-475 "HACKPI.spad" 800541 800549 800960 801053) (-474 "GTSET.spad" 799480 799496 800187 800214) (-473 "GSTBL.spad" 797999 798034 798173 798188) (-472 "GSERIES.spad" 795166 795193 796131 796280) (-471 "GROUP.spad" 794435 794443 795146 795161) (-470 "GROUP.spad" 793712 793722 794425 794430) (-469 "GROEBSOL.spad" 792200 792221 793702 793707) (-468 "GRMOD.spad" 790771 790783 792190 792195) (-467 "GRMOD.spad" 789340 789354 790761 790766) (-466 "GRIMAGE.spad" 781945 781953 789330 789335) (-465 "GRDEF.spad" 780324 780332 781935 781940) (-464 "GRAY.spad" 778783 778791 780314 780319) (-463 "GRALG.spad" 777830 777842 778773 778778) (-462 "GRALG.spad" 776875 776889 777820 777825) (-461 "GPOLSET.spad" 776329 776352 776557 776584) (-460 "GOSPER.spad" 775594 775612 776319 776324) (-459 "GMODPOL.spad" 774732 774759 775562 775589) (-458 "GHENSEL.spad" 773801 773815 774722 774727) (-457 "GENUPS.spad" 769902 769915 773791 773796) (-456 "GENUFACT.spad" 769479 769489 769892 769897) (-455 "GENPGCD.spad" 769063 769080 769469 769474) (-454 "GENMFACT.spad" 768515 768534 769053 769058) (-453 "GENEEZ.spad" 766454 766467 768505 768510) (-452 "GDMP.spad" 763472 763489 764248 764375) (-451 "GCNAALG.spad" 757367 757394 763266 763333) (-450 "GCDDOM.spad" 756539 756547 757293 757362) (-449 "GCDDOM.spad" 755773 755783 756529 756534) (-448 "GB.spad" 753291 753329 755729 755734) (-447 "GBINTERN.spad" 749311 749349 753281 753286) (-446 "GBF.spad" 745068 745106 749301 749306) (-445 "GBEUCLID.spad" 742942 742980 745058 745063) (-444 "GAUSSFAC.spad" 742239 742247 742932 742937) (-443 "GALUTIL.spad" 740561 740571 742195 742200) (-442 "GALPOLYU.spad" 739007 739020 740551 740556) (-441 "GALFACTU.spad" 737172 737191 738997 739002) (-440 "GALFACT.spad" 727305 727316 737162 737167) (-439 "FVFUN.spad" 724328 724336 727295 727300) (-438 "FVC.spad" 723380 723388 724318 724323) (-437 "FUNCTION.spad" 723229 723241 723370 723375) (-436 "FT.spad" 721522 721530 723219 723224) (-435 "FTEM.spad" 720685 720693 721512 721517) (-434 "FSUPFACT.spad" 719585 719604 720621 720626) (-433 "FST.spad" 717671 717679 719575 719580) (-432 "FSRED.spad" 717149 717165 717661 717666) (-431 "FSPRMELT.spad" 715973 715989 717106 717111) (-430 "FSPECF.spad" 714050 714066 715963 715968) (-429 "FS.spad" 708112 708122 713825 714045) (-428 "FS.spad" 701952 701964 707667 707672) (-427 "FSINT.spad" 701610 701626 701942 701947) (-426 "FSERIES.spad" 700797 700809 701430 701529) (-425 "FSCINT.spad" 700110 700126 700787 700792) (-424 "FSAGG.spad" 699227 699237 700066 700105) (-423 "FSAGG.spad" 698306 698318 699147 699152) (-422 "FSAGG2.spad" 697005 697021 698296 698301) (-421 "FS2UPS.spad" 691488 691522 696995 697000) (-420 "FS2.spad" 691133 691149 691478 691483) (-419 "FS2EXPXP.spad" 690256 690279 691123 691128) (-418 "FRUTIL.spad" 689198 689208 690246 690251) (-417 "FR.spad" 682892 682902 688222 688291) (-416 "FRNAALG.spad" 677979 677989 682834 682887) (-415 "FRNAALG.spad" 673078 673090 677935 677940) (-414 "FRNAAF2.spad" 672532 672550 673068 673073) (-413 "FRMOD.spad" 671926 671956 672463 672468) (-412 "FRIDEAL.spad" 671121 671142 671906 671921) (-411 "FRIDEAL2.spad" 670723 670755 671111 671116) (-410 "FRETRCT.spad" 670234 670244 670713 670718) (-409 "FRETRCT.spad" 669611 669623 670092 670097) (-408 "FRAMALG.spad" 667939 667952 669567 669606) (-407 "FRAMALG.spad" 666299 666314 667929 667934) (-406 "FRAC.spad" 663398 663408 663801 663974) (-405 "FRAC2.spad" 663001 663013 663388 663393) (-404 "FR2.spad" 662335 662347 662991 662996) (-403 "FPS.spad" 659144 659152 662225 662330) (-402 "FPS.spad" 655981 655991 659064 659069) (-401 "FPC.spad" 655023 655031 655883 655976) (-400 "FPC.spad" 654151 654161 655013 655018) (-399 "FPATMAB.spad" 653913 653923 654141 654146) (-398 "FPARFRAC.spad" 652386 652403 653903 653908) (-397 "FORTRAN.spad" 650892 650935 652376 652381) (-396 "FORT.spad" 649821 649829 650882 650887) (-395 "FORTFN.spad" 646991 646999 649811 649816) (-394 "FORTCAT.spad" 646675 646683 646981 646986) (-393 "FORMULA.spad" 644139 644147 646665 646670) (-392 "FORMULA1.spad" 643618 643628 644129 644134) (-391 "FORDER.spad" 643309 643333 643608 643613) (-390 "FOP.spad" 642510 642518 643299 643304) (-389 "FNLA.spad" 641934 641956 642478 642505) (-388 "FNCAT.spad" 640521 640529 641924 641929) (-387 "FNAME.spad" 640413 640421 640511 640516) (-386 "FMTC.spad" 640211 640219 640339 640408) (-385 "FMONOID.spad" 637266 637276 640167 640172) (-384 "FM.spad" 636961 636973 637200 637227) (-383 "FMFUN.spad" 633991 633999 636951 636956) (-382 "FMC.spad" 633043 633051 633981 633986) (-381 "FMCAT.spad" 630697 630715 633011 633038) (-380 "FM1.spad" 630054 630066 630631 630658) (-379 "FLOATRP.spad" 627775 627789 630044 630049) (-378 "FLOAT.spad" 621063 621071 627641 627770) (-377 "FLOATCP.spad" 618480 618494 621053 621058) (-376 "FLINEXP.spad" 618192 618202 618460 618475) (-375 "FLINEXP.spad" 617858 617870 618128 618133) (-374 "FLASORT.spad" 617178 617190 617848 617853) (-373 "FLALG.spad" 614824 614843 617104 617173) (-372 "FLAGG.spad" 611842 611852 614804 614819) (-371 "FLAGG.spad" 608761 608773 611725 611730) (-370 "FLAGG2.spad" 607442 607458 608751 608756) (-369 "FINRALG.spad" 605471 605484 607398 607437) (-368 "FINRALG.spad" 603426 603441 605355 605360) (-367 "FINITE.spad" 602578 602586 603416 603421) (-366 "FINAALG.spad" 591559 591569 602520 602573) (-365 "FINAALG.spad" 580552 580564 591515 591520) (-364 "FILE.spad" 580135 580145 580542 580547) (-363 "FILECAT.spad" 578653 578670 580125 580130) (-362 "FIELD.spad" 578059 578067 578555 578648) (-361 "FIELD.spad" 577551 577561 578049 578054) (-360 "FGROUP.spad" 576160 576170 577531 577546) (-359 "FGLMICPK.spad" 574947 574962 576150 576155) (-358 "FFX.spad" 574322 574337 574663 574756) (-357 "FFSLPE.spad" 573811 573832 574312 574317) (-356 "FFPOLY.spad" 565063 565074 573801 573806) (-355 "FFPOLY2.spad" 564123 564140 565053 565058) (-354 "FFP.spad" 563520 563540 563839 563932) (-353 "FF.spad" 562968 562984 563201 563294) (-352 "FFNBX.spad" 561480 561500 562684 562777) (-351 "FFNBP.spad" 559993 560010 561196 561289) (-350 "FFNB.spad" 558458 558479 559674 559767) (-349 "FFINTBAS.spad" 555872 555891 558448 558453) (-348 "FFIELDC.spad" 553447 553455 555774 555867) (-347 "FFIELDC.spad" 551108 551118 553437 553442) (-346 "FFHOM.spad" 549856 549873 551098 551103) (-345 "FFF.spad" 547291 547302 549846 549851) (-344 "FFCGX.spad" 546138 546158 547007 547100) (-343 "FFCGP.spad" 545027 545047 545854 545947) (-342 "FFCG.spad" 543819 543840 544708 544801) (-341 "FFCAT.spad" 536846 536868 543658 543814) (-340 "FFCAT.spad" 529952 529976 536766 536771) (-339 "FFCAT2.spad" 529697 529737 529942 529947) (-338 "FEXPR.spad" 521406 521452 529453 529492) (-337 "FEVALAB.spad" 521112 521122 521396 521401) (-336 "FEVALAB.spad" 520603 520615 520889 520894) (-335 "FDIV.spad" 520045 520069 520593 520598) (-334 "FDIVCAT.spad" 518087 518111 520035 520040) (-333 "FDIVCAT.spad" 516127 516153 518077 518082) (-332 "FDIV2.spad" 515781 515821 516117 516122) (-331 "FCPAK1.spad" 514334 514342 515771 515776) (-330 "FCOMP.spad" 513713 513723 514324 514329) (-329 "FC.spad" 503628 503636 513703 513708) (-328 "FAXF.spad" 496563 496577 503530 503623) (-327 "FAXF.spad" 489550 489566 496519 496524) (-326 "FARRAY.spad" 487696 487706 488733 488760) (-325 "FAMR.spad" 485816 485828 487594 487691) (-324 "FAMR.spad" 483920 483934 485700 485705) (-323 "FAMONOID.spad" 483570 483580 483874 483879) (-322 "FAMONC.spad" 481792 481804 483560 483565) (-321 "FAGROUP.spad" 481398 481408 481688 481715) (-320 "FACUTIL.spad" 479594 479611 481388 481393) (-319 "FACTFUNC.spad" 478770 478780 479584 479589) (-318 "EXPUPXS.spad" 475603 475626 476902 477051) (-317 "EXPRTUBE.spad" 472831 472839 475593 475598) (-316 "EXPRODE.spad" 469703 469719 472821 472826) (-315 "EXPR.spad" 464978 464988 465692 466099) (-314 "EXPR2UPS.spad" 461070 461083 464968 464973) (-313 "EXPR2.spad" 460773 460785 461060 461065) (-312 "EXPEXPAN.spad" 457711 457736 458345 458438) (-311 "EXIT.spad" 457382 457390 457701 457706) (-310 "EXITAST.spad" 457118 457126 457372 457377) (-309 "EVALCYC.spad" 456576 456590 457108 457113) (-308 "EVALAB.spad" 456140 456150 456566 456571) (-307 "EVALAB.spad" 455702 455714 456130 456135) (-306 "EUCDOM.spad" 453244 453252 455628 455697) (-305 "EUCDOM.spad" 450848 450858 453234 453239) (-304 "ESTOOLS.spad" 442688 442696 450838 450843) (-303 "ESTOOLS2.spad" 442289 442303 442678 442683) (-302 "ESTOOLS1.spad" 441974 441985 442279 442284) (-301 "ES.spad" 434521 434529 441964 441969) (-300 "ES.spad" 426974 426984 434419 434424) (-299 "ESCONT.spad" 423747 423755 426964 426969) (-298 "ESCONT1.spad" 423496 423508 423737 423742) (-297 "ES2.spad" 422991 423007 423486 423491) (-296 "ES1.spad" 422557 422573 422981 422986) (-295 "ERROR.spad" 419878 419886 422547 422552) (-294 "EQTBL.spad" 418350 418372 418559 418586) (-293 "EQ.spad" 413224 413234 416023 416135) (-292 "EQ2.spad" 412940 412952 413214 413219) (-291 "EP.spad" 409254 409264 412930 412935) (-290 "ENV.spad" 407956 407964 409244 409249) (-289 "ENTIRER.spad" 407624 407632 407900 407951) (-288 "EMR.spad" 406825 406866 407550 407619) (-287 "ELTAGG.spad" 405065 405084 406815 406820) (-286 "ELTAGG.spad" 403269 403290 405021 405026) (-285 "ELTAB.spad" 402716 402734 403259 403264) (-284 "ELFUTS.spad" 402095 402114 402706 402711) (-283 "ELEMFUN.spad" 401784 401792 402085 402090) (-282 "ELEMFUN.spad" 401471 401481 401774 401779) (-281 "ELAGG.spad" 399414 399424 401451 401466) (-280 "ELAGG.spad" 397294 397306 399333 399338) (-279 "ELABEXPR.spad" 396225 396233 397284 397289) (-278 "EFUPXS.spad" 393001 393031 396181 396186) (-277 "EFULS.spad" 389837 389860 392957 392962) (-276 "EFSTRUC.spad" 387792 387808 389827 389832) (-275 "EF.spad" 382558 382574 387782 387787) (-274 "EAB.spad" 380834 380842 382548 382553) (-273 "E04UCFA.spad" 380370 380378 380824 380829) (-272 "E04NAFA.spad" 379947 379955 380360 380365) (-271 "E04MBFA.spad" 379527 379535 379937 379942) (-270 "E04JAFA.spad" 379063 379071 379517 379522) (-269 "E04GCFA.spad" 378599 378607 379053 379058) (-268 "E04FDFA.spad" 378135 378143 378589 378594) (-267 "E04DGFA.spad" 377671 377679 378125 378130) (-266 "E04AGNT.spad" 373513 373521 377661 377666) (-265 "DVARCAT.spad" 370198 370208 373503 373508) (-264 "DVARCAT.spad" 366881 366893 370188 370193) (-263 "DSMP.spad" 364312 364326 364617 364744) (-262 "DROPT.spad" 358257 358265 364302 364307) (-261 "DROPT1.spad" 357920 357930 358247 358252) (-260 "DROPT0.spad" 352747 352755 357910 357915) (-259 "DRAWPT.spad" 350902 350910 352737 352742) (-258 "DRAW.spad" 343502 343515 350892 350897) (-257 "DRAWHACK.spad" 342810 342820 343492 343497) (-256 "DRAWCX.spad" 340252 340260 342800 342805) (-255 "DRAWCURV.spad" 339789 339804 340242 340247) (-254 "DRAWCFUN.spad" 328961 328969 339779 339784) (-253 "DQAGG.spad" 327129 327139 328929 328956) (-252 "DPOLCAT.spad" 322470 322486 326997 327124) (-251 "DPOLCAT.spad" 317897 317915 322426 322431) (-250 "DPMO.spad" 310123 310139 310261 310562) (-249 "DPMM.spad" 302362 302380 302487 302788) (-248 "DOMCTOR.spad" 302254 302262 302352 302357) (-247 "DOMAIN.spad" 301385 301393 302244 302249) (-246 "DMP.spad" 298607 298622 299179 299306) (-245 "DLP.spad" 297955 297965 298597 298602) (-244 "DLIST.spad" 296534 296544 297138 297165) (-243 "DLAGG.spad" 294945 294955 296524 296529) (-242 "DIVRING.spad" 294487 294495 294889 294940) (-241 "DIVRING.spad" 294073 294083 294477 294482) (-240 "DISPLAY.spad" 292253 292261 294063 294068) (-239 "DIRPROD.spad" 281833 281849 282473 282604) (-238 "DIRPROD2.spad" 280641 280659 281823 281828) (-237 "DIRPCAT.spad" 279583 279599 280505 280636) (-236 "DIRPCAT.spad" 278254 278272 279178 279183) (-235 "DIOSP.spad" 277079 277087 278244 278249) (-234 "DIOPS.spad" 276063 276073 277059 277074) (-233 "DIOPS.spad" 275021 275033 276019 276024) (-232 "DIFRING.spad" 274313 274321 275001 275016) (-231 "DIFRING.spad" 273613 273623 274303 274308) (-230 "DIFEXT.spad" 272772 272782 273593 273608) (-229 "DIFEXT.spad" 271848 271860 272671 272676) (-228 "DIAGG.spad" 271478 271488 271828 271843) (-227 "DIAGG.spad" 271116 271128 271468 271473) (-226 "DHMATRIX.spad" 269420 269430 270573 270600) (-225 "DFSFUN.spad" 262828 262836 269410 269415) (-224 "DFLOAT.spad" 259549 259557 262718 262823) (-223 "DFINTTLS.spad" 257758 257774 259539 259544) (-222 "DERHAM.spad" 255668 255700 257738 257753) (-221 "DEQUEUE.spad" 254986 254996 255275 255302) (-220 "DEGRED.spad" 254601 254615 254976 254981) (-219 "DEFINTRF.spad" 252126 252136 254591 254596) (-218 "DEFINTEF.spad" 250622 250638 252116 252121) (-217 "DEFAST.spad" 249990 249998 250612 250617) (-216 "DECIMAL.spad" 248096 248104 248457 248550) (-215 "DDFACT.spad" 245895 245912 248086 248091) (-214 "DBLRESP.spad" 245493 245517 245885 245890) (-213 "DBASE.spad" 244147 244157 245483 245488) (-212 "DATAARY.spad" 243609 243622 244137 244142) (-211 "D03FAFA.spad" 243437 243445 243599 243604) (-210 "D03EEFA.spad" 243257 243265 243427 243432) (-209 "D03AGNT.spad" 242337 242345 243247 243252) (-208 "D02EJFA.spad" 241799 241807 242327 242332) (-207 "D02CJFA.spad" 241277 241285 241789 241794) (-206 "D02BHFA.spad" 240767 240775 241267 241272) (-205 "D02BBFA.spad" 240257 240265 240757 240762) (-204 "D02AGNT.spad" 235061 235069 240247 240252) (-203 "D01WGTS.spad" 233380 233388 235051 235056) (-202 "D01TRNS.spad" 233357 233365 233370 233375) (-201 "D01GBFA.spad" 232879 232887 233347 233352) (-200 "D01FCFA.spad" 232401 232409 232869 232874) (-199 "D01ASFA.spad" 231869 231877 232391 232396) (-198 "D01AQFA.spad" 231315 231323 231859 231864) (-197 "D01APFA.spad" 230739 230747 231305 231310) (-196 "D01ANFA.spad" 230233 230241 230729 230734) (-195 "D01AMFA.spad" 229743 229751 230223 230228) (-194 "D01ALFA.spad" 229283 229291 229733 229738) (-193 "D01AKFA.spad" 228809 228817 229273 229278) (-192 "D01AJFA.spad" 228332 228340 228799 228804) (-191 "D01AGNT.spad" 224391 224399 228322 228327) (-190 "CYCLOTOM.spad" 223897 223905 224381 224386) (-189 "CYCLES.spad" 220729 220737 223887 223892) (-188 "CVMP.spad" 220146 220156 220719 220724) (-187 "CTRIGMNP.spad" 218636 218652 220136 220141) (-186 "CTOR.spad" 218536 218544 218626 218631) (-185 "CTORKIND.spad" 218139 218147 218526 218531) (-184 "CTORCAT.spad" 217594 217602 218129 218134) (-183 "CTORCAT.spad" 217047 217057 217584 217589) (-182 "CTORCALL.spad" 216627 216635 217037 217042) (-181 "CSTTOOLS.spad" 215870 215883 216617 216622) (-180 "CRFP.spad" 209574 209587 215860 215865) (-179 "CRCEAST.spad" 209294 209302 209564 209569) (-178 "CRAPACK.spad" 208337 208347 209284 209289) (-177 "CPMATCH.spad" 207837 207852 208262 208267) (-176 "CPIMA.spad" 207542 207561 207827 207832) (-175 "COORDSYS.spad" 202435 202445 207532 207537) (-174 "CONTOUR.spad" 201837 201845 202425 202430) (-173 "CONTFRAC.spad" 197449 197459 201739 201832) (-172 "CONDUIT.spad" 197207 197215 197439 197444) (-171 "COMRING.spad" 196881 196889 197145 197202) (-170 "COMPPROP.spad" 196395 196403 196871 196876) (-169 "COMPLPAT.spad" 196162 196177 196385 196390) (-168 "COMPLEX.spad" 190198 190208 190442 190691) (-167 "COMPLEX2.spad" 189911 189923 190188 190193) (-166 "COMPFACT.spad" 189513 189527 189901 189906) (-165 "COMPCAT.spad" 187651 187661 189259 189508) (-164 "COMPCAT.spad" 185470 185482 187080 187085) (-163 "COMMUPC.spad" 185216 185234 185460 185465) (-162 "COMMONOP.spad" 184749 184757 185206 185211) (-161 "COMM.spad" 184558 184566 184739 184744) (-160 "COMMAAST.spad" 184321 184329 184548 184553) (-159 "COMBOPC.spad" 183226 183234 184311 184316) (-158 "COMBINAT.spad" 181971 181981 183216 183221) (-157 "COMBF.spad" 179339 179355 181961 181966) (-156 "COLOR.spad" 178176 178184 179329 179334) (-155 "COLONAST.spad" 177842 177850 178166 178171) (-154 "CMPLXRT.spad" 177551 177568 177832 177837) (-153 "CLLCTAST.spad" 177213 177221 177541 177546) (-152 "CLIP.spad" 173305 173313 177203 177208) (-151 "CLIF.spad" 171944 171960 173261 173300) (-150 "CLAGG.spad" 168429 168439 171934 171939) (-149 "CLAGG.spad" 164785 164797 168292 168297) (-148 "CINTSLPE.spad" 164110 164123 164775 164780) (-147 "CHVAR.spad" 162188 162210 164100 164105) (-146 "CHARZ.spad" 162103 162111 162168 162183) (-145 "CHARPOL.spad" 161611 161621 162093 162098) (-144 "CHARNZ.spad" 161364 161372 161591 161606) (-143 "CHAR.spad" 159232 159240 161354 161359) (-142 "CFCAT.spad" 158548 158556 159222 159227) (-141 "CDEN.spad" 157706 157720 158538 158543) (-140 "CCLASS.spad" 155855 155863 157117 157156) (-139 "CATEGORY.spad" 154945 154953 155845 155850) (-138 "CATCTOR.spad" 154836 154844 154935 154940) (-137 "CATAST.spad" 154463 154471 154826 154831) (-136 "CASEAST.spad" 154177 154185 154453 154458) (-135 "CARTEN.spad" 149280 149304 154167 154172) (-134 "CARTEN2.spad" 148666 148693 149270 149275) (-133 "CARD.spad" 145955 145963 148640 148661) (-132 "CAPSLAST.spad" 145729 145737 145945 145950) (-131 "CACHSET.spad" 145351 145359 145719 145724) (-130 "CABMON.spad" 144904 144912 145341 145346) (-129 "BYTE.spad" 144325 144333 144894 144899) (-128 "BYTEBUF.spad" 142157 142165 143494 143521) (-127 "BTREE.spad" 141226 141236 141764 141791) (-126 "BTOURN.spad" 140229 140239 140833 140860) (-125 "BTCAT.spad" 139617 139627 140197 140224) (-124 "BTCAT.spad" 139025 139037 139607 139612) (-123 "BTAGG.spad" 138147 138155 138993 139020) (-122 "BTAGG.spad" 137289 137299 138137 138142) (-121 "BSTREE.spad" 136024 136034 136896 136923) (-120 "BRILL.spad" 134219 134230 136014 136019) (-119 "BRAGG.spad" 133143 133153 134209 134214) (-118 "BRAGG.spad" 132031 132043 133099 133104) (-117 "BPADICRT.spad" 130012 130024 130267 130360) (-116 "BPADIC.spad" 129676 129688 129938 130007) (-115 "BOUNDZRO.spad" 129332 129349 129666 129671) (-114 "BOP.spad" 124796 124804 129322 129327) (-113 "BOP1.spad" 122182 122192 124752 124757) (-112 "BOOLEAN.spad" 121506 121514 122172 122177) (-111 "BMODULE.spad" 121218 121230 121474 121501) (-110 "BITS.spad" 120637 120645 120854 120881) (-109 "BINDING.spad" 120056 120064 120627 120632) (-108 "BINARY.spad" 118167 118175 118523 118616) (-107 "BGAGG.spad" 117364 117374 118147 118162) (-106 "BGAGG.spad" 116569 116581 117354 117359) (-105 "BFUNCT.spad" 116133 116141 116549 116564) (-104 "BEZOUT.spad" 115267 115294 116083 116088) (-103 "BBTREE.spad" 112086 112096 114874 114901) (-102 "BASTYPE.spad" 111758 111766 112076 112081) (-101 "BASTYPE.spad" 111428 111438 111748 111753) (-100 "BALFACT.spad" 110867 110880 111418 111423) (-99 "AUTOMOR.spad" 110314 110323 110847 110862) (-98 "ATTREG.spad" 107033 107040 110066 110309) (-97 "ATTRBUT.spad" 103056 103063 107013 107028) (-96 "ATTRAST.spad" 102773 102780 103046 103051) (-95 "ATRIG.spad" 102243 102250 102763 102768) (-94 "ATRIG.spad" 101711 101720 102233 102238) (-93 "ASTCAT.spad" 101615 101622 101701 101706) (-92 "ASTCAT.spad" 101517 101526 101605 101610) (-91 "ASTACK.spad" 100850 100859 101124 101151) (-90 "ASSOCEQ.spad" 99650 99661 100806 100811) (-89 "ASP9.spad" 98731 98744 99640 99645) (-88 "ASP8.spad" 97774 97787 98721 98726) (-87 "ASP80.spad" 97096 97109 97764 97769) (-86 "ASP7.spad" 96256 96269 97086 97091) (-85 "ASP78.spad" 95707 95720 96246 96251) (-84 "ASP77.spad" 95076 95089 95697 95702) (-83 "ASP74.spad" 94168 94181 95066 95071) (-82 "ASP73.spad" 93439 93452 94158 94163) (-81 "ASP6.spad" 92306 92319 93429 93434) (-80 "ASP55.spad" 90815 90828 92296 92301) (-79 "ASP50.spad" 88632 88645 90805 90810) (-78 "ASP4.spad" 87927 87940 88622 88627) (-77 "ASP49.spad" 86926 86939 87917 87922) (-76 "ASP42.spad" 85333 85372 86916 86921) (-75 "ASP41.spad" 83912 83951 85323 85328) (-74 "ASP35.spad" 82900 82913 83902 83907) (-73 "ASP34.spad" 82201 82214 82890 82895) (-72 "ASP33.spad" 81761 81774 82191 82196) (-71 "ASP31.spad" 80901 80914 81751 81756) (-70 "ASP30.spad" 79793 79806 80891 80896) (-69 "ASP29.spad" 79259 79272 79783 79788) (-68 "ASP28.spad" 70532 70545 79249 79254) (-67 "ASP27.spad" 69429 69442 70522 70527) (-66 "ASP24.spad" 68516 68529 69419 69424) (-65 "ASP20.spad" 67980 67993 68506 68511) (-64 "ASP1.spad" 67361 67374 67970 67975) (-63 "ASP19.spad" 62047 62060 67351 67356) (-62 "ASP12.spad" 61461 61474 62037 62042) (-61 "ASP10.spad" 60732 60745 61451 61456) (-60 "ARRAY2.spad" 60092 60101 60339 60366) (-59 "ARRAY1.spad" 58927 58936 59275 59302) (-58 "ARRAY12.spad" 57596 57607 58917 58922) (-57 "ARR2CAT.spad" 53258 53279 57564 57591) (-56 "ARR2CAT.spad" 48940 48963 53248 53253) (-55 "ARITY.spad" 48508 48515 48930 48935) (-54 "APPRULE.spad" 47752 47774 48498 48503) (-53 "APPLYORE.spad" 47367 47380 47742 47747) (-52 "ANY.spad" 45709 45716 47357 47362) (-51 "ANY1.spad" 44780 44789 45699 45704) (-50 "ANTISYM.spad" 43219 43235 44760 44775) (-49 "ANON.spad" 42916 42923 43209 43214) (-48 "AN.spad" 41217 41224 42732 42825) (-47 "AMR.spad" 39396 39407 41115 41212) (-46 "AMR.spad" 37412 37425 39133 39138) (-45 "ALIST.spad" 34824 34845 35174 35201) (-44 "ALGSC.spad" 33947 33973 34696 34749) (-43 "ALGPKG.spad" 29656 29667 33903 33908) (-42 "ALGMFACT.spad" 28845 28859 29646 29651) (-41 "ALGMANIP.spad" 26265 26280 28642 28647) (-40 "ALGFF.spad" 24580 24607 24797 24953) (-39 "ALGFACT.spad" 23701 23711 24570 24575) (-38 "ALGEBRA.spad" 23534 23543 23657 23696) (-37 "ALGEBRA.spad" 23399 23410 23524 23529) (-36 "ALAGG.spad" 22909 22930 23367 23394) (-35 "AHYP.spad" 22290 22297 22899 22904) (-34 "AGG.spad" 20599 20606 22280 22285) (-33 "AGG.spad" 18872 18881 20555 20560) (-32 "AF.spad" 17297 17312 18807 18812) (-31 "ADDAST.spad" 16975 16982 17287 17292) (-30 "ACPLOT.spad" 15546 15553 16965 16970) (-29 "ACFS.spad" 13297 13306 15448 15541) (-28 "ACFS.spad" 11134 11145 13287 13292) (-27 "ACF.spad" 7736 7743 11036 11129) (-26 "ACF.spad" 4424 4433 7726 7731) (-25 "ABELSG.spad" 3965 3972 4414 4419) (-24 "ABELSG.spad" 3504 3513 3955 3960) (-23 "ABELMON.spad" 3047 3054 3494 3499) (-22 "ABELMON.spad" 2588 2597 3037 3042) (-21 "ABELGRP.spad" 2160 2167 2578 2583) (-20 "ABELGRP.spad" 1730 1739 2150 2155) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file