diff options
Diffstat (limited to 'src/share/algebra/browse.daase')
-rw-r--r-- | src/share/algebra/browse.daase | 504 |
1 files changed, 252 insertions, 252 deletions
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index a6f8b9bd..93fefe5c 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,5 +1,5 @@ -(2301233 . 3506210758) +(2294384 . 3506987658) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL @@ -59,7 +59,7 @@ NIL (-32 R -1589) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) +((|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -88,14 +88,14 @@ NIL ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -1589 UP UPUP -2561) +(-40 -1589 UP UPUP -1829) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) ((-4501 |has| (-421 |#2|) (-376)) (-4506 |has| (-421 |#2|) (-376)) (-4500 |has| (-421 |#2|) (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2201 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2201 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2201 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2201 (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2201 (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (-2201 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) +((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2200 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2200 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2200 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2200 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2200 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-2200 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (-41 R -1589) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -435) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -435) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -111,11 +111,11 @@ NIL (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) ((-4508 . T) (-4509 . T)) -((-2201 (-12 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (|devaluate| |#1|)) (|%listlit| (QUOTE |:|) (QUOTE -3576) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (|devaluate| |#1|)) (|%listlit| (QUOTE |:|) (QUOTE -3576) (|devaluate| |#2|))))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-871))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (|devaluate| |#1|)) (|%listlit| (QUOTE |:|) (QUOTE -3576) (|devaluate| |#2|))))))) +((-2200 (-12 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2854) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2854) (|devaluate| |#2|))))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-871))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2854) (|devaluate| |#2|))))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL -((|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) +((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) @@ -123,7 +123,7 @@ NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%listlit| (QUOTE -1069) (QUOTE (-560))))) +((|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%list| (QUOTE -1069) (QUOTE (-560))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL @@ -163,7 +163,7 @@ NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL @@ -171,64 +171,64 @@ NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -3825) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -3843) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-62 -3825) +(-62 -3843) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -3825) +(-63 -3843) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-64 -3825) +(-64 -3843) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -3825) +(-65 -3843) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3825) +(-66 -3843) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -3825) +(-67 -3843) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3825) +(-68 -3843) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3825) +(-69 -3843) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -3825) +(-70 -3843) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -3825) +(-71 -3843) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -3825) +(-72 -3843) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -3825) +(-73 -3843) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -3825) +(-74 -3843) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -3825) +(-75 -3843) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -240,51 +240,51 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives wrt \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3825) +(-78 -3843) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -3825) +(-79 -3843) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3825) +(-80 -3843) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3825) +(-81 -3843) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -3825) +(-82 -3843) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3825) +(-83 -3843) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3825) +(-84 -3843) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3825) +(-85 -3843) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3825) +(-86 -3843) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3825) +(-87 -3843) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-88 -3825) +(-88 -3843) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-89 -3825) +(-89 -3843) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -295,7 +295,7 @@ NIL (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -343,7 +343,7 @@ NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL @@ -363,7 +363,7 @@ NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2201 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2200 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL @@ -371,7 +371,7 @@ NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) ((-4509 . T) (-4508 . T)) -((-12 (|HasCategory| (-114) (QUOTE (-1132))) (|HasCategory| (-114) (|%listlit| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-114) (QUOTE (-871))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-114) (QUOTE (-1132))) (|HasCategory| (-114) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-114) (QUOTE (-102)))) +((-12 (|HasCategory| (-114) (QUOTE (-1132))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-114) (QUOTE (-871))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-114) (QUOTE (-1132))) (|HasCategory| (-114) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-114) (QUOTE (-102)))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) ((-4503 . T) (-4502 . T)) @@ -407,7 +407,7 @@ NIL (-119 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-118 |#1|) (QUOTE (-939))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-118 |#1|) (QUOTE (-1051))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871))) (-2201 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871)))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-1182))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|%listlit| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%listlit| (QUOTE -298) (|%listlit| (QUOTE -118) (|devaluate| |#1|)) (|%listlit| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) +((|HasCategory| (-118 |#1|) (QUOTE (-939))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-118 |#1|) (QUOTE (-1051))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871))) (-2200 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-871)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-1182))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-939)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) (-120 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -423,7 +423,7 @@ NIL (-123 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-124 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL @@ -443,11 +443,11 @@ NIL (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL @@ -455,7 +455,7 @@ NIL (-131) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (|%listlit| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%listlit| (QUOTE -321) (QUOTE (-130)))))) (-2201 (|HasCategory| (-130) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%listlit| (QUOTE -321) (QUOTE (-130)))))) (|HasCategory| (-130) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-130) (QUOTE (-871))) (-2201 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%listlit| (QUOTE -321) (QUOTE (-130)))))) +((-2200 (-12 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-2200 (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-130) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-130) (QUOTE (-871))) (-2200 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1132))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-132) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -476,11 +476,11 @@ NIL ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) (((-4510 "*") . T)) NIL -(-137 |minix| -4052 R) +(-137 |minix| -3339 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-138 |minix| -4052 S T$) +(-138 |minix| -3339 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -503,7 +503,7 @@ NIL (-143) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) ((-4508 . T) (-4498 . T) (-4509 . T)) -((-2201 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%listlit| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%listlit| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%listlit| (QUOTE -321) (QUOTE (-146)))))) +((-2200 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-144 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL @@ -539,7 +539,7 @@ NIL (-152 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasAttribute| |#1| (QUOTE -4508))) +((|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasAttribute| |#1| (QUOTE -4508))) (-153 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL @@ -599,10 +599,10 @@ NIL (-167 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4504)) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571)))) +((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1033))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4504)) (|HasAttribute| |#2| (QUOTE -4507)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571)))) (-168 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4501 -2201 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-2847 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-4501 -2200 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-2916 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-169 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4501 -2201 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-2847 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2201 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%listlit| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1091))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasAttribute| |#1| (QUOTE -4507)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-363))))) +((-4501 -2200 (|has| |#1| (-571)) (-12 (|has| |#1| (-319)) (|has| |#1| (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4504 |has| |#1| (-6 -4504)) (-4507 |has| |#1| (-6 -4507)) (-2916 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2200 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-939))))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-1233))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| |#1| (QUOTE (-1091))) (-12 (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-1233)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasAttribute| |#1| (QUOTE -4504)) (|HasAttribute| |#1| (QUOTE -4507)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-363))))) (-172 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL @@ -655,7 +655,7 @@ NIL (-181 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-975 |#2|) (|%listlit| (QUOTE -911) (|devaluate| |#1|)))) +((|HasCategory| (-975 |#2|) (|%list| (QUOTE -911) (|devaluate| |#1|)))) (-182 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -815,7 +815,7 @@ NIL (-221) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2201 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2200 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-222) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL @@ -835,7 +835,7 @@ NIL (-226 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-227 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) ((-4505 . T)) @@ -846,7 +846,7 @@ NIL NIL (-229) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-2839 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-2906 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-230) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -855,7 +855,7 @@ NIL (-231 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-232 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL @@ -904,19 +904,19 @@ NIL ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-244 S -4052 R) +(-244 S -3339 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL ((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasAttribute| |#3| (QUOTE -4505)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) -(-245 -4052 R) +(-245 -3339 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) ((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T)) NIL -(-246 -4052 R) +(-246 -3339 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) ((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|))))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2201 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2201 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|))))) -(-247 -4052 A B) +((-2200 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2200 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2200 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2200 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +(-247 -3339 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL @@ -939,7 +939,7 @@ NIL (-252 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-253 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL @@ -951,7 +951,7 @@ NIL (-255 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-256) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL @@ -966,12 +966,12 @@ NIL NIL (-259 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4505 -2201 (-1360 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4505)) (-1360 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1207))))) (-4502 |has| |#4| (-1080)) (-4503 |has| |#4| (-1080)) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|))))) (|HasCategory| |#4| (QUOTE (-376))) (-2201 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2201 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2201 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2201 (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (|%listlit| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080))))) (|HasCategory| |#4| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-2201 (|HasCategory| |#4| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2201 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2201 (|HasCategory| |#4| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-1080))))) (|HasCategory| |#4| (QUOTE (-1132))) (-2201 (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132))))) (-2201 (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2201 (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2201 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-2201 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132)))) (-2201 (|HasAttribute| |#4| (QUOTE -4505)) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|))))) +((-4505 -2200 (-1365 (|has| |#4| (-1080)) (|has| |#4| (-240))) (|has| |#4| (-6 -4505)) (-1365 (|has| |#4| (-1080)) (|has| |#4| (-927 (-1207))))) (-4502 |has| |#4| (-1080)) (-4503 |has| |#4| (-1080)) (-4508 . T)) +((-2200 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-376))) (-2200 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2200 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (QUOTE (-815))) (-2200 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-871)))) (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (QUOTE (-381))) (-2200 (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080))))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2200 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (|HasCategory| |#4| (QUOTE (-240))) (-2200 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-2200 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#4| (QUOTE (-1132))) (-2200 (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-21)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-175)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-240)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-376)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-381)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-748)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-815)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-871)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132))))) (-2200 (-12 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-748))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-871))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#4| (QUOTE (-1080)))) (-2200 (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (-2200 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080))))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2200 (|HasCategory| |#4| (QUOTE (-1080))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (QUOTE (-1132)))) (-2200 (|HasAttribute| |#4| (QUOTE -4505)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1080)))) (-12 (|HasCategory| |#4| (QUOTE (-1080))) (|HasCategory| |#4| (|%list| (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))))) (-260 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4505 -2201 (-1360 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4505)) (-1360 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1207))))) (-4502 |has| |#3| (-1080)) (-4503 |has| |#3| (-1080)) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (QUOTE (-376))) (-2201 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2201 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2201 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-2201 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2201 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2201 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2201 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-2201 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2201 (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|))))) +((-4505 -2200 (-1365 (|has| |#3| (-1080)) (|has| |#3| (-240))) (|has| |#3| (-6 -4505)) (-1365 (|has| |#3| (-1080)) (|has| |#3| (-927 (-1207))))) (-4502 |has| |#3| (-1080)) (-4503 |has| |#3| (-1080)) (-4508 . T)) +((-2200 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-376))) (-2200 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2200 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2200 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2200 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2200 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2200 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2200 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2200 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2200 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2200 (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (-2200 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2200 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2200 (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (-261 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL @@ -1023,7 +1023,7 @@ NIL (-273 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239)))) +((|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239)))) (-274 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL @@ -1031,7 +1031,7 @@ NIL (-275 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#3| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#3| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#3| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#3| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#3| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-276 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1132,7 +1132,7 @@ NIL ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-301 S R |Mod| -3780 -2795 |exactQuo|) +(-301 S R |Mod| -2030 -2848 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) ((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL @@ -1150,8 +1150,8 @@ NIL NIL (-305 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4505 -2201 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4502 |has| |#1| (-1080)) (-4503 |has| |#1| (-1080))) -((|HasCategory| |#1| (QUOTE (-376))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2201 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-310))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-2201 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-2201 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-748)))) +((-4505 -2200 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4502 |has| |#1| (-1080)) (-4503 |has| |#1| (-1080))) +((|HasCategory| |#1| (QUOTE (-376))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2200 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748)))) (|HasCategory| |#1| (QUOTE (-487))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-310))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-487)))) (-2200 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748)))) (-2200 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-748)))) (-306 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL @@ -1159,7 +1159,7 @@ NIL (-307 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (|devaluate| |#1|)) (|%listlit| (QUOTE |:|) (QUOTE -3576) (|devaluate| |#2|)))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2854) (|devaluate| |#2|)))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102)))) (-308) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL @@ -1167,7 +1167,7 @@ NIL (-309 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) +((|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-310) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL @@ -1231,11 +1231,11 @@ NIL (-325 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1051))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871))) (-2201 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|%listlit| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%listlit| (QUOTE -298) (|%listlit| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%listlit| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))) (-2201 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))))) +((|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1051))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871))) (-2200 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-871)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-1182))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1284) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-559))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))) (-2200 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (-12 (|HasCategory| (-1284 |#1| |#2| |#3| |#4|) (QUOTE (-939))) (|HasCategory| $ (QUOTE (-147)))))) (-326 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4505 -2201 (-12 (|has| |#1| (-571)) (-2201 (|has| |#1| (-1080)) (|has| |#1| (-487)))) (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571))) -((-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (-2201 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-1080))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-147)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080))))) (-2201 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-2201 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2201 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2201 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21)))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143)))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25)))) (-2201 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%listlit| (QUOTE -1069) (QUOTE (-560))))) +((-4505 -2200 (-12 (|has| |#1| (-571)) (-2200 (|has| |#1| (-1080)) (|has| |#1| (-487)))) (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571))) +((-2200 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (-2200 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-1080))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-147)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080))))) (-2200 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1143)))) (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-2200 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2200 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2200 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-1080)))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-21)))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143)))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (QUOTE (-25)))) (-2200 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#1| (QUOTE (-1080)))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1143))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%list| (QUOTE -1069) (QUOTE (-560))))) (-327 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1255,7 +1255,7 @@ NIL (-331 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3607) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3316) (|%listlit| (|%listlit| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3903) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2654) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-332 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1287,7 +1287,7 @@ NIL (-339 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-340 S -1589) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL @@ -1331,7 +1331,7 @@ NIL (-350 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%listlit| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-351 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL @@ -1339,11 +1339,11 @@ NIL (-352 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) ((-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%listlit| (QUOTE -1069) (QUOTE (-560))))) +((|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%list| (QUOTE -1069) (QUOTE (-560))))) (-353 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) +((-2200 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) (-354 S -1589 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL @@ -1359,15 +1359,15 @@ NIL (-357 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) +((-2200 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) (-358 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2200 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-359 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2200 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-360 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1391,19 +1391,19 @@ NIL (-365 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) +((-2200 (|HasCategory| (-935 |#1|) (QUOTE (-147))) (|HasCategory| (-935 |#1|) (QUOTE (-381)))) (|HasCategory| (-935 |#1|) (QUOTE (-149))) (|HasCategory| (-935 |#1|) (QUOTE (-381))) (|HasCategory| (-935 |#1|) (QUOTE (-147)))) (-366 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2200 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-367 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2200 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-368 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2200 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-369 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL @@ -1419,7 +1419,7 @@ NIL (-372 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-2200 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-373 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL @@ -1487,14 +1487,14 @@ NIL (-389 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560))))) +((|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-390 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL (-391) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4491 . T) (-4499 . T) (-2839 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-4491 . T) (-4499 . T) (-2906 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-392 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1576,7 +1576,7 @@ NIL ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-412 -3825 |returnType| -2802 |symbols|) +(-412 -3843 |returnType| -2829 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL @@ -1602,12 +1602,12 @@ NIL ((|HasAttribute| |#1| (QUOTE -4491)) (|HasAttribute| |#1| (QUOTE -4499))) (-418) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-2839 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-2906 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-419 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) ((-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (QUOTE $))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%listlit| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1252))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1252)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%listlit| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466)))) +((|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1252))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-1252)))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-466)))) (-420 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL @@ -1615,7 +1615,7 @@ NIL (-421 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) ((-4495 -12 (|has| |#1| (-6 -4506)) (|has| |#1| (-466)) (|has| |#1| (-6 -4495))) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%listlit| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4506)) (|HasAttribute| |#1| (QUOTE -4495)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-871)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843))))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-843)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-559))) (-12 (|HasAttribute| |#1| (QUOTE -4506)) (|HasAttribute| |#1| (QUOTE -4495)) (|HasCategory| |#1| (QUOTE (-466)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-422 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL @@ -1631,7 +1631,7 @@ NIL (-425 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) +((|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-426 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL @@ -1647,7 +1647,7 @@ NIL (-429 R -1589 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%listlit| (QUOTE -1069) (|devaluate| |#2|)))) +((|HasCategory| |#4| (|%list| (QUOTE -1069) (|devaluate| |#2|)))) (-430 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1667,10 +1667,10 @@ NIL (-434 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) +((|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-1143))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (-435 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4505 -2201 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571))) +((-4505 -2200 (|has| |#1| (-1080)) (|has| |#1| (-487))) (-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) ((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-571)) (-4500 |has| |#1| (-571))) NIL (-436 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) @@ -1727,7 +1727,7 @@ NIL (-449 R -1589 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-48))))) +((|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-48))))) (-450) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL @@ -1803,7 +1803,7 @@ NIL (-468 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-469 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL @@ -1839,7 +1839,7 @@ NIL (-477 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) ((-4509 . T) (-4508 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#4| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102)))) (-478 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1883,15 +1883,15 @@ NIL (-488 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3607) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3316) (|%listlit| (|%listlit| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3903) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2654) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-489 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (|devaluate| |#1|)) (|%listlit| (QUOTE |:|) (QUOTE -3576) (|devaluate| |#2|)))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132)))) +((-12 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2854) (|devaluate| |#2|)))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132)))) (-490 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) ((-4509 . T) (-4508 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102)))) (-491) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) @@ -1903,7 +1903,7 @@ NIL (-493 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (|devaluate| |#1|)) (|%listlit| (QUOTE |:|) (QUOTE -3576) (|devaluate| |#2|)))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2854) (|devaluate| |#2|)))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102)))) (-494) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL @@ -1911,11 +1911,11 @@ NIL (-495 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) (((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-496 -4052 S) +((|HasCategory| |#2| (QUOTE (-939))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-496 -3339 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|))))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2201 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2201 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|))))) +((-2200 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2200 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2200 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2200 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) (-497) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL @@ -1923,7 +1923,7 @@ NIL (-498 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-499 -1589 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL @@ -1935,11 +1935,11 @@ NIL (-501) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2201 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2200 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-502 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4508)) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) +((|HasAttribute| |#1| (QUOTE -4508)) (|HasAttribute| |#1| (QUOTE -4509)) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-503 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1967,15 +1967,15 @@ NIL (-509) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%listlit| (QUOTE -1069) (QUOTE (-560))))) +((|HasCategory| $ (QUOTE (-1080))) (|HasCategory| $ (|%list| (QUOTE -1069) (QUOTE (-560))))) (-510 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-511 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-512 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL @@ -1987,7 +1987,7 @@ NIL (-514 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) ((-4509 . T) (-4508 . T)) -((-12 (|HasCategory| (-114) (QUOTE (-1132))) (|HasCategory| (-114) (|%listlit| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-114) (QUOTE (-871))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-114) (QUOTE (-1132))) (|HasCategory| (-114) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-114) (QUOTE (-102)))) +((-12 (|HasCategory| (-114) (QUOTE (-1132))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-114) (QUOTE (-871))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-114) (QUOTE (-1132))) (|HasCategory| (-114) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-114) (QUOTE (-102)))) (-515 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -2003,7 +2003,7 @@ NIL (-518 -1589 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (|%listlit| (QUOTE -633) (QUOTE (-1207))))) +((|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-1207))))) (-519 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -2051,7 +2051,7 @@ NIL (-530 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-531) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL @@ -2059,15 +2059,15 @@ NIL (-532 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147)))) +((-2200 (|HasCategory| (-595 |#1|) (QUOTE (-147))) (|HasCategory| (-595 |#1|) (QUOTE (-381)))) (|HasCategory| (-595 |#1|) (QUOTE (-149))) (|HasCategory| (-595 |#1|) (QUOTE (-381))) (|HasCategory| (-595 |#1|) (QUOTE (-147)))) (-533 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-534 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-535 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL @@ -2079,7 +2079,7 @@ NIL (-537 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-538) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2191,7 +2191,7 @@ NIL (-565 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (|devaluate| |#1|)) (|%listlit| (QUOTE |:|) (QUOTE -3576) (|devaluate| |#2|)))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2854) (|devaluate| |#2|)))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102)))) (-566 R -1589) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL @@ -2206,7 +2206,7 @@ NIL NIL (-569 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-2839 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-2906 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-570 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2231,7 +2231,7 @@ NIL (-575 R -1589 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%listlit| (QUOTE -680) (|devaluate| |#2|)))) +((|HasCategory| |#3| (|%list| (QUOTE -680) (|devaluate| |#2|)))) (-576) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL @@ -2251,11 +2251,11 @@ NIL (-580 R -1589 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%listlit| (QUOTE -680) (|devaluate| |#2|)))) +((|HasCategory| |#3| (|%list| (QUOTE -680) (|devaluate| |#2|)))) (-581 R -1589) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-649))))) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1170)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-649))))) (-582 -1589 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL @@ -2270,7 +2270,7 @@ NIL NIL (-585 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-2839 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-2906 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-586) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) @@ -2279,7 +2279,7 @@ NIL (-587 R -1589) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-649))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-571)))) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-649))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-571)))) (-588 -1589 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL @@ -2319,7 +2319,7 @@ NIL (-597 -1589) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) ((-4503 . T) (-4502 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-1207))))) +((|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-1207))))) (-598 E -1589) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL @@ -2359,7 +2359,7 @@ NIL (-607 |mn|) ((|constructor| (NIL "This domain implements low-level strings"))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%listlit| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%listlit| (QUOTE -321) (QUOTE (-146)))))) (-2201 (|HasCategory| (-146) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%listlit| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2201 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%listlit| (QUOTE -321) (QUOTE (-146)))))) +((-2200 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-2200 (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2200 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-608 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL @@ -2367,7 +2367,7 @@ NIL (-609 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (|HasCategory| (-560) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560)))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))) (|HasCategory| (-560) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560)))))) (-610 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) (((-4510 "*") |has| |#1| (-571)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) @@ -2395,7 +2395,7 @@ NIL (-616 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-617 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL @@ -2410,8 +2410,8 @@ NIL NIL (-620 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4505 -2201 (-1360 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T)) -((-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%listlit| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%listlit| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -432) (|devaluate| |#1|)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%listlit| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%listlit| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%listlit| (QUOTE -380) (|devaluate| |#1|)))) +((-4505 -2200 (-1365 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T)) +((-2200 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-621) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL @@ -2439,7 +2439,7 @@ NIL (-627 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (QUOTE (-1189))) (|%listlit| (QUOTE |:|) (QUOTE -3576) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -2854) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (QUOTE (-102)))) (-628 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL @@ -2451,7 +2451,7 @@ NIL (-630 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) +((|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-631 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL @@ -2499,7 +2499,7 @@ NIL (-642 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) ((-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4501 . T) (-4505 . T)) -((|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) +((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-643 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL @@ -2535,11 +2535,11 @@ NIL (-651) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) ((-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (QUOTE (-1189))) (|%listlit| (QUOTE |:|) (QUOTE -3576) (QUOTE (-51))))))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132)))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%listlit| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1189) (QUOTE (-871))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%listlit| (QUOTE -632) (QUOTE (-887))))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 (-51))) (QUOTE (-1132)))) +((-12 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -2854) (QUOTE (-51))))))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1189) (QUOTE (-871))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 (-51))) (QUOTE (-1132)))) (-652 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4505 -2201 (-1360 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T)) -((-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%listlit| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%listlit| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -432) (|devaluate| |#1|)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%listlit| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%listlit| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%listlit| (QUOTE -380) (|devaluate| |#1|)))) +((-4505 -2200 (-1365 (|has| |#2| (-380 |#1|)) (|has| |#1| (-571))) (-12 (|has| |#2| (-432 |#1|)) (|has| |#1| (-571)))) (-4503 . T) (-4502 . T)) +((-2200 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -432) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-653 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL @@ -2563,7 +2563,7 @@ NIL (-658 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-1350 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) +((-1352 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) (-659 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) ((-4503 . T) (-4502 . T)) @@ -2583,7 +2583,7 @@ NIL (-663 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-843))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-664 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL @@ -2607,7 +2607,7 @@ NIL (-669 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-670 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL @@ -2632,18 +2632,18 @@ NIL ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-676 A -2975) +(-676 A -3883) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) (-677 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) ((-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) (-678 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) ((-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) (-679 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL @@ -2699,7 +2699,7 @@ NIL (-692 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) ((-4505 . T) (-4508 . T) (-4502 . T) (-4503 . T)) -((|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-571))) (-2201 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-571))) (-2200 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) (-693) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL @@ -2719,7 +2719,7 @@ NIL (-697 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-698) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL @@ -2775,7 +2775,7 @@ NIL (-711 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) ((-4508 . T) (-4509 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-571))) (|HasAttribute| |#1| (QUOTE (-4510 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-712 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL @@ -2794,8 +2794,8 @@ NIL NIL (-716) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4501 . T) (-4506 |has| (-721) (-376)) (-4500 |has| (-721) (-376)) (-2847 . T) (-4507 |has| (-721) (-6 -4507)) (-4504 |has| (-721) (-6 -4504)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-2201 (|HasCategory| (-721) (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-2201 (-12 (|HasCategory| (-721) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%listlit| (QUOTE -929) (QUOTE (-1207))))) (-2201 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (|%listlit| (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (|%listlit| (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-721)))) (|HasCategory| (-721) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-721) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-721) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-721) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (-2201 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-721) (QUOTE (-1051))) (|HasCategory| (-721) (QUOTE (-1233))) (-12 (|HasCategory| (-721) (QUOTE (-1033))) (|HasCategory| (-721) (QUOTE (-1233)))) (-2201 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (-2201 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-1233)))) (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939))) (-2201 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376)))) (-2201 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-2201 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-571)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-571))) (|HasAttribute| (-721) (QUOTE -4507)) (|HasAttribute| (-721) (QUOTE -4504)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-147)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-363))))) +((-4501 . T) (-4506 |has| (-721) (-376)) (-4500 |has| (-721) (-376)) (-2916 . T) (-4507 |has| (-721) (-6 -4507)) (-4504 |has| (-721) (-6 -4504)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((|HasCategory| (-721) (QUOTE (-149))) (|HasCategory| (-721) (QUOTE (-147))) (|HasCategory| (-721) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-381))) (|HasCategory| (-721) (QUOTE (-376))) (-2200 (|HasCategory| (-721) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-239))) (-2200 (-12 (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2200 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (|%list| (QUOTE -298) (QUOTE (-721)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -321) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-721)))) (|HasCategory| (-721) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-721) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-721) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (-2200 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-363)))) (|HasCategory| (-721) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-721) (QUOTE (-1051))) (|HasCategory| (-721) (QUOTE (-1233))) (-12 (|HasCategory| (-721) (QUOTE (-1033))) (|HasCategory| (-721) (QUOTE (-1233)))) (-2200 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (-2200 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-376))) (|HasCategory| (-721) (QUOTE (-939)))) (-12 (|HasCategory| (-721) (QUOTE (-363))) (|HasCategory| (-721) (QUOTE (-939))))) (|HasCategory| (-721) (QUOTE (-559))) (-12 (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-1233)))) (|HasCategory| (-721) (QUOTE (-1091))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939))) (-2200 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-376)))) (-2200 (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (QUOTE (-239)))) (-2200 (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-571)))) (-12 (|HasCategory| (-721) (QUOTE (-239))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (QUOTE (-240))) (|HasCategory| (-721) (QUOTE (-376)))) (-12 (|HasCategory| (-721) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-721) (QUOTE (-376)))) (|HasCategory| (-721) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-721) (QUOTE (-571))) (|HasAttribute| (-721) (QUOTE -4507)) (|HasAttribute| (-721) (QUOTE -4504)) (-12 (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (|%list| (QUOTE -929) (QUOTE (-1207)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-147)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-721) (QUOTE (-319))) (|HasCategory| (-721) (QUOTE (-939)))) (|HasCategory| (-721) (QUOTE (-363))))) (-717 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) ((-4509 . T)) @@ -2814,7 +2814,7 @@ NIL NIL (-721) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-2839 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) +((-2906 . T) (-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-722 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) @@ -2840,7 +2840,7 @@ NIL ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-728 S -4328 I) +(-728 S -4270 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL @@ -2860,14 +2860,14 @@ NIL ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-733 R |Mod| -3780 -2795 |exactQuo|) +(-733 R |Mod| -2030 -2848 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) NIL (-734 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-735 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL @@ -2876,7 +2876,7 @@ NIL ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) ((-4503 |has| |#1| (-175)) (-4502 |has| |#1| (-175)) (-4505 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) -(-737 R |Mod| -3780 -2795 |exactQuo|) +(-737 R |Mod| -2030 -2848 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) ((-4505 . T)) NIL @@ -2943,7 +2943,7 @@ NIL (-753 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) (((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-888 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-754 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL @@ -2963,7 +2963,7 @@ NIL (-758 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) ((-4508 . T) (-4498 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-759 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) ((-4498 . T) (-4509 . T)) @@ -3139,11 +3139,11 @@ NIL (-802 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-1207))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-1207))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-1207)))) (-1350 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-1207)))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-1207)))) (-1350 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-1350 (|HasCategory| |#1| (QUOTE (-559))))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-1207)))) (-1350 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-1350 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-1207)))) (-1350 (|HasCategory| |#1| (|%listlit| (QUOTE -1022) (QUOTE (-560))))))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-1352 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-1352 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-1352 (|HasCategory| |#1| (QUOTE (-559))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-1352 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-1352 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-1207)))) (-1352 (|HasCategory| |#1| (|%list| (QUOTE -1022) (QUOTE (-560))))))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-803 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-804 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL @@ -3151,7 +3151,7 @@ NIL (-805 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-806 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) ((-4509 . T) (-4508 . T)) @@ -3199,7 +3199,7 @@ NIL (-817 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381)))) +((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381)))) (-818 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) ((-4502 . T) (-4503 . T) (-4505 . T)) @@ -3211,8 +3211,8 @@ NIL (-820 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) ((-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%listlit| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-2201 (|HasCategory| (-1027 |#1|) (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-2201 (|HasCategory| (-1027 |#1|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1027 |#1|) (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1027 |#1|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) -(-821 -2201 R OS S) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-2200 (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2200 (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1027 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) +(-821 -2200 R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL @@ -3276,14 +3276,14 @@ NIL ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-837 -4052 S |f|) +(-837 -3339 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4502 |has| |#2| (-1080)) (-4503 |has| |#2| (-1080)) (-4505 |has| |#2| (-6 -4505)) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|))))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2201 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2201 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2201 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|))))) +((-2200 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-376))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (-2200 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-381))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1080)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (|HasCategory| |#2| (QUOTE (-240))) (-2200 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080))))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#2| (QUOTE (-1132))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-175)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-381)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132))))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-748))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2200 (|HasCategory| |#2| (QUOTE (-1080))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-1132)))) (|HasAttribute| |#2| (QUOTE -4505)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1080)))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) (-838 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-840 (-1207)) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-840 (-1207)) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-840 (-1207)) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-840 (-1207)) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-840 (-1207)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-840 (-1207)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-839 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) (((-4510 "*") |has| |#2| (-376)) (-4501 |has| |#2| (-376)) (-4506 |has| |#2| (-376)) (-4500 |has| |#2| (-376)) (-4505 . T) (-4503 . T) (-4502 . T)) @@ -3347,7 +3347,7 @@ NIL (-854 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) ((-4505 |has| |#1| (-870))) -((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2201 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-2201 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2200 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2200 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) (-855 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL @@ -3387,7 +3387,7 @@ NIL (-864 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) ((-4505 |has| |#1| (-870))) -((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2201 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-2201 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) +((|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (QUOTE (-21))) (-2200 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-870)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2200 (|HasCategory| |#1| (QUOTE (-870))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-559)))) (-865 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL @@ -3396,7 +3396,7 @@ NIL ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-867 -4052 S) +(-867 -3339 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL @@ -3419,7 +3419,7 @@ NIL (-872 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) +((|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (-873 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL @@ -3440,18 +3440,18 @@ NIL ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) -(-878 R |sigma| -2845) +(-878 R |sigma| -2081) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) ((-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) -(-879 |x| R |sigma| -2845) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-376)))) +(-879 |x| R |sigma| -2081) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) ((-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-376)))) +((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-376)))) (-880 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-881) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL @@ -3511,15 +3511,15 @@ NIL (-895 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-893 |#1|) (QUOTE (-939))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-149))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1051))) (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871))) (-2201 (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871)))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-1182))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-240))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|%listlit| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%listlit| (QUOTE -298) (|%listlit| (QUOTE -893) (|devaluate| |#1|)) (|%listlit| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-319))) (|HasCategory| (-893 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))))) +((|HasCategory| (-893 |#1|) (QUOTE (-939))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-149))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-893 |#1|) (QUOTE (-1051))) (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871))) (-2200 (|HasCategory| (-893 |#1|) (QUOTE (-842))) (|HasCategory| (-893 |#1|) (QUOTE (-871)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-1182))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| (-893 |#1|) (QUOTE (-239))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (QUOTE (-240))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -893) (|devaluate| |#1|)) (|%list| (QUOTE -893) (|devaluate| |#1|)))) (|HasCategory| (-893 |#1|) (QUOTE (-319))) (|HasCategory| (-893 |#1|) (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-893 |#1|) (QUOTE (-939)))) (|HasCategory| (-893 |#1|) (QUOTE (-147))))) (-896 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (-2201 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%listlit| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (-2200 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-559))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-897 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))))) (-898) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL @@ -3579,7 +3579,7 @@ NIL (-912 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-1350 (|HasCategory| |#2| (QUOTE (-1080)))) (-1350 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (-1350 (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-1207))))) +((-12 (-1352 (|HasCategory| |#2| (QUOTE (-1080)))) (-1352 (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#2| (QUOTE (-1080))) (-1352 (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207))))) (-913 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL @@ -3592,7 +3592,7 @@ NIL ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-916 R -4328) +(-916 R -4270) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL @@ -3651,11 +3651,11 @@ NIL (-930 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-931 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) ((-4505 . T)) -((-2201 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) +((-2200 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-871)))) (-932 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL @@ -3791,12 +3791,12 @@ NIL (-965 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%listlit| (QUOTE -911) (|devaluate| |#1|)))) -(-966 -4328) +((|HasCategory| |#3| (|%list| (QUOTE -911) (|devaluate| |#1|)))) +(-966 -4270) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-967 R -1589 -4328) +(-967 R -1589 -4270) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL @@ -3819,7 +3819,7 @@ NIL (-972 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-973 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL @@ -3831,7 +3831,7 @@ NIL (-975 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1207) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1207) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1207) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1207) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1207) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1207) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-976 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL @@ -3843,7 +3843,7 @@ NIL (-978 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-939))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#4| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#4| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#4| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#4| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) +((|HasCategory| |#2| (QUOTE (-939))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#4| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#4| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (-979 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) @@ -3871,7 +3871,7 @@ NIL (-985 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4506))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4506))) (-986 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL @@ -3879,7 +3879,7 @@ NIL (-987 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-988 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL @@ -3903,7 +3903,7 @@ NIL (-993 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) ((-4505 -12 (|has| |#2| (-487)) (|has| |#1| (-487)))) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-487))) (|HasCategory| |#2| (QUOTE (-487)))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815))))) (-12 (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#2| (QUOTE (-748)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-871))))) (-994) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL @@ -4015,7 +4015,7 @@ NIL (-1021 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1182)))) +((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-1051))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-1182)))) (-1022 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) @@ -4039,11 +4039,11 @@ NIL (-1027 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) ((-4501 |has| |#1| (-302)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376))) (-2201 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%listlit| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559)))) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376))) (-2200 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-1091))) (|HasCategory| |#1| (QUOTE (-559)))) (-1028 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-302)))) +((|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (QUOTE (-1091))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-302)))) (-1029 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) ((-4501 |has| |#1| (-302)) (-4502 . T) (-4503 . T) (-4505 . T)) @@ -4055,7 +4055,7 @@ NIL (-1031 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1032 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL @@ -4067,11 +4067,11 @@ NIL (-1034 -1589 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) ((-4501 |has| (-421 |#2|) (-376)) (-4506 |has| (-421 |#2|) (-376)) (-4500 |has| (-421 |#2|) (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2201 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2201 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2201 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2201 (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2201 (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (-2201 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) +((|HasCategory| (-421 |#2|) (QUOTE (-147))) (|HasCategory| (-421 |#2|) (QUOTE (-149))) (|HasCategory| (-421 |#2|) (QUOTE (-363))) (-2200 (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))) (|HasCategory| (-421 |#2|) (QUOTE (-381))) (-2200 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2200 (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (QUOTE (-363)))) (-2200 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-363))))) (-2200 (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -660) (QUOTE (-560)))) (-2200 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 |#2|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-239))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (QUOTE (-240))) (|HasCategory| (-421 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-421 |#2|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-421 |#2|) (QUOTE (-376))))) (-1035 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) ((-4500 . T) (-4506 . T) (-4501 . T) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2201 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%listlit| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) +((|HasCategory| (-560) (QUOTE (-939))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-149))) (|HasCategory| (-560) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-1051))) (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871))) (-2200 (|HasCategory| (-560) (QUOTE (-842))) (|HasCategory| (-560) (QUOTE (-871)))) (|HasCategory| (-560) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-1182))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| (-560) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| (-560) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| (-560) (QUOTE (-239))) (|HasCategory| (-560) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| (-560) (QUOTE (-240))) (|HasCategory| (-560) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| (-560) (|%list| (QUOTE -528) (QUOTE (-1207)) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -321) (QUOTE (-560)))) (|HasCategory| (-560) (|%list| (QUOTE -298) (QUOTE (-560)) (QUOTE (-560)))) (|HasCategory| (-560) (QUOTE (-319))) (|HasCategory| (-560) (QUOTE (-559))) (|HasCategory| (-560) (|%list| (QUOTE -660) (QUOTE (-560)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-560) (QUOTE (-939)))) (|HasCategory| (-560) (QUOTE (-147))))) (-1036) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL @@ -4151,7 +4151,7 @@ NIL (-1055 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) ((-4501 . T) (-4506 . T) (-4500 . T) (-4503 . T) (-4502 . T) ((-4510 "*") . T) (-4505 . T)) -((-2201 (|HasCategory| (-421 (-560)) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-421 (-560)) (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 (-560)) (|%listlit| (QUOTE -1069) (QUOTE (-560))))) +((-2200 (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-421 (-560)) (|%list| (QUOTE -1069) (QUOTE (-560))))) (-1056 -1589 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL @@ -4163,7 +4163,7 @@ NIL (-1058 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) ((-4509 . T) (-4508 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102)))) (-1059) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL @@ -4195,7 +4195,7 @@ NIL (-1066) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (QUOTE (-1207))) (|%listlit| (QUOTE |:|) (QUOTE -3576) (QUOTE (-51))))))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132)))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%listlit| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%listlit| (QUOTE -632) (QUOTE (-887))))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (QUOTE (-1207))) (|%list| (QUOTE |:|) (QUOTE -2854) (QUOTE (-51))))))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-102)))) (-1067) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL @@ -4239,7 +4239,7 @@ NIL (-1077 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) ((-4509 . T) (-4508 . T)) -((-12 (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-1132))) (|HasCategory| (-802 |#1| (-888 |#2|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -802) (|devaluate| |#1|) (|%listlit| (QUOTE -888) (|devaluate| |#2|)))))) (|HasCategory| (-802 |#1| (-888 |#2|)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| (-888 |#2|) (QUOTE (-381))) (|HasCategory| (-802 |#1| (-888 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-1132))) (|HasCategory| (-802 |#1| (-888 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -802) (|devaluate| |#1|) (|%list| (QUOTE -888) (|devaluate| |#2|)))))) (|HasCategory| (-802 |#1| (-888 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| (-888 |#2|) (QUOTE (-381))) (|HasCategory| (-802 |#1| (-888 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-802 |#1| (-888 |#2|)) (QUOTE (-102)))) (-1078) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL @@ -4271,7 +4271,7 @@ NIL (-1085 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) ((-4508 . T) (-4503 . T) (-4502 . T)) -((|HasCategory| |#3| (QUOTE (-175))) (-2201 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-571))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%listlit| (QUOTE -632) (QUOTE (-887))))) +((|HasCategory| |#3| (QUOTE (-175))) (-2200 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-571))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887))))) (-1086 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL @@ -4307,11 +4307,11 @@ NIL (-1094) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE's")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE's")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (QUOTE (-1207))) (|%listlit| (QUOTE |:|) (QUOTE -3576) (QUOTE (-51))))))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132)))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%listlit| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%listlit| (QUOTE -632) (QUOTE (-887))))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 (-1207)) (|:| -3576 (-51))) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (QUOTE (-1207))) (|%list| (QUOTE |:|) (QUOTE -2854) (QUOTE (-51))))))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| (-51) (QUOTE (-1132))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-1132))) (|HasCategory| (-1207) (QUOTE (-871))) (|HasCategory| (-51) (QUOTE (-1132))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887))))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 (-1207)) (|:| -2854 (-51))) (QUOTE (-102)))) (-1095 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (|%listlit| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1022) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (|%listlit| (QUOTE -633) (QUOTE (-1207))))) +((|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-559))) (|HasCategory| |#2| (|%list| (QUOTE -38) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1022) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-1207))))) (-1096 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) @@ -4371,7 +4371,7 @@ NIL (-1110 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) ((-4501 |has| |#1| (-376)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) ((-4510 "*") . T) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-363))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))))) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-1111 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL @@ -4403,7 +4403,7 @@ NIL (-1118 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1119 (-1207)) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1119 (-1207)) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1119 (-1207)) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1119 (-1207)) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1119 (-1207)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1119 (-1207)) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1119 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL @@ -4443,7 +4443,7 @@ NIL (-1128 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) ((-4508 . T) (-4498 . T) (-4509 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-1129 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL @@ -4507,7 +4507,7 @@ NIL (-1144 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) ((-4502 |has| |#3| (-1080)) (-4503 |has| |#3| (-1080)) (-4505 |has| |#3| (-6 -4505)) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|))))) (-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#3| (QUOTE (-376))) (-2201 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2201 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2201 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-2201 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2201 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2201 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2201 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2201 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2201 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2201 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2201 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2201 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2201 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%listlit| (QUOTE -321) (|devaluate| |#3|))))) +((-2200 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2200 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#3| (QUOTE (-376))) (-2200 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2200 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (-2200 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871)))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-381))) (-2200 (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-2200 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2200 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (QUOTE (-1132)))) (-2200 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2200 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2200 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2200 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1080)))) (-2200 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (|HasCategory| |#3| (QUOTE (-240))) (-2200 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080))))) (-2200 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (|HasCategory| |#3| (QUOTE (-1132))) (-2200 (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-21)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-23)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-133)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-175)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-240)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-376)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-381)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-748)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-815)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-871)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132))))) (-2200 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-748))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-871))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (|HasCategory| (-560) (QUOTE (-871))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-2200 (|HasCategory| |#3| (QUOTE (-1080))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560)))))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#3| (QUOTE (-1132)))) (|HasAttribute| |#3| (QUOTE -4505)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1080)))) (-12 (|HasCategory| |#3| (QUOTE (-1080))) (|HasCategory| |#3| (|%list| (QUOTE -927) (QUOTE (-1207))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1132))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (-1145 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL @@ -4555,11 +4555,11 @@ NIL (-1156 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1157 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376)))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376)))) (-1158 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) ((-4509 . T) (-4508 . T)) @@ -4619,11 +4619,11 @@ NIL (-1172 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-1171 |#1| |#2|) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))) (-2201 (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (-2201 (|HasCategory| (-1171 |#1| |#2|) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-1171 |#1| |#2|) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))))) (|HasCategory| (-1171 |#1| |#2|) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102)))) +((-12 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))) (-2200 (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132)))) (-2200 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1171) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-1132))))) (|HasCategory| (-1171 |#1| |#2|) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-1171 |#1| |#2|) (QUOTE (-102)))) (-1173 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) ((-4505 . T) (-4497 |has| |#2| (-6 (-4510 "*"))) (-4508 . T) (-4502 . T) (-4503 . T)) -((|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (-2201 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (-12 (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-376))) (-2200 (|HasAttribute| |#2| (QUOTE (-4510 "*"))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) (-1174 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL @@ -4639,11 +4639,11 @@ NIL (-1177 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) ((-4509 . T) (-4508 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102)))) (-1178 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1179 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL @@ -4655,7 +4655,7 @@ NIL (-1181 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) ((-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (|devaluate| |#1|)) (|%listlit| (QUOTE |:|) (QUOTE -3576) (|devaluate| |#2|)))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132)))) +((-12 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2854) (|devaluate| |#2|)))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132)))) (-1182) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}'s are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL @@ -4671,7 +4671,7 @@ NIL (-1185 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) ((-4509 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1186 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL @@ -4687,15 +4687,15 @@ NIL (-1189) ((|string| (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%listlit| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%listlit| (QUOTE -321) (QUOTE (-146)))))) (-2201 (|HasCategory| (-146) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%listlit| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2201 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%listlit| (QUOTE -321) (QUOTE (-146)))))) +((-2200 (-12 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-2200 (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-146) (QUOTE (-871))) (-2200 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1132))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-1190 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (QUOTE (-1189))) (|%listlit| (QUOTE |:|) (QUOTE -3576) (|devaluate| |#1|)))))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (-2201 (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 (-1189)) (|:| -3576 |#1|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (QUOTE (-1189))) (|%list| (QUOTE |:|) (QUOTE -2854) (|devaluate| |#1|)))))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (QUOTE (-1132))) (|HasCategory| (-1189) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2200 (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 (-1189)) (|:| -2854 |#1|)) (QUOTE (-102)))) (-1191 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL -((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) +((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-1192 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL @@ -4722,8 +4722,8 @@ NIL NIL (-1198 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4510 "*") -2201 (-1360 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-1360 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4501 -2201 (-1360 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-1360 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -298) (|%listlit| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%listlit| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|%listlit| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2201 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2201 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2201 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2201 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2201 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -298) (|%listlit| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%listlit| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|%listlit| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3607) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3316) (|%listlit| (|%listlit| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2201 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) +(((-4510 "*") -2200 (-1365 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-1365 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4501 -2200 (-1365 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-1365 (|has| |#1| (-376)) (|has| (-1205 |#1| |#2| |#3|) (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) +((-2200 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2200 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2200 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2200 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2200 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2200 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -1205) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3903) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2654) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2200 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1205 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1199 R -1589) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL @@ -4735,7 +4735,7 @@ NIL (-1201 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) +((|HasCategory| |#1| (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#1| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1182))) (|HasCategory| |#1| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4506)) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1202 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL @@ -4747,11 +4747,11 @@ NIL (-1204 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3607) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3316) (|%listlit| (|%listlit| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3903) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2654) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-1205 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3607) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3316) (|%listlit| (|%listlit| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3903) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2654) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-1206) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL @@ -4767,7 +4767,7 @@ NIL (-1209 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-6 -4506)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| (-1002) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasAttribute| |#1| (QUOTE -4506))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-466))) (-12 (|HasCategory| (-1002) (QUOTE (-133))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasAttribute| |#1| (QUOTE -4506))) (-1210) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL @@ -4807,7 +4807,7 @@ NIL (-1219 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) ((-4508 . T) (-4509 . T)) -((-12 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -2) (|%listlit| (QUOTE |:|) (QUOTE -3713) (|devaluate| |#1|)) (|%listlit| (QUOTE |:|) (QUOTE -3576) (|devaluate| |#2|)))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (-2201 (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3713 |#1|) (|:| -3576 |#2|)) (QUOTE (-102)))) +((-12 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -3711) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2854) (|devaluate| |#2|)))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1132)))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -633) (QUOTE (-549)))) (-12 (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#2| (QUOTE (-1132))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887))))) (-2200 (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| (-2 (|:| -3711 |#1|) (|:| -2854 |#2|)) (QUOTE (-102)))) (-1220 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL @@ -4867,7 +4867,7 @@ NIL (-1234 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) ((-4509 . T) (-4508 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1132))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1132)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102)))) (-1235 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL @@ -4887,11 +4887,11 @@ NIL (-1239 R -1589) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -911) (|devaluate| |#1|))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -911) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (|devaluate| |#1|))))) (-1240 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376)))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-376)))) (-1241 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL @@ -4911,7 +4911,7 @@ NIL (-1245 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) +((|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (-1246 -1589) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL @@ -4958,8 +4958,8 @@ NIL NIL (-1257 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4510 "*") -2201 (-1360 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-1360 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-939)))) (-4501 -2201 (-1360 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-1360 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -298) (|%listlit| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%listlit| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|%listlit| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2201 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2201 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2201 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2201 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2201 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -298) (|%listlit| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%listlit| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -321) (|%listlit| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|%listlit| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3607) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3316) (|%listlit| (|%listlit| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2201 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) +(((-4510 "*") -2200 (-1365 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-1365 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-939)))) (-4501 -2200 (-1365 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-842))) (|has| |#1| (-571)) (-1365 (|has| |#1| (-376)) (|has| (-1287 |#1| |#2| |#3|) (-939)))) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) +((-2200 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147)))) (-2200 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-149)))) (-2200 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2200 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|)))))) (-2200 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1051))) (|HasCategory| |#1| (QUOTE (-376)))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-2200 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376))))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-1182))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -528) (QUOTE (-1207)) (|%list| (QUOTE -1287) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3903) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2654) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-559))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-2200 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-939))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| (-1287 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-147))))) (-1258 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL @@ -4979,7 +4979,7 @@ NIL (-1262 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-2201 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))))) (-2201 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3607) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3316) (|%listlit| (|%listlit| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-939))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147)))))) +((-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-2200 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (|HasCategory| (-560) (QUOTE (-1143))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871))))) (-2200 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1051)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -528) (QUOTE (-1207)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-560))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3903) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2654) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-871)))) (|HasCategory| |#2| (QUOTE (-939))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-559)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-560)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147)))))) (-1263 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL @@ -4995,7 +4995,7 @@ NIL (-1266 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) (((-4510 "*") |has| |#2| (-175)) (-4501 |has| |#2| (-571)) (-4504 |has| |#2| (-376)) (-4506 |has| |#2| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%listlit| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (|%listlit| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%listlit| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%listlit| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (-2201 (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (-2201 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (|%listlit| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2201 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) +((|HasCategory| |#2| (QUOTE (-939))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-571)))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-391))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -911) (QUOTE (-560)))) (|HasCategory| |#2| (|%list| (QUOTE -911) (QUOTE (-560))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-391)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -633) (|%list| (QUOTE -915) (QUOTE (-560)))))) (-12 (|HasCategory| (-1113) (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#2| (|%list| (QUOTE -633) (QUOTE (-549))))) (|HasCategory| |#2| (|%list| (QUOTE -660) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (QUOTE (-560)))) (-2200 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| |#2| (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (-2200 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1182))) (|HasCategory| |#2| (|%list| (QUOTE -929) (QUOTE (-1207)))) (|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4506)) (|HasCategory| |#2| (QUOTE (-466))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (-2200 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-939)))) (|HasCategory| |#2| (QUOTE (-147))))) (-1267 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL @@ -5019,7 +5019,7 @@ NIL (-1272 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1182)))) +((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-466))) (|HasCategory| |#2| (QUOTE (-571))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1182)))) (-1273 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4504 |has| |#1| (-376)) (-4506 |has| |#1| (-6 -4506)) (-4503 . T) (-4502 . T) (-4505 . T)) @@ -5031,7 +5031,7 @@ NIL (-1275 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#2| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1143))) (|HasSignature| |#2| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#2|) (QUOTE (-1207)))))) +((|HasCategory| |#2| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1143))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#2|) (QUOTE (-1207)))))) (-1276 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) @@ -5043,7 +5043,7 @@ NIL (-1278 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3607) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3316) (|%listlit| (|%listlit| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3903) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2654) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-1279 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL @@ -5063,11 +5063,11 @@ NIL (-1283 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4506 |has| |#1| (-376)) (-4500 |has| |#1| (-376)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2201 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3607) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3316) (|%listlit| (|%listlit| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) +((|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#1| (QUOTE (-175))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560))) (|devaluate| |#1|)))) (|HasCategory| (-421 (-560)) (QUOTE (-1143))) (|HasCategory| |#1| (QUOTE (-376))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-2200 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-571)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasSignature| |#1| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3903) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2654) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560)))))) (-1284 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) (((-4510 "*") |has| (-1278 |#2| |#3| |#4|) (-175)) (-4501 |has| (-1278 |#2| |#3| |#4|) (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| (-1278 |#2| |#3| |#4|) (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-175))) (-2201 (|HasCategory| (-1278 |#2| |#3| |#4|) (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%listlit| (QUOTE -1069) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%listlit| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-571)))) +((|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-175))) (-2200 (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560)))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| (-1278 |#2| |#3| |#4|) (|%list| (QUOTE -1069) (QUOTE (-560)))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-466))) (|HasCategory| (-1278 |#2| |#3| |#4|) (QUOTE (-571)))) (-1285 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL @@ -5079,7 +5079,7 @@ NIL (-1287 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) -((|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2201 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%listlit| (QUOTE *) (|%listlit| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%listlit| (QUOTE -4174) (|%listlit| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%listlit| (QUOTE **) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2201 (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3607) (|%listlit| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%listlit| (QUOTE -3316) (|%listlit| (|%listlit| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-571))) (-2200 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-571)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -927) (QUOTE (-1207)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-793)) (|devaluate| |#1|)))) (|HasCategory| (-793) (QUOTE (-1143))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasSignature| |#1| (|%list| (QUOTE -4173) (|%list| (|devaluate| |#1|) (QUOTE (-1207)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-793))))) (|HasCategory| |#1| (QUOTE (-376))) (-2200 (-12 (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#1| (QUOTE (-989))) (|HasCategory| |#1| (QUOTE (-1233)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasSignature| |#1| (|%list| (QUOTE -3903) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1207))))) (|HasSignature| |#1| (|%list| (QUOTE -2654) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#1|))))))) (-1288 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL @@ -5087,7 +5087,7 @@ NIL (-1289 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%listlit| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (|%listlit| (QUOTE -3316) (|%listlit| (|%listlit| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%listlit| (QUOTE -3607) (|%listlit| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (|%listlit| (QUOTE -38) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) +((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-560)))) (|HasCategory| |#2| (QUOTE (-989))) (|HasCategory| |#2| (QUOTE (-1233))) (|HasSignature| |#2| (|%list| (QUOTE -2654) (|%list| (|%list| (QUOTE -663) (QUOTE (-1207))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -3903) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1207))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasCategory| |#2| (QUOTE (-376)))) (-1290 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) (((-4510 "*") |has| |#1| (-175)) (-4501 |has| |#1| (-571)) (-4502 . T) (-4503 . T) (-4505 . T)) @@ -5119,7 +5119,7 @@ NIL (-1297 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) ((-4509 . T) (-4508 . T)) -((-2201 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) (-2201 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (-2201 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2201 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%listlit| (QUOTE -321) (|devaluate| |#1|))))) +((-2200 (-12 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-2200 (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887))))) (|HasCategory| |#1| (|%list| (QUOTE -633) (QUOTE (-549)))) (-2200 (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-871))) (-2200 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| (-560) (QUOTE (-871))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-748))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1033))) (|HasCategory| |#1| (QUOTE (-1080)))) (|HasCategory| |#1| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-1298 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL @@ -5175,7 +5175,7 @@ NIL (-1311 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) ((-4509 . T) (-4508 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%listlit| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%listlit| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%listlit| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-12 (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -633) (QUOTE (-549)))) (|HasCategory| |#4| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-571))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -632) (QUOTE (-887)))) (|HasCategory| |#4| (QUOTE (-102)))) (-1312 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) ((-4502 . T) (-4503 . T) (-4505 . T)) @@ -5203,7 +5203,7 @@ NIL (-1318 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) ((-4501 |has| |#2| (-6 -4501)) (-4503 . T) (-4502 . T) (-4505 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%listlit| (QUOTE -739) (|%listlit| (QUOTE -421) (QUOTE (-560))))) (|HasAttribute| |#2| (QUOTE -4501))) +((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -739) (|%list| (QUOTE -421) (QUOTE (-560))))) (|HasAttribute| |#2| (QUOTE -4501))) (-1319 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) ((-4501 |has| |#1| (-6 -4501)) (-4503 . T) (-4502 . T) (-4505 . T)) @@ -5256,4 +5256,4 @@ NIL NIL NIL NIL -((-3 NIL 2301213 2301218 2301223 2301228) (-2 NIL 2301193 2301198 2301203 2301208) (-1 NIL 2301173 2301178 2301183 2301188) (0 NIL 2301153 2301158 2301163 2301168) (-1327 "ZMOD.spad" 2300962 2300975 2301091 2301148) (-1326 "ZLINDEP.spad" 2300060 2300071 2300952 2300957) (-1325 "ZDSOLVE.spad" 2290020 2290042 2300050 2300055) (-1324 "YSTREAM.spad" 2289515 2289526 2290010 2290015) (-1323 "YDIAGRAM.spad" 2289149 2289158 2289505 2289510) (-1322 "XRPOLY.spad" 2288369 2288389 2289005 2289074) (-1321 "XPR.spad" 2286164 2286177 2288087 2288186) (-1320 "XPOLYC.spad" 2285483 2285499 2286090 2286159) (-1319 "XPOLY.spad" 2285038 2285049 2285339 2285408) (-1318 "XPBWPOLY.spad" 2283471 2283491 2284806 2284875) (-1317 "XFALG.spad" 2280519 2280535 2283397 2283466) (-1316 "XF.spad" 2278982 2278997 2280421 2280514) (-1315 "XF.spad" 2277425 2277442 2278866 2278871) (-1314 "XEXPPKG.spad" 2276684 2276710 2277415 2277420) (-1313 "XDPOLY.spad" 2276298 2276314 2276540 2276609) (-1312 "XALG.spad" 2275966 2275977 2276254 2276293) (-1311 "WUTSET.spad" 2271927 2271944 2275558 2275585) (-1310 "WP.spad" 2271134 2271178 2271785 2271852) (-1309 "WHILEAST.spad" 2270932 2270941 2271124 2271129) (-1308 "WHEREAST.spad" 2270603 2270612 2270922 2270927) (-1307 "WFFINTBS.spad" 2268266 2268288 2270593 2270598) (-1306 "WEIER.spad" 2266488 2266499 2268256 2268261) (-1305 "VSPACE.spad" 2266161 2266172 2266456 2266483) (-1304 "VSPACE.spad" 2265854 2265867 2266151 2266156) (-1303 "VOID.spad" 2265531 2265540 2265844 2265849) (-1302 "VIEWDEF.spad" 2260732 2260741 2265521 2265526) (-1301 "VIEW3D.spad" 2244693 2244702 2260722 2260727) (-1300 "VIEW2D.spad" 2232592 2232601 2244683 2244688) (-1299 "VIEW.spad" 2230312 2230321 2232582 2232587) (-1298 "VECTOR2.spad" 2228951 2228964 2230302 2230307) (-1297 "VECTOR.spad" 2227430 2227441 2227681 2227708) (-1296 "VECTCAT.spad" 2225342 2225353 2227398 2227425) (-1295 "VECTCAT.spad" 2223061 2223074 2225119 2225124) (-1294 "VARIABLE.spad" 2222841 2222856 2223051 2223056) (-1293 "UTYPE.spad" 2222485 2222494 2222831 2222836) (-1292 "UTSODETL.spad" 2221780 2221804 2222441 2222446) (-1291 "UTSODE.spad" 2219996 2220016 2221770 2221775) (-1290 "UTSCAT.spad" 2217475 2217491 2219894 2219991) (-1289 "UTSCAT.spad" 2214550 2214568 2216971 2216976) (-1288 "UTS2.spad" 2214145 2214180 2214540 2214545) (-1287 "UTS.spad" 2208954 2208982 2212474 2212571) (-1286 "URAGG.spad" 2203675 2203686 2208944 2208949) (-1285 "URAGG.spad" 2198360 2198373 2203631 2203636) (-1284 "UPXSSING.spad" 2195951 2195977 2197387 2197520) (-1283 "UPXSCONS.spad" 2193548 2193568 2193921 2194070) (-1282 "UPXSCCA.spad" 2192119 2192139 2193394 2193543) (-1281 "UPXSCCA.spad" 2190832 2190854 2192109 2192114) (-1280 "UPXSCAT.spad" 2189421 2189437 2190678 2190827) (-1279 "UPXS2.spad" 2188964 2189017 2189411 2189416) (-1278 "UPXS.spad" 2186098 2186126 2186934 2187083) (-1277 "UPSQFREE.spad" 2184512 2184526 2186088 2186093) (-1276 "UPSCAT.spad" 2182307 2182331 2184410 2184507) (-1275 "UPSCAT.spad" 2179766 2179792 2181871 2181876) (-1274 "UPOLYC2.spad" 2179237 2179256 2179756 2179761) (-1273 "UPOLYC.spad" 2174317 2174328 2179079 2179232) (-1272 "UPOLYC.spad" 2169277 2169290 2174041 2174046) (-1271 "UPMP.spad" 2168209 2168222 2169267 2169272) (-1270 "UPDIVP.spad" 2167774 2167788 2168199 2168204) (-1269 "UPDECOMP.spad" 2166035 2166049 2167764 2167769) (-1268 "UPCDEN.spad" 2165252 2165268 2166025 2166030) (-1267 "UP2.spad" 2164616 2164637 2165242 2165247) (-1266 "UP.spad" 2161566 2161581 2161953 2162106) (-1265 "UNISEG2.spad" 2161063 2161076 2161522 2161527) (-1264 "UNISEG.spad" 2160416 2160427 2160982 2160987) (-1263 "UNIFACT.spad" 2159519 2159531 2160406 2160411) (-1262 "ULSCONS.spad" 2150209 2150229 2150579 2150728) (-1261 "ULSCCAT.spad" 2147946 2147966 2150055 2150204) (-1260 "ULSCCAT.spad" 2145791 2145813 2147902 2147907) (-1259 "ULSCAT.spad" 2144031 2144047 2145637 2145786) (-1258 "ULS2.spad" 2143545 2143598 2144021 2144026) (-1257 "ULS.spad" 2132903 2132931 2133848 2134277) (-1256 "UINT8.spad" 2132780 2132789 2132893 2132898) (-1255 "UINT64.spad" 2132656 2132665 2132770 2132775) (-1254 "UINT32.spad" 2132532 2132541 2132646 2132651) (-1253 "UINT16.spad" 2132408 2132417 2132522 2132527) (-1252 "UFD.spad" 2131473 2131482 2132334 2132403) (-1251 "UFD.spad" 2130600 2130611 2131463 2131468) (-1250 "UDVO.spad" 2129481 2129490 2130590 2130595) (-1249 "UDPO.spad" 2127062 2127073 2129437 2129442) (-1248 "TYPEAST.spad" 2126981 2126990 2127052 2127057) (-1247 "TYPE.spad" 2126913 2126922 2126971 2126976) (-1246 "TWOFACT.spad" 2125565 2125580 2126903 2126908) (-1245 "TUPLE.spad" 2125053 2125064 2125458 2125463) (-1244 "TUBETOOL.spad" 2121920 2121929 2125043 2125048) (-1243 "TUBE.spad" 2120567 2120584 2121910 2121915) (-1242 "TSETCAT.spad" 2108638 2108655 2120535 2120562) (-1241 "TSETCAT.spad" 2096695 2096714 2108594 2108599) (-1240 "TS.spad" 2095282 2095298 2096248 2096345) (-1239 "TRMANIP.spad" 2089628 2089645 2094952 2094957) (-1238 "TRIMAT.spad" 2088591 2088616 2089618 2089623) (-1237 "TRIGMNIP.spad" 2087118 2087135 2088581 2088586) (-1236 "TRIGCAT.spad" 2086630 2086639 2087108 2087113) (-1235 "TRIGCAT.spad" 2086140 2086151 2086620 2086625) (-1234 "TREE.spad" 2084574 2084585 2085606 2085633) (-1233 "TRANFUN.spad" 2084413 2084422 2084564 2084569) (-1232 "TRANFUN.spad" 2084250 2084261 2084403 2084408) (-1231 "TOPSP.spad" 2083924 2083933 2084240 2084245) (-1230 "TOOLSIGN.spad" 2083587 2083598 2083914 2083919) (-1229 "TEXTFILE.spad" 2082148 2082157 2083577 2083582) (-1228 "TEX1.spad" 2081704 2081715 2082138 2082143) (-1227 "TEX.spad" 2078898 2078907 2081694 2081699) (-1226 "TEMUTL.spad" 2078453 2078462 2078888 2078893) (-1225 "TBCMPPK.spad" 2076554 2076577 2078443 2078448) (-1224 "TBAGG.spad" 2075612 2075635 2076534 2076549) (-1223 "TBAGG.spad" 2074678 2074703 2075602 2075607) (-1222 "TANEXP.spad" 2074086 2074097 2074668 2074673) (-1221 "TALGOP.spad" 2073810 2073821 2074076 2074081) (-1220 "TABLEAU.spad" 2073291 2073302 2073800 2073805) (-1219 "TABLE.spad" 2071188 2071211 2071458 2071485) (-1218 "TABLBUMP.spad" 2067967 2067978 2071178 2071183) (-1217 "SYSTEM.spad" 2067195 2067204 2067957 2067962) (-1216 "SYSSOLP.spad" 2064678 2064689 2067185 2067190) (-1215 "SYSPTR.spad" 2064577 2064586 2064668 2064673) (-1214 "SYSNNI.spad" 2063800 2063811 2064567 2064572) (-1213 "SYSINT.spad" 2063204 2063215 2063790 2063795) (-1212 "SYNTAX.spad" 2059538 2059547 2063194 2063199) (-1211 "SYMTAB.spad" 2057606 2057615 2059528 2059533) (-1210 "SYMS.spad" 2053629 2053638 2057596 2057601) (-1209 "SYMPOLY.spad" 2052581 2052592 2052663 2052790) (-1208 "SYMFUNC.spad" 2052082 2052093 2052571 2052576) (-1207 "SYMBOL.spad" 2049577 2049586 2052072 2052077) (-1206 "SWITCH.spad" 2046348 2046357 2049567 2049572) (-1205 "SUTS.spad" 2043258 2043286 2044677 2044774) (-1204 "SUPXS.spad" 2040379 2040407 2041228 2041377) (-1203 "SUPFRACF.spad" 2039484 2039502 2040369 2040374) (-1202 "SUP2.spad" 2038876 2038889 2039474 2039479) (-1201 "SUP.spad" 2035440 2035451 2036213 2036366) (-1200 "SUMRF.spad" 2034414 2034425 2035430 2035435) (-1199 "SUMFS.spad" 2034043 2034060 2034404 2034409) (-1198 "SULS.spad" 2023388 2023416 2024346 2024775) (-1197 "SUCHTAST.spad" 2023157 2023166 2023378 2023383) (-1196 "SUCH.spad" 2022847 2022862 2023147 2023152) (-1195 "SUBSPACE.spad" 2014978 2014993 2022837 2022842) (-1194 "SUBRESP.spad" 2014148 2014162 2014934 2014939) (-1193 "STTFNC.spad" 2010616 2010632 2014138 2014143) (-1192 "STTF.spad" 2006715 2006731 2010606 2010611) (-1191 "STTAYLOR.spad" 1999354 1999365 2006584 2006589) (-1190 "STRTBL.spad" 1997333 1997350 1997482 1997509) (-1189 "STRING.spad" 1996078 1996087 1996299 1996326) (-1188 "STREAM3.spad" 1995651 1995666 1996068 1996073) (-1187 "STREAM2.spad" 1994779 1994792 1995641 1995646) (-1186 "STREAM1.spad" 1994485 1994496 1994769 1994774) (-1185 "STREAM.spad" 1991256 1991267 1993863 1993878) (-1184 "STINPROD.spad" 1990192 1990208 1991246 1991251) (-1183 "STEPAST.spad" 1989426 1989435 1990182 1990187) (-1182 "STEP.spad" 1988635 1988644 1989416 1989421) (-1181 "STBL.spad" 1986647 1986675 1986814 1986829) (-1180 "STAGG.spad" 1985722 1985733 1986637 1986642) (-1179 "STAGG.spad" 1984795 1984808 1985712 1985717) (-1178 "STACK.spad" 1984011 1984022 1984261 1984288) (-1177 "SREGSET.spad" 1981701 1981718 1983603 1983630) (-1176 "SRDCMPK.spad" 1980278 1980298 1981691 1981696) (-1175 "SRAGG.spad" 1975461 1975470 1980246 1980273) (-1174 "SRAGG.spad" 1970664 1970675 1975451 1975456) (-1173 "SQMATRIX.spad" 1968111 1968129 1969027 1969114) (-1172 "SPLTREE.spad" 1962559 1962572 1967355 1967382) (-1171 "SPLNODE.spad" 1959179 1959192 1962549 1962554) (-1170 "SPFCAT.spad" 1957988 1957997 1959169 1959174) (-1169 "SPECOUT.spad" 1956540 1956549 1957978 1957983) (-1168 "SPADXPT.spad" 1948631 1948640 1956530 1956535) (-1167 "spad-parser.spad" 1948096 1948105 1948621 1948626) (-1166 "SPADAST.spad" 1947797 1947806 1948086 1948091) (-1165 "SPACEC.spad" 1932012 1932023 1947787 1947792) (-1164 "SPACE3.spad" 1931788 1931799 1932002 1932007) (-1163 "SORTPAK.spad" 1931337 1931350 1931744 1931749) (-1162 "SOLVETRA.spad" 1929100 1929111 1931327 1931332) (-1161 "SOLVESER.spad" 1927556 1927567 1929090 1929095) (-1160 "SOLVERAD.spad" 1923582 1923593 1927546 1927551) (-1159 "SOLVEFOR.spad" 1922044 1922062 1923572 1923577) (-1158 "SNTSCAT.spad" 1921644 1921661 1922012 1922039) (-1157 "SMTS.spad" 1919920 1919946 1921197 1921294) (-1156 "SMP.spad" 1917251 1917271 1917641 1917768) (-1155 "SMITH.spad" 1916096 1916121 1917241 1917246) (-1154 "SMATCAT.spad" 1914214 1914244 1916040 1916091) (-1153 "SMATCAT.spad" 1912264 1912296 1914092 1914097) (-1152 "SKAGG.spad" 1911233 1911244 1912232 1912259) (-1151 "SINT.spad" 1910173 1910182 1911099 1911228) (-1150 "SIMPAN.spad" 1909901 1909910 1910163 1910168) (-1149 "SIGNRF.spad" 1909019 1909030 1909891 1909896) (-1148 "SIGNEF.spad" 1908298 1908315 1909009 1909014) (-1147 "SIGAST.spad" 1907715 1907724 1908288 1908293) (-1146 "SIG.spad" 1907077 1907086 1907705 1907710) (-1145 "SHP.spad" 1905021 1905036 1907033 1907038) (-1144 "SHDP.spad" 1892061 1892088 1892578 1892677) (-1143 "SGROUP.spad" 1891669 1891678 1892051 1892056) (-1142 "SGROUP.spad" 1891275 1891286 1891659 1891664) (-1141 "SGCF.spad" 1884414 1884423 1891265 1891270) (-1140 "SFRTCAT.spad" 1883360 1883377 1884382 1884409) (-1139 "SFRGCD.spad" 1882423 1882443 1883350 1883355) (-1138 "SFQCMPK.spad" 1877236 1877256 1882413 1882418) (-1137 "SFORT.spad" 1876675 1876689 1877226 1877231) (-1136 "SEXOF.spad" 1876518 1876558 1876665 1876670) (-1135 "SEXCAT.spad" 1874346 1874386 1876508 1876513) (-1134 "SEX.spad" 1874238 1874247 1874336 1874341) (-1133 "SETMN.spad" 1872696 1872713 1874228 1874233) (-1132 "SETCAT.spad" 1872181 1872190 1872686 1872691) (-1131 "SETCAT.spad" 1871664 1871675 1872171 1872176) (-1130 "SETAGG.spad" 1868213 1868224 1871644 1871659) (-1129 "SETAGG.spad" 1864770 1864783 1868203 1868208) (-1128 "SET.spad" 1863028 1863039 1864125 1864164) (-1127 "SEQAST.spad" 1862731 1862740 1863018 1863023) (-1126 "SEGXCAT.spad" 1861887 1861900 1862721 1862726) (-1125 "SEGCAT.spad" 1860812 1860823 1861877 1861882) (-1124 "SEGBIND2.spad" 1860510 1860523 1860802 1860807) (-1123 "SEGBIND.spad" 1860268 1860279 1860457 1860462) (-1122 "SEGAST.spad" 1859998 1860007 1860258 1860263) (-1121 "SEG2.spad" 1859433 1859446 1859954 1859959) (-1120 "SEG.spad" 1859246 1859257 1859352 1859357) (-1119 "SDVAR.spad" 1858522 1858533 1859236 1859241) (-1118 "SDPOL.spad" 1855699 1855710 1855990 1856117) (-1117 "SCPKG.spad" 1853788 1853799 1855689 1855694) (-1116 "SCOPE.spad" 1852965 1852974 1853778 1853783) (-1115 "SCACHE.spad" 1851661 1851672 1852955 1852960) (-1114 "SASTCAT.spad" 1851570 1851579 1851651 1851656) (-1113 "SAOS.spad" 1851442 1851451 1851560 1851565) (-1112 "SAERFFC.spad" 1851155 1851175 1851432 1851437) (-1111 "SAEFACT.spad" 1850856 1850876 1851145 1851150) (-1110 "SAE.spad" 1848254 1848270 1848865 1849000) (-1109 "RURPK.spad" 1845913 1845929 1848244 1848249) (-1108 "RULESET.spad" 1845366 1845390 1845903 1845908) (-1107 "RULECOLD.spad" 1845218 1845231 1845356 1845361) (-1106 "RULE.spad" 1843466 1843490 1845208 1845213) (-1105 "RTVALUE.spad" 1843201 1843210 1843456 1843461) (-1104 "RSTRCAST.spad" 1842918 1842927 1843191 1843196) (-1103 "RSETGCD.spad" 1839360 1839380 1842908 1842913) (-1102 "RSETCAT.spad" 1829328 1829345 1839328 1839355) (-1101 "RSETCAT.spad" 1819316 1819335 1829318 1829323) (-1100 "RSDCMPK.spad" 1817816 1817836 1819306 1819311) (-1099 "RRCC.spad" 1816200 1816230 1817806 1817811) (-1098 "RRCC.spad" 1814582 1814614 1816190 1816195) (-1097 "RPTAST.spad" 1814284 1814293 1814572 1814577) (-1096 "RPOLCAT.spad" 1793788 1793803 1814152 1814279) (-1095 "RPOLCAT.spad" 1772969 1772986 1793335 1793340) (-1094 "ROUTINE.spad" 1768334 1768343 1771082 1771109) (-1093 "ROMAN.spad" 1767662 1767671 1768200 1768329) (-1092 "ROIRC.spad" 1766742 1766774 1767652 1767657) (-1091 "RNS.spad" 1765645 1765654 1766644 1766737) (-1090 "RNS.spad" 1764634 1764645 1765635 1765640) (-1089 "RNGBIND.spad" 1763794 1763808 1764589 1764594) (-1088 "RNG.spad" 1763529 1763538 1763784 1763789) (-1087 "RMODULE.spad" 1763310 1763321 1763519 1763524) (-1086 "RMCAT2.spad" 1762730 1762787 1763300 1763305) (-1085 "RMATRIX.spad" 1761482 1761501 1761825 1761864) (-1084 "RMATCAT.spad" 1757061 1757092 1761438 1761477) (-1083 "RMATCAT.spad" 1752530 1752563 1756909 1756914) (-1082 "RLINSET.spad" 1752234 1752245 1752520 1752525) (-1081 "RINTERP.spad" 1752122 1752142 1752224 1752229) (-1080 "RING.spad" 1751592 1751601 1752102 1752117) (-1079 "RING.spad" 1751070 1751081 1751582 1751587) (-1078 "RIDIST.spad" 1750462 1750471 1751060 1751065) (-1077 "RGCHAIN.spad" 1748968 1748984 1749862 1749889) (-1076 "RGBCSPC.spad" 1748757 1748769 1748958 1748963) (-1075 "RGBCMDL.spad" 1748319 1748331 1748747 1748752) (-1074 "RFFACTOR.spad" 1747781 1747792 1748309 1748314) (-1073 "RFFACT.spad" 1747516 1747528 1747771 1747776) (-1072 "RFDIST.spad" 1746512 1746521 1747506 1747511) (-1071 "RF.spad" 1744186 1744197 1746502 1746507) (-1070 "RETSOL.spad" 1743605 1743618 1744176 1744181) (-1069 "RETRACT.spad" 1743033 1743044 1743595 1743600) (-1068 "RETRACT.spad" 1742459 1742472 1743023 1743028) (-1067 "RETAST.spad" 1742271 1742280 1742449 1742454) (-1066 "RESULT.spad" 1739797 1739806 1740384 1740411) (-1065 "RESRING.spad" 1739144 1739191 1739735 1739792) (-1064 "RESLATC.spad" 1738468 1738479 1739134 1739139) (-1063 "REPSQ.spad" 1738199 1738210 1738458 1738463) (-1062 "REPDB.spad" 1737906 1737917 1738189 1738194) (-1061 "REP2.spad" 1727620 1727631 1737748 1737753) (-1060 "REP1.spad" 1721840 1721851 1727570 1727575) (-1059 "REP.spad" 1719394 1719403 1721830 1721835) (-1058 "REGSET.spad" 1717177 1717194 1718986 1719013) (-1057 "REF.spad" 1716512 1716523 1717132 1717137) (-1056 "REDORDER.spad" 1715718 1715735 1716502 1716507) (-1055 "RECLOS.spad" 1714453 1714473 1715157 1715250) (-1054 "REALSOLV.spad" 1713593 1713602 1714443 1714448) (-1053 "REAL0Q.spad" 1710891 1710906 1713583 1713588) (-1052 "REAL0.spad" 1707735 1707750 1710881 1710886) (-1051 "REAL.spad" 1707607 1707616 1707725 1707730) (-1050 "RDUCEAST.spad" 1707328 1707337 1707597 1707602) (-1049 "RDIV.spad" 1706983 1707008 1707318 1707323) (-1048 "RDIST.spad" 1706550 1706561 1706973 1706978) (-1047 "RDETRS.spad" 1705414 1705432 1706540 1706545) (-1046 "RDETR.spad" 1703553 1703571 1705404 1705409) (-1045 "RDEEFS.spad" 1702652 1702669 1703543 1703548) (-1044 "RDEEF.spad" 1701662 1701679 1702642 1702647) (-1043 "RCFIELD.spad" 1698880 1698889 1701564 1701657) (-1042 "RCFIELD.spad" 1696184 1696195 1698870 1698875) (-1041 "RCAGG.spad" 1694120 1694131 1696174 1696179) (-1040 "RCAGG.spad" 1691983 1691996 1694039 1694044) (-1039 "RATRET.spad" 1691343 1691354 1691973 1691978) (-1038 "RATFACT.spad" 1691035 1691047 1691333 1691338) (-1037 "RANDSRC.spad" 1690354 1690363 1691025 1691030) (-1036 "RADUTIL.spad" 1690110 1690119 1690344 1690349) (-1035 "RADIX.spad" 1686844 1686858 1688390 1688483) (-1034 "RADFF.spad" 1684511 1684548 1684630 1684786) (-1033 "RADCAT.spad" 1684106 1684115 1684501 1684506) (-1032 "RADCAT.spad" 1683699 1683710 1684096 1684101) (-1031 "QUEUE.spad" 1682906 1682917 1683165 1683192) (-1030 "QUATCT2.spad" 1682526 1682545 1682896 1682901) (-1029 "QUATCAT.spad" 1680696 1680707 1682456 1682521) (-1028 "QUATCAT.spad" 1678611 1678624 1680373 1680378) (-1027 "QUAT.spad" 1677027 1677038 1677370 1677435) (-1026 "QUAGG.spad" 1675860 1675871 1676995 1677022) (-1025 "QQUTAST.spad" 1675628 1675637 1675850 1675855) (-1024 "QFORM.spad" 1675246 1675261 1675618 1675623) (-1023 "QFCAT2.spad" 1674938 1674955 1675236 1675241) (-1022 "QFCAT.spad" 1673640 1673651 1674840 1674933) (-1021 "QFCAT.spad" 1671915 1671928 1673117 1673122) (-1020 "QEQUAT.spad" 1671473 1671482 1671905 1671910) (-1019 "QCMPACK.spad" 1666387 1666407 1671463 1671468) (-1018 "QALGSET2.spad" 1664382 1664401 1666377 1666382) (-1017 "QALGSET.spad" 1660484 1660517 1664296 1664301) (-1016 "PWFFINTB.spad" 1657899 1657921 1660474 1660479) (-1015 "PUSHVAR.spad" 1657237 1657257 1657889 1657894) (-1014 "PTRANFN.spad" 1653372 1653383 1657227 1657232) (-1013 "PTPACK.spad" 1650459 1650470 1653362 1653367) (-1012 "PTFUNC2.spad" 1650281 1650296 1650449 1650454) (-1011 "PTCAT.spad" 1649535 1649546 1650249 1650276) (-1010 "PSQFR.spad" 1648849 1648874 1649525 1649530) (-1009 "PSEUDLIN.spad" 1647734 1647745 1648839 1648844) (-1008 "PSETPK.spad" 1634438 1634455 1647612 1647617) (-1007 "PSETCAT.spad" 1628837 1628861 1634418 1634433) (-1006 "PSETCAT.spad" 1623210 1623236 1628793 1628798) (-1005 "PSCURVE.spad" 1622208 1622217 1623200 1623205) (-1004 "PSCAT.spad" 1620990 1621020 1622106 1622203) (-1003 "PSCAT.spad" 1619862 1619894 1620980 1620985) (-1002 "PRTITION.spad" 1618559 1618568 1619852 1619857) (-1001 "PRTDAST.spad" 1618277 1618286 1618549 1618554) (-1000 "PRS.spad" 1607894 1607912 1618233 1618238) (-999 "PRQAGG.spad" 1607329 1607339 1607862 1607889) (-998 "PROPLOG.spad" 1606933 1606941 1607319 1607324) (-997 "PROPFUN2.spad" 1606556 1606569 1606923 1606928) (-996 "PROPFUN1.spad" 1605962 1605973 1606546 1606551) (-995 "PROPFRML.spad" 1604530 1604541 1605952 1605957) (-994 "PROPERTY.spad" 1604026 1604034 1604520 1604525) (-993 "PRODUCT.spad" 1601708 1601720 1601992 1602047) (-992 "PRINT.spad" 1601460 1601468 1601698 1601703) (-991 "PRIMES.spad" 1599721 1599731 1601450 1601455) (-990 "PRIMELT.spad" 1597842 1597856 1599711 1599716) (-989 "PRIMCAT.spad" 1597485 1597493 1597832 1597837) (-988 "PRIMARR2.spad" 1596252 1596264 1597475 1597480) (-987 "PRIMARR.spad" 1595070 1595080 1595240 1595267) (-986 "PREASSOC.spad" 1594452 1594464 1595060 1595065) (-985 "PR.spad" 1592790 1592802 1593489 1593616) (-984 "PPCURVE.spad" 1591927 1591935 1592780 1592785) (-983 "PORTNUM.spad" 1591718 1591726 1591917 1591922) (-982 "POLYROOT.spad" 1590567 1590589 1591674 1591679) (-981 "POLYLIFT.spad" 1589832 1589855 1590557 1590562) (-980 "POLYCATQ.spad" 1587958 1587980 1589822 1589827) (-979 "POLYCAT.spad" 1581460 1581481 1587826 1587953) (-978 "POLYCAT.spad" 1574216 1574239 1580584 1580589) (-977 "POLY2UP.spad" 1573668 1573682 1574206 1574211) (-976 "POLY2.spad" 1573265 1573277 1573658 1573663) (-975 "POLY.spad" 1570456 1570466 1570971 1571098) (-974 "POLUTIL.spad" 1569421 1569450 1570412 1570417) (-973 "POLTOPOL.spad" 1568169 1568184 1569411 1569416) (-972 "POINT.spad" 1566812 1566822 1566899 1566926) (-971 "PNTHEORY.spad" 1563514 1563522 1566802 1566807) (-970 "PMTOOLS.spad" 1562289 1562303 1563504 1563509) (-969 "PMSYM.spad" 1561838 1561848 1562279 1562284) (-968 "PMQFCAT.spad" 1561429 1561443 1561828 1561833) (-967 "PMPREDFS.spad" 1560891 1560913 1561419 1561424) (-966 "PMPRED.spad" 1560378 1560392 1560881 1560886) (-965 "PMPLCAT.spad" 1559452 1559470 1560304 1560309) (-964 "PMLSAGG.spad" 1559037 1559051 1559442 1559447) (-963 "PMKERNEL.spad" 1558616 1558628 1559027 1559032) (-962 "PMINS.spad" 1558196 1558206 1558606 1558611) (-961 "PMFS.spad" 1557773 1557791 1558186 1558191) (-960 "PMDOWN.spad" 1557063 1557077 1557763 1557768) (-959 "PMASSFS.spad" 1556038 1556054 1557053 1557058) (-958 "PMASS.spad" 1555056 1555064 1556028 1556033) (-957 "PLOTTOOL.spad" 1554836 1554844 1555046 1555051) (-956 "PLOT3D.spad" 1551300 1551308 1554826 1554831) (-955 "PLOT1.spad" 1550473 1550483 1551290 1551295) (-954 "PLOT.spad" 1545396 1545404 1550463 1550468) (-953 "PLEQN.spad" 1532798 1532825 1545386 1545391) (-952 "PINTERPA.spad" 1532582 1532598 1532788 1532793) (-951 "PINTERP.spad" 1532204 1532223 1532572 1532577) (-950 "PID.spad" 1531174 1531182 1532130 1532199) (-949 "PICOERCE.spad" 1530831 1530841 1531164 1531169) (-948 "PI.spad" 1530448 1530456 1530805 1530826) (-947 "PGROEB.spad" 1529057 1529071 1530438 1530443) (-946 "PGE.spad" 1520730 1520738 1529047 1529052) (-945 "PGCD.spad" 1519684 1519701 1520720 1520725) (-944 "PFRPAC.spad" 1518833 1518843 1519674 1519679) (-943 "PFR.spad" 1515536 1515546 1518735 1518828) (-942 "PFOTOOLS.spad" 1514794 1514810 1515526 1515531) (-941 "PFOQ.spad" 1514164 1514182 1514784 1514789) (-940 "PFO.spad" 1513583 1513610 1514154 1514159) (-939 "PFECAT.spad" 1511289 1511297 1513509 1513578) (-938 "PFECAT.spad" 1509023 1509033 1511245 1511250) (-937 "PFBRU.spad" 1506911 1506923 1509013 1509018) (-936 "PFBR.spad" 1504471 1504494 1506901 1506906) (-935 "PF.spad" 1504045 1504057 1504276 1504369) (-934 "PERMGRP.spad" 1498815 1498825 1504035 1504040) (-933 "PERMCAT.spad" 1497476 1497486 1498795 1498810) (-932 "PERMAN.spad" 1496032 1496046 1497466 1497471) (-931 "PERM.spad" 1491839 1491849 1495862 1495877) (-930 "PENDTREE.spad" 1491047 1491057 1491327 1491332) (-929 "PDSPC.spad" 1489860 1489870 1491037 1491042) (-928 "PDSPC.spad" 1488671 1488683 1489850 1489855) (-927 "PDRING.spad" 1488513 1488523 1488651 1488666) (-926 "PDMOD.spad" 1488329 1488341 1488481 1488508) (-925 "PDEPROB.spad" 1487344 1487352 1488319 1488324) (-924 "PDEPACK.spad" 1481480 1481488 1487334 1487339) (-923 "PDECOMP.spad" 1480950 1480967 1481470 1481475) (-922 "PDECAT.spad" 1479306 1479314 1480940 1480945) (-921 "PDDOM.spad" 1478744 1478757 1479296 1479301) (-920 "PDDOM.spad" 1478180 1478195 1478734 1478739) (-919 "PCOMP.spad" 1478033 1478046 1478170 1478175) (-918 "PBWLB.spad" 1476629 1476646 1478023 1478028) (-917 "PATTERN2.spad" 1476367 1476379 1476619 1476624) (-916 "PATTERN1.spad" 1474711 1474727 1476357 1476362) (-915 "PATTERN.spad" 1469282 1469292 1474701 1474706) (-914 "PATRES2.spad" 1468954 1468968 1469272 1469277) (-913 "PATRES.spad" 1466537 1466549 1468944 1468949) (-912 "PATMATCH.spad" 1464716 1464747 1466227 1466232) (-911 "PATMAB.spad" 1464145 1464155 1464706 1464711) (-910 "PATLRES.spad" 1463231 1463245 1464135 1464140) (-909 "PATAB.spad" 1462995 1463005 1463221 1463226) (-908 "PARTPERM.spad" 1461051 1461059 1462985 1462990) (-907 "PARSURF.spad" 1460485 1460513 1461041 1461046) (-906 "PARSU2.spad" 1460282 1460298 1460475 1460480) (-905 "script-parser.spad" 1459802 1459810 1460272 1460277) (-904 "PARSCURV.spad" 1459236 1459264 1459792 1459797) (-903 "PARSC2.spad" 1459027 1459043 1459226 1459231) (-902 "PARPCURV.spad" 1458489 1458517 1459017 1459022) (-901 "PARPC2.spad" 1458280 1458296 1458479 1458484) (-900 "PARAMAST.spad" 1457408 1457416 1458270 1458275) (-899 "PAN2EXPR.spad" 1456820 1456828 1457398 1457403) (-898 "PALETTE.spad" 1455806 1455814 1456810 1456815) (-897 "PAIR.spad" 1454801 1454814 1455370 1455375) (-896 "PADICRC.spad" 1451960 1451978 1453123 1453216) (-895 "PADICRAT.spad" 1449762 1449774 1449975 1450068) (-894 "PADICCT.spad" 1448311 1448323 1449688 1449757) (-893 "PADIC.spad" 1448014 1448026 1448237 1448306) (-892 "PADEPAC.spad" 1446703 1446722 1448004 1448009) (-891 "PADE.spad" 1445455 1445471 1446693 1446698) (-890 "OWP.spad" 1444703 1444733 1445313 1445380) (-889 "OVERSET.spad" 1444276 1444284 1444693 1444698) (-888 "OVAR.spad" 1444057 1444080 1444266 1444271) (-887 "OUTFORM.spad" 1433465 1433473 1444047 1444052) (-886 "OUTBFILE.spad" 1432899 1432907 1433455 1433460) (-885 "OUTBCON.spad" 1431969 1431977 1432889 1432894) (-884 "OUTBCON.spad" 1431037 1431047 1431959 1431964) (-883 "OUT.spad" 1430155 1430163 1431027 1431032) (-882 "OSI.spad" 1429630 1429638 1430145 1430150) (-881 "OSGROUP.spad" 1429548 1429556 1429620 1429625) (-880 "ORTHPOL.spad" 1428021 1428031 1429453 1429458) (-879 "OREUP.spad" 1427456 1427484 1427683 1427722) (-878 "ORESUP.spad" 1426739 1426763 1427118 1427157) (-877 "OREPCTO.spad" 1424628 1424640 1426659 1426664) (-876 "OREPCAT.spad" 1418815 1418825 1424584 1424623) (-875 "OREPCAT.spad" 1412892 1412904 1418663 1418668) (-874 "ORDTYPE.spad" 1412129 1412137 1412882 1412887) (-873 "ORDTYPE.spad" 1411364 1411374 1412119 1412124) (-872 "ORDSTRCT.spad" 1411131 1411146 1411294 1411299) (-871 "ORDSET.spad" 1410831 1410839 1411121 1411126) (-870 "ORDRING.spad" 1410221 1410229 1410811 1410826) (-869 "ORDRING.spad" 1409619 1409629 1410211 1410216) (-868 "ORDMON.spad" 1409474 1409482 1409609 1409614) (-867 "ORDFUNS.spad" 1408606 1408622 1409464 1409469) (-866 "ORDFIN.spad" 1408426 1408434 1408596 1408601) (-865 "ORDCOMP2.spad" 1407719 1407731 1408416 1408421) (-864 "ORDCOMP.spad" 1406160 1406170 1407242 1407271) (-863 "OPTPROB.spad" 1404798 1404806 1406150 1406155) (-862 "OPTPACK.spad" 1397207 1397215 1404788 1404793) (-861 "OPTCAT.spad" 1394886 1394894 1397197 1397202) (-860 "OPSIG.spad" 1394548 1394556 1394876 1394881) (-859 "OPQUERY.spad" 1394129 1394137 1394538 1394543) (-858 "OPERCAT.spad" 1393595 1393605 1394119 1394124) (-857 "OPERCAT.spad" 1393059 1393071 1393585 1393590) (-856 "OP.spad" 1392801 1392811 1392881 1392948) (-855 "ONECOMP2.spad" 1392225 1392237 1392791 1392796) (-854 "ONECOMP.spad" 1390946 1390956 1391748 1391777) (-853 "OMSERVER.spad" 1389952 1389960 1390936 1390941) (-852 "OMSAGG.spad" 1389740 1389750 1389908 1389947) (-851 "OMPKG.spad" 1388372 1388380 1389730 1389735) (-850 "OMLO.spad" 1387805 1387817 1388258 1388297) (-849 "OMEXPR.spad" 1387639 1387649 1387795 1387800) (-848 "OMERRK.spad" 1386689 1386697 1387629 1387634) (-847 "OMERR.spad" 1386234 1386242 1386679 1386684) (-846 "OMENC.spad" 1385586 1385594 1386224 1386229) (-845 "OMDEV.spad" 1379919 1379927 1385576 1385581) (-844 "OMCONN.spad" 1379328 1379336 1379909 1379914) (-843 "OM.spad" 1378325 1378333 1379318 1379323) (-842 "OINTDOM.spad" 1378088 1378096 1378251 1378320) (-841 "OFMONOID.spad" 1376227 1376237 1378044 1378049) (-840 "ODVAR.spad" 1375488 1375498 1376217 1376222) (-839 "ODR.spad" 1375132 1375158 1375300 1375449) (-838 "ODPOL.spad" 1372265 1372275 1372605 1372732) (-837 "ODP.spad" 1359449 1359469 1359822 1359921) (-836 "ODETOOLS.spad" 1358098 1358117 1359439 1359444) (-835 "ODESYS.spad" 1355792 1355809 1358088 1358093) (-834 "ODERTRIC.spad" 1351825 1351842 1355749 1355754) (-833 "ODERED.spad" 1351224 1351248 1351815 1351820) (-832 "ODERAT.spad" 1348855 1348872 1351214 1351219) (-831 "ODEPRRIC.spad" 1345948 1345970 1348845 1348850) (-830 "ODEPROB.spad" 1345205 1345213 1345938 1345943) (-829 "ODEPRIM.spad" 1342603 1342625 1345195 1345200) (-828 "ODEPAL.spad" 1341989 1342013 1342593 1342598) (-827 "ODEPACK.spad" 1328719 1328727 1341979 1341984) (-826 "ODEINT.spad" 1328154 1328170 1328709 1328714) (-825 "ODEIFTBL.spad" 1325557 1325565 1328144 1328149) (-824 "ODEEF.spad" 1321048 1321064 1325547 1325552) (-823 "ODECONST.spad" 1320593 1320611 1321038 1321043) (-822 "ODECAT.spad" 1319191 1319199 1320583 1320588) (-821 "OCTCT2.spad" 1318829 1318850 1319181 1319186) (-820 "OCT.spad" 1316869 1316879 1317583 1317622) (-819 "OCAMON.spad" 1316717 1316725 1316859 1316864) (-818 "OC.spad" 1314513 1314523 1316673 1316712) (-817 "OC.spad" 1312028 1312040 1314190 1314195) (-816 "OASGP.spad" 1311843 1311851 1312018 1312023) (-815 "OAMONS.spad" 1311365 1311373 1311833 1311838) (-814 "OAMON.spad" 1311226 1311234 1311355 1311360) (-813 "OAGROUP.spad" 1311088 1311096 1311216 1311221) (-812 "NUMTUBE.spad" 1310679 1310695 1311078 1311083) (-811 "NUMQUAD.spad" 1298655 1298663 1310669 1310674) (-810 "NUMODE.spad" 1290007 1290015 1298645 1298650) (-809 "NUMINT.spad" 1287573 1287581 1289997 1290002) (-808 "NUMFMT.spad" 1286413 1286421 1287563 1287568) (-807 "NUMERIC.spad" 1278527 1278537 1286218 1286223) (-806 "NTSCAT.spad" 1277035 1277051 1278495 1278522) (-805 "NTPOLFN.spad" 1276574 1276584 1276940 1276945) (-804 "NSUP2.spad" 1275966 1275978 1276564 1276569) (-803 "NSUP.spad" 1268883 1268893 1273303 1273456) (-802 "NSMP.spad" 1264835 1264854 1265127 1265254) (-801 "NREP.spad" 1263237 1263251 1264825 1264830) (-800 "NPCOEF.spad" 1262483 1262503 1263227 1263232) (-799 "NORMRETR.spad" 1262081 1262120 1262473 1262478) (-798 "NORMPK.spad" 1260023 1260042 1262071 1262076) (-797 "NORMMA.spad" 1259711 1259737 1260013 1260018) (-796 "NONE1.spad" 1259387 1259397 1259701 1259706) (-795 "NONE.spad" 1259128 1259136 1259377 1259382) (-794 "NODE1.spad" 1258615 1258631 1259118 1259123) (-793 "NNI.spad" 1257510 1257518 1258589 1258610) (-792 "NLINSOL.spad" 1256136 1256146 1257500 1257505) (-791 "NIPROB.spad" 1254677 1254685 1256126 1256131) (-790 "NFINTBAS.spad" 1252237 1252254 1254667 1254672) (-789 "NETCLT.spad" 1252211 1252222 1252227 1252232) (-788 "NCODIV.spad" 1250435 1250451 1252201 1252206) (-787 "NCNTFRAC.spad" 1250077 1250091 1250425 1250430) (-786 "NCEP.spad" 1248243 1248257 1250067 1250072) (-785 "NASRING.spad" 1247847 1247855 1248233 1248238) (-784 "NASRING.spad" 1247449 1247459 1247837 1247842) (-783 "NARNG.spad" 1246849 1246857 1247439 1247444) (-782 "NARNG.spad" 1246247 1246257 1246839 1246844) (-781 "NAGSP.spad" 1245324 1245332 1246237 1246242) (-780 "NAGS.spad" 1235041 1235049 1245314 1245319) (-779 "NAGF07.spad" 1233472 1233480 1235031 1235036) (-778 "NAGF04.spad" 1227874 1227882 1233462 1233467) (-777 "NAGF02.spad" 1221967 1221975 1227864 1227869) (-776 "NAGF01.spad" 1217736 1217744 1221957 1221962) (-775 "NAGE04.spad" 1211444 1211452 1217726 1217731) (-774 "NAGE02.spad" 1202096 1202104 1211434 1211439) (-773 "NAGE01.spad" 1198090 1198098 1202086 1202091) (-772 "NAGD03.spad" 1196086 1196094 1198080 1198085) (-771 "NAGD02.spad" 1188817 1188825 1196076 1196081) (-770 "NAGD01.spad" 1183102 1183110 1188807 1188812) (-769 "NAGC06.spad" 1178969 1178977 1183092 1183097) (-768 "NAGC05.spad" 1177462 1177470 1178959 1178964) (-767 "NAGC02.spad" 1176737 1176745 1177452 1177457) (-766 "NAALG.spad" 1176302 1176312 1176705 1176732) (-765 "NAALG.spad" 1175887 1175899 1176292 1176297) (-764 "MULTSQFR.spad" 1172845 1172862 1175877 1175882) (-763 "MULTFACT.spad" 1172228 1172245 1172835 1172840) (-762 "MTSCAT.spad" 1170322 1170343 1172126 1172223) (-761 "MTHING.spad" 1169981 1169991 1170312 1170317) (-760 "MSYSCMD.spad" 1169415 1169423 1169971 1169976) (-759 "MSETAGG.spad" 1169260 1169270 1169383 1169410) (-758 "MSET.spad" 1167164 1167174 1168912 1168951) (-757 "MRING.spad" 1164141 1164153 1166872 1166939) (-756 "MRF2.spad" 1163703 1163717 1164131 1164136) (-755 "MRATFAC.spad" 1163249 1163266 1163693 1163698) (-754 "MPRFF.spad" 1161289 1161308 1163239 1163244) (-753 "MPOLY.spad" 1158616 1158631 1158975 1159102) (-752 "MPCPF.spad" 1157880 1157899 1158606 1158611) (-751 "MPC3.spad" 1157697 1157737 1157870 1157875) (-750 "MPC2.spad" 1157350 1157383 1157687 1157692) (-749 "MONOTOOL.spad" 1155701 1155718 1157340 1157345) (-748 "MONOID.spad" 1155020 1155028 1155691 1155696) (-747 "MONOID.spad" 1154337 1154347 1155010 1155015) (-746 "MONOGEN.spad" 1153085 1153098 1154197 1154332) (-745 "MONOGEN.spad" 1151855 1151870 1152969 1152974) (-744 "MONADWU.spad" 1149933 1149941 1151845 1151850) (-743 "MONADWU.spad" 1148009 1148019 1149923 1149928) (-742 "MONAD.spad" 1147169 1147177 1147999 1148004) (-741 "MONAD.spad" 1146327 1146337 1147159 1147164) (-740 "MOEBIUS.spad" 1145063 1145077 1146307 1146322) (-739 "MODULE.spad" 1144933 1144943 1145031 1145058) (-738 "MODULE.spad" 1144823 1144835 1144923 1144928) (-737 "MODRING.spad" 1144158 1144197 1144803 1144818) (-736 "MODOP.spad" 1142815 1142827 1143980 1144047) (-735 "MODMONOM.spad" 1142546 1142564 1142805 1142810) (-734 "MODMON.spad" 1139092 1139108 1139811 1139964) (-733 "MODFIELD.spad" 1138454 1138493 1138994 1139087) (-732 "MMLFORM.spad" 1137314 1137322 1138444 1138449) (-731 "MMAP.spad" 1137056 1137090 1137304 1137309) (-730 "MLO.spad" 1135515 1135525 1137012 1137051) (-729 "MLIFT.spad" 1134127 1134144 1135505 1135510) (-728 "MKUCFUNC.spad" 1133662 1133680 1134117 1134122) (-727 "MKRECORD.spad" 1133250 1133263 1133652 1133657) (-726 "MKFUNC.spad" 1132657 1132667 1133240 1133245) (-725 "MKFLCFN.spad" 1131625 1131635 1132647 1132652) (-724 "MKBCFUNC.spad" 1131120 1131138 1131615 1131620) (-723 "MINT.spad" 1130559 1130567 1131022 1131115) (-722 "MHROWRED.spad" 1129070 1129080 1130549 1130554) (-721 "MFLOAT.spad" 1127590 1127598 1128960 1129065) (-720 "MFINFACT.spad" 1126990 1127012 1127580 1127585) (-719 "MESH.spad" 1124780 1124788 1126980 1126985) (-718 "MDDFACT.spad" 1122999 1123009 1124770 1124775) (-717 "MDAGG.spad" 1122290 1122300 1122979 1122994) (-716 "MCMPLX.spad" 1117589 1117597 1118203 1118404) (-715 "MCDEN.spad" 1116799 1116811 1117579 1117584) (-714 "MCALCFN.spad" 1113897 1113923 1116789 1116794) (-713 "MAYBE.spad" 1113197 1113208 1113887 1113892) (-712 "MATSTOR.spad" 1110513 1110523 1113187 1113192) (-711 "MATRIX.spad" 1109058 1109068 1109542 1109569) (-710 "MATLIN.spad" 1106426 1106450 1108942 1108947) (-709 "MATCAT2.spad" 1105708 1105756 1106416 1106421) (-708 "MATCAT.spad" 1097270 1097292 1105676 1105703) (-707 "MATCAT.spad" 1088704 1088728 1097112 1097117) (-706 "MAPPKG3.spad" 1087619 1087633 1088694 1088699) (-705 "MAPPKG2.spad" 1086957 1086969 1087609 1087614) (-704 "MAPPKG1.spad" 1085785 1085795 1086947 1086952) (-703 "MAPPAST.spad" 1085124 1085132 1085775 1085780) (-702 "MAPHACK3.spad" 1084936 1084950 1085114 1085119) (-701 "MAPHACK2.spad" 1084705 1084717 1084926 1084931) (-700 "MAPHACK1.spad" 1084349 1084359 1084695 1084700) (-699 "MAGMA.spad" 1082155 1082172 1084339 1084344) (-698 "MACROAST.spad" 1081750 1081758 1082145 1082150) (-697 "M3D.spad" 1079317 1079327 1080975 1080980) (-696 "LZSTAGG.spad" 1076571 1076581 1079307 1079312) (-695 "LZSTAGG.spad" 1073823 1073835 1076561 1076566) (-694 "LWORD.spad" 1070568 1070585 1073813 1073818) (-693 "LSTAST.spad" 1070352 1070360 1070558 1070563) (-692 "LSQM.spad" 1068419 1068433 1068813 1068864) (-691 "LSPP.spad" 1067954 1067971 1068409 1068414) (-690 "LSMP1.spad" 1065780 1065794 1067944 1067949) (-689 "LSMP.spad" 1064630 1064658 1065770 1065775) (-688 "LSAGG.spad" 1064299 1064309 1064598 1064625) (-687 "LSAGG.spad" 1063988 1064000 1064289 1064294) (-686 "LPOLY.spad" 1062950 1062969 1063844 1063913) (-685 "LPEFRAC.spad" 1062221 1062231 1062940 1062945) (-684 "LOGIC.spad" 1061823 1061831 1062211 1062216) (-683 "LOGIC.spad" 1061423 1061433 1061813 1061818) (-682 "LODOOPS.spad" 1060353 1060365 1061413 1061418) (-681 "LODOF.spad" 1059399 1059416 1060310 1060315) (-680 "LODOCAT.spad" 1058065 1058075 1059355 1059394) (-679 "LODOCAT.spad" 1056729 1056741 1058021 1058026) (-678 "LODO2.spad" 1055984 1055996 1056391 1056430) (-677 "LODO1.spad" 1055366 1055376 1055646 1055685) (-676 "LODO.spad" 1054732 1054748 1055028 1055067) (-675 "LODEEF.spad" 1053534 1053552 1054722 1054727) (-674 "LO.spad" 1052935 1052949 1053468 1053495) (-673 "LNAGG.spad" 1049122 1049132 1052925 1052930) (-672 "LNAGG.spad" 1045273 1045285 1049078 1049083) (-671 "LMOPS.spad" 1042041 1042058 1045263 1045268) (-670 "LMODULE.spad" 1041825 1041835 1042031 1042036) (-669 "LMDICT.spad" 1040981 1040991 1041229 1041256) (-668 "LLINSET.spad" 1040688 1040698 1040971 1040976) (-667 "LITERAL.spad" 1040594 1040605 1040678 1040683) (-666 "LIST3.spad" 1039905 1039919 1040584 1040589) (-665 "LIST2MAP.spad" 1036832 1036844 1039895 1039900) (-664 "LIST2.spad" 1035534 1035546 1036822 1036827) (-663 "LIST.spad" 1033074 1033084 1034486 1034513) (-662 "LINSET.spad" 1032853 1032863 1033064 1033069) (-661 "LINFORM.spad" 1032316 1032328 1032821 1032848) (-660 "LINEXP.spad" 1031059 1031069 1032306 1032311) (-659 "LINELT.spad" 1030430 1030442 1030942 1030969) (-658 "LINDEP.spad" 1029279 1029291 1030342 1030347) (-657 "LINBASIS.spad" 1028915 1028930 1029269 1029274) (-656 "LIMITRF.spad" 1026843 1026853 1028905 1028910) (-655 "LIMITPS.spad" 1025746 1025759 1026833 1026838) (-654 "LIECAT.spad" 1025230 1025240 1025672 1025741) (-653 "LIECAT.spad" 1024742 1024754 1025186 1025191) (-652 "LIE.spad" 1022716 1022728 1023990 1024135) (-651 "LIB.spad" 1020395 1020403 1020841 1020856) (-650 "LGROBP.spad" 1017748 1017767 1020385 1020390) (-649 "LFCAT.spad" 1016807 1016815 1017738 1017743) (-648 "LF.spad" 1015762 1015778 1016797 1016802) (-647 "LEXTRIPK.spad" 1011385 1011400 1015752 1015757) (-646 "LEXP.spad" 1009404 1009431 1011365 1011380) (-645 "LETAST.spad" 1009103 1009111 1009394 1009399) (-644 "LEADCDET.spad" 1007509 1007526 1009093 1009098) (-643 "LAZM3PK.spad" 1006253 1006275 1007499 1007504) (-642 "LAUPOL.spad" 1004823 1004836 1005723 1005792) (-641 "LAPLACE.spad" 1004406 1004422 1004813 1004818) (-640 "LALG.spad" 1004182 1004192 1004386 1004401) (-639 "LALG.spad" 1003966 1003978 1004172 1004177) (-638 "LA.spad" 1003406 1003420 1003888 1003927) (-637 "KVTFROM.spad" 1003149 1003159 1003396 1003401) (-636 "KTVLOGIC.spad" 1002693 1002701 1003139 1003144) (-635 "KRCFROM.spad" 1002439 1002449 1002683 1002688) (-634 "KOVACIC.spad" 1001170 1001187 1002429 1002434) (-633 "KONVERT.spad" 1000892 1000902 1001160 1001165) (-632 "KOERCE.spad" 1000629 1000639 1000882 1000887) (-631 "KERNEL2.spad" 1000332 1000344 1000619 1000624) (-630 "KERNEL.spad" 998957 998967 1000086 1000091) (-629 "KDAGG.spad" 998066 998088 998937 998952) (-628 "KDAGG.spad" 997183 997207 998056 998061) (-627 "KAFILE.spad" 995989 996005 996224 996251) (-626 "JVMOP.spad" 995902 995910 995979 995984) (-625 "JVMMDACC.spad" 994956 994964 995892 995897) (-624 "JVMFDACC.spad" 994272 994280 994946 994951) (-623 "JVMCSTTG.spad" 993001 993009 994262 994267) (-622 "JVMCFACC.spad" 992447 992455 992991 992996) (-621 "JVMBCODE.spad" 992358 992366 992437 992442) (-620 "JORDAN.spad" 990145 990157 991606 991751) (-619 "JOINAST.spad" 989847 989855 990135 990140) (-618 "IXAGG.spad" 987980 988004 989837 989842) (-617 "IXAGG.spad" 985968 985994 987827 987832) (-616 "IVECTOR.spad" 984543 984558 984698 984725) (-615 "ITUPLE.spad" 983719 983729 984533 984538) (-614 "ITRIGMNP.spad" 982566 982585 983709 983714) (-613 "ITFUN3.spad" 982072 982086 982556 982561) (-612 "ITFUN2.spad" 981816 981828 982062 982067) (-611 "ITFORM.spad" 981171 981179 981806 981811) (-610 "ITAYLOR.spad" 979165 979180 981035 981132) (-609 "ISUPS.spad" 971524 971539 978061 978158) (-608 "ISUMP.spad" 971025 971041 971514 971519) (-607 "ISTRING.spad" 969910 969923 969991 970018) (-606 "ISAST.spad" 969629 969637 969900 969905) (-605 "IRURPK.spad" 968346 968365 969619 969624) (-604 "IRSN.spad" 966350 966358 968336 968341) (-603 "IRRF2F.spad" 964843 964853 966306 966311) (-602 "IRREDFFX.spad" 964444 964455 964833 964838) (-601 "IROOT.spad" 962783 962793 964434 964439) (-600 "IRFORM.spad" 962107 962115 962773 962778) (-599 "IR2F.spad" 961321 961337 962097 962102) (-598 "IR2.spad" 960349 960365 961311 961316) (-597 "IR.spad" 958146 958160 960192 960219) (-596 "IPRNTPK.spad" 957906 957914 958136 958141) (-595 "IPF.spad" 957471 957483 957711 957804) (-594 "IPADIC.spad" 957240 957266 957397 957466) (-593 "IP4ADDR.spad" 956797 956805 957230 957235) (-592 "IOMODE.spad" 956319 956327 956787 956792) (-591 "IOBFILE.spad" 955704 955712 956309 956314) (-590 "IOBCON.spad" 955569 955577 955694 955699) (-589 "INVLAPLA.spad" 955218 955234 955559 955564) (-588 "INTTR.spad" 948600 948617 955208 955213) (-587 "INTTOOLS.spad" 946331 946347 948150 948155) (-586 "INTSLPE.spad" 945659 945667 946321 946326) (-585 "INTRVL.spad" 945225 945235 945573 945654) (-584 "INTRF.spad" 943657 943671 945215 945220) (-583 "INTRET.spad" 943089 943099 943647 943652) (-582 "INTRAT.spad" 941824 941841 943079 943084) (-581 "INTPM.spad" 940173 940189 941431 941436) (-580 "INTPAF.spad" 938039 938057 940099 940104) (-579 "INTPACK.spad" 928605 928613 938029 938034) (-578 "INTHERTR.spad" 927879 927896 928595 928600) (-577 "INTHERAL.spad" 927549 927573 927869 927874) (-576 "INTHEORY.spad" 923988 923996 927539 927544) (-575 "INTG0.spad" 917731 917749 923914 923919) (-574 "INTFTBL.spad" 911760 911768 917721 917726) (-573 "INTFACT.spad" 910827 910837 911750 911755) (-572 "INTEF.spad" 909236 909252 910817 910822) (-571 "INTDOM.spad" 907859 907867 909162 909231) (-570 "INTDOM.spad" 906544 906554 907849 907854) (-569 "INTCAT.spad" 904811 904821 906458 906539) (-568 "INTBIT.spad" 904318 904326 904801 904806) (-567 "INTALG.spad" 903506 903533 904308 904313) (-566 "INTAF.spad" 903006 903022 903496 903501) (-565 "INTABL.spad" 901010 901041 901173 901200) (-564 "INT8.spad" 900890 900898 901000 901005) (-563 "INT64.spad" 900769 900777 900880 900885) (-562 "INT32.spad" 900648 900656 900759 900764) (-561 "INT16.spad" 900527 900535 900638 900643) (-560 "INT.spad" 899975 899983 900381 900522) (-559 "INS.spad" 897478 897486 899877 899970) (-558 "INS.spad" 895067 895077 897468 897473) (-557 "INPSIGN.spad" 894515 894528 895057 895062) (-556 "INPRODPF.spad" 893611 893630 894505 894510) (-555 "INPRODFF.spad" 892699 892723 893601 893606) (-554 "INNMFACT.spad" 891674 891691 892689 892694) (-553 "INMODGCD.spad" 891178 891208 891664 891669) (-552 "INFSP.spad" 889475 889497 891168 891173) (-551 "INFPROD0.spad" 888555 888574 889465 889470) (-550 "INFORM1.spad" 888180 888190 888545 888550) (-549 "INFORM.spad" 885387 885395 888170 888175) (-548 "INFINITY.spad" 884939 884947 885377 885382) (-547 "INETCLTS.spad" 884916 884924 884929 884934) (-546 "INEP.spad" 883462 883484 884906 884911) (-545 "INDE.spad" 883111 883128 883372 883377) (-544 "INCRMAPS.spad" 882548 882558 883101 883106) (-543 "INBFILE.spad" 881644 881652 882538 882543) (-542 "INBFF.spad" 877494 877505 881634 881639) (-541 "INBCON.spad" 875760 875768 877484 877489) (-540 "INBCON.spad" 874024 874034 875750 875755) (-539 "INAST.spad" 873685 873693 874014 874019) (-538 "IMPTAST.spad" 873393 873401 873675 873680) (-537 "IMATRIX.spad" 872197 872223 872709 872736) (-536 "IMATQF.spad" 871291 871335 872153 872158) (-535 "IMATLIN.spad" 869912 869936 871247 871252) (-534 "ILIST.spad" 868375 868390 868900 868927) (-533 "IIARRAY2.spad" 867638 867676 867841 867868) (-532 "IFF.spad" 867048 867064 867319 867412) (-531 "IFAST.spad" 866662 866670 867038 867043) (-530 "IFARRAY.spad" 863952 863967 865650 865677) (-529 "IFAMON.spad" 863814 863831 863908 863913) (-528 "IEVALAB.spad" 863227 863239 863804 863809) (-527 "IEVALAB.spad" 862638 862652 863217 863222) (-526 "IDPOAMS.spad" 862316 862328 862550 862555) (-525 "IDPOAM.spad" 861958 861970 862228 862233) (-524 "IDPO.spad" 861693 861705 861870 861875) (-523 "IDPC.spad" 860422 860434 861683 861688) (-522 "IDPAM.spad" 860089 860101 860334 860339) (-521 "IDPAG.spad" 859758 859770 860001 860006) (-520 "IDENT.spad" 859408 859416 859748 859753) (-519 "IDECOMP.spad" 856647 856665 859398 859403) (-518 "IDEAL.spad" 851590 851629 856576 856581) (-517 "ICDEN.spad" 850803 850819 851580 851585) (-516 "ICARD.spad" 849994 850002 850793 850798) (-515 "IBPTOOLS.spad" 848601 848618 849984 849989) (-514 "IBITS.spad" 847748 847761 848181 848208) (-513 "IBATOOL.spad" 844733 844752 847738 847743) (-512 "IBACHIN.spad" 843240 843255 844723 844728) (-511 "IARRAY2.spad" 842095 842121 842706 842733) (-510 "IARRAY1.spad" 840937 840952 841083 841110) (-509 "IAN.spad" 839154 839162 840747 840840) (-508 "IALGFACT.spad" 838765 838798 839144 839149) (-507 "HYPCAT.spad" 838189 838197 838755 838760) (-506 "HYPCAT.spad" 837611 837621 838179 838184) (-505 "HOSTNAME.spad" 837427 837435 837601 837606) (-504 "HOMOTOP.spad" 837170 837180 837417 837422) (-503 "HOAGG.spad" 834452 834462 837160 837165) (-502 "HOAGG.spad" 831461 831473 834171 834176) (-501 "HEXADEC.spad" 829376 829384 829741 829834) (-500 "HEUGCD.spad" 828467 828478 829366 829371) (-499 "HELLFDIV.spad" 828073 828097 828457 828462) (-498 "HEAP.spad" 827324 827334 827539 827566) (-497 "HEADAST.spad" 826865 826873 827314 827319) (-496 "HDP.spad" 814045 814061 814422 814521) (-495 "HDMP.spad" 811115 811130 811731 811858) (-494 "HB.spad" 809390 809398 811105 811110) (-493 "HASHTBL.spad" 807346 807377 807557 807584) (-492 "HASAST.spad" 807062 807070 807336 807341) (-491 "HACKPI.spad" 806553 806561 806964 807057) (-490 "GTSET.spad" 805438 805454 806145 806172) (-489 "GSTBL.spad" 803443 803478 803617 803632) (-488 "GSERIES.spad" 800594 800621 801413 801562) (-487 "GROUP.spad" 799867 799875 800574 800589) (-486 "GROUP.spad" 799148 799158 799857 799862) (-485 "GROEBSOL.spad" 797642 797663 799138 799143) (-484 "GRMOD.spad" 796221 796233 797632 797637) (-483 "GRMOD.spad" 794798 794812 796211 796216) (-482 "GRIMAGE.spad" 787711 787719 794788 794793) (-481 "GRDEF.spad" 786090 786098 787701 787706) (-480 "GRAY.spad" 784561 784569 786080 786085) (-479 "GRALG.spad" 783654 783666 784551 784556) (-478 "GRALG.spad" 782745 782759 783644 783649) (-477 "GPOLSET.spad" 782161 782184 782373 782400) (-476 "GOSPER.spad" 781438 781456 782151 782156) (-475 "GMODPOL.spad" 780586 780613 781406 781433) (-474 "GHENSEL.spad" 779669 779683 780576 780581) (-473 "GENUPS.spad" 775962 775975 779659 779664) (-472 "GENUFACT.spad" 775539 775549 775952 775957) (-471 "GENPGCD.spad" 775141 775158 775529 775534) (-470 "GENMFACT.spad" 774593 774612 775131 775136) (-469 "GENEEZ.spad" 772552 772565 774583 774588) (-468 "GDMP.spad" 769464 769481 770238 770365) (-467 "GCNAALG.spad" 763387 763414 769258 769325) (-466 "GCDDOM.spad" 762579 762587 763313 763382) (-465 "GCDDOM.spad" 761833 761843 762569 762574) (-464 "GBINTERN.spad" 757853 757891 761823 761828) (-463 "GBF.spad" 753636 753674 757843 757848) (-462 "GBEUCLID.spad" 751518 751556 753626 753631) (-461 "GB.spad" 749044 749082 751474 751479) (-460 "GAUSSFAC.spad" 748357 748365 749034 749039) (-459 "GALUTIL.spad" 746683 746693 748313 748318) (-458 "GALPOLYU.spad" 745137 745150 746673 746678) (-457 "GALFACTU.spad" 743350 743369 745127 745132) (-456 "GALFACT.spad" 733563 733574 743340 743345) (-455 "FVFUN.spad" 730586 730594 733553 733558) (-454 "FVC.spad" 729638 729646 730576 730581) (-453 "FUNDESC.spad" 729316 729324 729628 729633) (-452 "FUNCTION.spad" 729165 729177 729306 729311) (-451 "FTEM.spad" 728330 728338 729155 729160) (-450 "FT.spad" 726627 726635 728320 728325) (-449 "FSUPFACT.spad" 725521 725540 726557 726562) (-448 "FST.spad" 723607 723615 725511 725516) (-447 "FSRED.spad" 723087 723103 723597 723602) (-446 "FSPRMELT.spad" 721953 721969 723044 723049) (-445 "FSPECF.spad" 720044 720060 721943 721948) (-444 "FSINT.spad" 719704 719720 720034 720039) (-443 "FSERIES.spad" 718895 718907 719524 719623) (-442 "FSCINT.spad" 718212 718228 718885 718890) (-441 "FSAGG2.spad" 716947 716963 718202 718207) (-440 "FSAGG.spad" 716064 716074 716903 716942) (-439 "FSAGG.spad" 715143 715155 715984 715989) (-438 "FS2UPS.spad" 709658 709692 715133 715138) (-437 "FS2EXPXP.spad" 708799 708822 709648 709653) (-436 "FS2.spad" 708454 708470 708789 708794) (-435 "FS.spad" 702722 702732 708229 708449) (-434 "FS.spad" 696756 696768 702265 702270) (-433 "FRUTIL.spad" 695710 695720 696746 696751) (-432 "FRNAALG.spad" 690987 690997 695652 695705) (-431 "FRNAALG.spad" 686276 686288 690943 690948) (-430 "FRNAAF2.spad" 685724 685742 686266 686271) (-429 "FRMOD.spad" 685128 685158 685649 685654) (-428 "FRIDEAL2.spad" 684732 684764 685118 685123) (-427 "FRIDEAL.spad" 683957 683978 684712 684727) (-426 "FRETRCT.spad" 683476 683486 683947 683952) (-425 "FRETRCT.spad" 682843 682855 683316 683321) (-424 "FRAMALG.spad" 681223 681236 682799 682838) (-423 "FRAMALG.spad" 679635 679650 681213 681218) (-422 "FRAC2.spad" 679240 679252 679625 679630) (-421 "FRAC.spad" 676136 676146 676523 676696) (-420 "FR2.spad" 675472 675484 676126 676131) (-419 "FR.spad" 669031 669041 674331 674400) (-418 "FPS.spad" 665870 665878 668921 669026) (-417 "FPS.spad" 662737 662747 665790 665795) (-416 "FPC.spad" 661783 661791 662639 662732) (-415 "FPC.spad" 660915 660925 661773 661778) (-414 "FPATMAB.spad" 660677 660687 660905 660910) (-413 "FPARFRAC.spad" 659519 659536 660667 660672) (-412 "FORTRAN.spad" 658025 658068 659509 659514) (-411 "FORTFN.spad" 655195 655203 658015 658020) (-410 "FORTCAT.spad" 654879 654887 655185 655190) (-409 "FORT.spad" 653828 653836 654869 654874) (-408 "FORMULA1.spad" 653307 653317 653818 653823) (-407 "FORMULA.spad" 650781 650789 653297 653302) (-406 "FORDER.spad" 650472 650496 650771 650776) (-405 "FOP.spad" 649673 649681 650462 650467) (-404 "FNLA.spad" 649097 649119 649641 649668) (-403 "FNCAT.spad" 647692 647700 649087 649092) (-402 "FNAME.spad" 647584 647592 647682 647687) (-401 "FMTC.spad" 647382 647390 647510 647579) (-400 "FMONOID.spad" 647063 647073 647338 647343) (-399 "FMONCAT.spad" 644232 644242 647053 647058) (-398 "FMFUN.spad" 641262 641270 644222 644227) (-397 "FMCAT.spad" 638938 638956 641230 641257) (-396 "FMC.spad" 637990 637998 638928 638933) (-395 "FM1.spad" 637355 637367 637924 637951) (-394 "FM.spad" 636970 636982 637209 637236) (-393 "FLOATRP.spad" 634713 634727 636960 636965) (-392 "FLOATCP.spad" 632152 632166 634703 634708) (-391 "FLOAT.spad" 625466 625474 632018 632147) (-390 "FLINEXP.spad" 625188 625198 625456 625461) (-389 "FLINEXP.spad" 624848 624860 625118 625123) (-388 "FLASORT.spad" 624174 624186 624838 624843) (-387 "FLALG.spad" 621844 621863 624100 624169) (-386 "FLAGG2.spad" 620561 620577 621834 621839) (-385 "FLAGG.spad" 617627 617637 620541 620556) (-384 "FLAGG.spad" 614594 614606 617510 617515) (-383 "FINRALG.spad" 612679 612692 614550 614589) (-382 "FINRALG.spad" 610690 610705 612563 612568) (-381 "FINITE.spad" 609842 609850 610680 610685) (-380 "FINAALG.spad" 599027 599037 609784 609837) (-379 "FINAALG.spad" 588224 588236 598983 598988) (-378 "FILECAT.spad" 586758 586775 588214 588219) (-377 "FILE.spad" 586341 586351 586748 586753) (-376 "FIELD.spad" 585747 585755 586243 586336) (-375 "FIELD.spad" 585239 585249 585737 585742) (-374 "FGROUP.spad" 583902 583912 585219 585234) (-373 "FGLMICPK.spad" 582697 582712 583892 583897) (-372 "FFX.spad" 582080 582095 582413 582506) (-371 "FFSLPE.spad" 581591 581612 582070 582075) (-370 "FFPOLY2.spad" 580651 580668 581581 581586) (-369 "FFPOLY.spad" 571993 572004 580641 580646) (-368 "FFP.spad" 571398 571418 571709 571802) (-367 "FFNBX.spad" 569918 569938 571114 571207) (-366 "FFNBP.spad" 568439 568456 569634 569727) (-365 "FFNB.spad" 566904 566925 568120 568213) (-364 "FFINTBAS.spad" 564418 564437 566894 566899) (-363 "FFIELDC.spad" 562003 562011 564320 564413) (-362 "FFIELDC.spad" 559674 559684 561993 561998) (-361 "FFHOM.spad" 558446 558463 559664 559669) (-360 "FFF.spad" 555889 555900 558436 558441) (-359 "FFCGX.spad" 554744 554764 555605 555698) (-358 "FFCGP.spad" 553641 553661 554460 554553) (-357 "FFCG.spad" 552433 552454 553322 553415) (-356 "FFCAT2.spad" 552180 552220 552423 552428) (-355 "FFCAT.spad" 545345 545367 552019 552175) (-354 "FFCAT.spad" 538589 538613 545265 545270) (-353 "FF.spad" 538037 538053 538270 538363) (-352 "FEXPR.spad" 529728 529774 537775 537814) (-351 "FEVALAB.spad" 529436 529446 529718 529723) (-350 "FEVALAB.spad" 528911 528923 529195 529200) (-349 "FDIVCAT.spad" 527007 527031 528901 528906) (-348 "FDIVCAT.spad" 525101 525127 526997 527002) (-347 "FDIV2.spad" 524757 524797 525091 525096) (-346 "FDIV.spad" 524215 524239 524747 524752) (-345 "FCTRDATA.spad" 523223 523231 524205 524210) (-344 "FCPAK1.spad" 521758 521766 523213 523218) (-343 "FCOMP.spad" 521137 521147 521748 521753) (-342 "FC.spad" 511144 511152 521127 521132) (-341 "FAXF.spad" 504179 504193 511046 511139) (-340 "FAXF.spad" 497266 497282 504135 504140) (-339 "FARRAY.spad" 495221 495231 496254 496281) (-338 "FAMR.spad" 493365 493377 495119 495216) (-337 "FAMR.spad" 491493 491507 493249 493254) (-336 "FAMONOID.spad" 491177 491187 491447 491452) (-335 "FAMONC.spad" 489497 489509 491167 491172) (-334 "FAGROUP.spad" 489137 489147 489393 489420) (-333 "FACUTIL.spad" 487349 487366 489127 489132) (-332 "FACTFUNC.spad" 486551 486561 487339 487344) (-331 "EXPUPXS.spad" 483222 483245 484521 484670) (-330 "EXPRTUBE.spad" 480510 480518 483212 483217) (-329 "EXPRODE.spad" 477678 477694 480500 480505) (-328 "EXPR2UPS.spad" 473800 473813 477668 477673) (-327 "EXPR2.spad" 473505 473517 473790 473795) (-326 "EXPR.spad" 468500 468510 469214 469509) (-325 "EXPEXPAN.spad" 465187 465212 465819 465912) (-324 "EXITAST.spad" 464923 464931 465177 465182) (-323 "EXIT.spad" 464594 464602 464913 464918) (-322 "EVALCYC.spad" 464054 464068 464584 464589) (-321 "EVALAB.spad" 463634 463644 464044 464049) (-320 "EVALAB.spad" 463212 463224 463624 463629) (-319 "EUCDOM.spad" 460802 460810 463138 463207) (-318 "EUCDOM.spad" 458454 458464 460792 460797) (-317 "ESTOOLS2.spad" 458049 458063 458444 458449) (-316 "ESTOOLS1.spad" 457726 457737 458039 458044) (-315 "ESTOOLS.spad" 449604 449612 457716 457721) (-314 "ESCONT1.spad" 449345 449357 449594 449599) (-313 "ESCONT.spad" 446138 446146 449335 449340) (-312 "ES2.spad" 445651 445667 446128 446133) (-311 "ES1.spad" 445221 445237 445641 445646) (-310 "ES.spad" 438092 438100 445211 445216) (-309 "ES.spad" 430863 430873 437984 437989) (-308 "ERROR.spad" 428190 428198 430853 430858) (-307 "EQTBL.spad" 426148 426170 426357 426384) (-306 "EQ2.spad" 425866 425878 426138 426143) (-305 "EQ.spad" 420621 420631 423416 423528) (-304 "EP.spad" 416947 416957 420611 420616) (-303 "ENV.spad" 415625 415633 416937 416942) (-302 "ENTIRER.spad" 415293 415301 415569 415620) (-301 "EMR.spad" 414581 414622 415219 415288) (-300 "ELTAGG.spad" 412835 412854 414571 414576) (-299 "ELTAGG.spad" 411053 411074 412791 412796) (-298 "ELTAB.spad" 410528 410541 411043 411048) (-297 "ELFUTS.spad" 409963 409982 410518 410523) (-296 "ELEMFUN.spad" 409652 409660 409953 409958) (-295 "ELEMFUN.spad" 409339 409349 409642 409647) (-294 "ELAGG.spad" 407310 407320 409319 409334) (-293 "ELAGG.spad" 405218 405230 407229 407234) (-292 "ELABOR.spad" 404564 404572 405208 405213) (-291 "ELABEXPR.spad" 403496 403504 404554 404559) (-290 "EFUPXS.spad" 400272 400302 403452 403457) (-289 "EFULS.spad" 397108 397131 400228 400233) (-288 "EFSTRUC.spad" 395123 395139 397098 397103) (-287 "EF.spad" 389899 389915 395113 395118) (-286 "EAB.spad" 388199 388207 389889 389894) (-285 "E04UCFA.spad" 387735 387743 388189 388194) (-284 "E04NAFA.spad" 387312 387320 387725 387730) (-283 "E04MBFA.spad" 386892 386900 387302 387307) (-282 "E04JAFA.spad" 386428 386436 386882 386887) (-281 "E04GCFA.spad" 385964 385972 386418 386423) (-280 "E04FDFA.spad" 385500 385508 385954 385959) (-279 "E04DGFA.spad" 385036 385044 385490 385495) (-278 "E04AGNT.spad" 380910 380918 385026 385031) (-277 "DVARCAT.spad" 377800 377810 380900 380905) (-276 "DVARCAT.spad" 374688 374700 377790 377795) (-275 "DSMP.spad" 371906 371920 372211 372338) (-274 "DSEXT.spad" 371208 371218 371896 371901) (-273 "DSEXT.spad" 370411 370423 371101 371106) (-272 "DROPT1.spad" 370076 370086 370401 370406) (-271 "DROPT0.spad" 364941 364949 370066 370071) (-270 "DROPT.spad" 358900 358908 364931 364936) (-269 "DRAWPT.spad" 357073 357081 358890 358895) (-268 "DRAWHACK.spad" 356381 356391 357063 357068) (-267 "DRAWCX.spad" 353859 353867 356371 356376) (-266 "DRAWCURV.spad" 353406 353421 353849 353854) (-265 "DRAWCFUN.spad" 342938 342946 353396 353401) (-264 "DRAW.spad" 335814 335827 342928 342933) (-263 "DQAGG.spad" 333992 334002 335782 335809) (-262 "DPOLCAT.spad" 329349 329365 333860 333987) (-261 "DPOLCAT.spad" 324792 324810 329305 329310) (-260 "DPMO.spad" 316078 316094 316216 316429) (-259 "DPMM.spad" 307377 307395 307502 307715) (-258 "DOMTMPLT.spad" 307148 307156 307367 307372) (-257 "DOMCTOR.spad" 306903 306911 307138 307143) (-256 "DOMAIN.spad" 306014 306022 306893 306898) (-255 "DMP.spad" 303130 303145 303700 303827) (-254 "DMEXT.spad" 302997 303007 303098 303125) (-253 "DLP.spad" 302357 302367 302987 302992) (-252 "DLIST.spad" 300741 300751 301345 301372) (-251 "DLAGG.spad" 299158 299168 300731 300736) (-250 "DIVRING.spad" 298700 298708 299102 299153) (-249 "DIVRING.spad" 298286 298296 298690 298695) (-248 "DISPLAY.spad" 296476 296484 298276 298281) (-247 "DIRPROD2.spad" 295294 295312 296466 296471) (-246 "DIRPROD.spad" 282211 282227 282851 282950) (-245 "DIRPCAT.spad" 281404 281420 282107 282206) (-244 "DIRPCAT.spad" 280224 280242 280929 280934) (-243 "DIOSP.spad" 279049 279057 280214 280219) (-242 "DIOPS.spad" 278045 278055 279029 279044) (-241 "DIOPS.spad" 277015 277027 278001 278006) (-240 "DIFRING.spad" 276853 276861 276995 277010) (-239 "DIFFSPC.spad" 276432 276440 276843 276848) (-238 "DIFFSPC.spad" 276009 276019 276422 276427) (-237 "DIFFMOD.spad" 275498 275508 275977 276004) (-236 "DIFFDOM.spad" 274663 274674 275488 275493) (-235 "DIFFDOM.spad" 273826 273839 274653 274658) (-234 "DIFEXT.spad" 273645 273655 273806 273821) (-233 "DIAGG.spad" 273275 273285 273625 273640) (-232 "DIAGG.spad" 272913 272925 273265 273270) (-231 "DHMATRIX.spad" 271084 271094 272229 272256) (-230 "DFSFUN.spad" 264724 264732 271074 271079) (-229 "DFLOAT.spad" 261455 261463 264614 264719) (-228 "DFINTTLS.spad" 259686 259702 261445 261450) (-227 "DERHAM.spad" 257600 257632 259666 259681) (-226 "DEQUEUE.spad" 256783 256793 257066 257093) (-225 "DEGRED.spad" 256400 256414 256773 256778) (-224 "DEFINTRF.spad" 253937 253947 256390 256395) (-223 "DEFINTEF.spad" 252447 252463 253927 253932) (-222 "DEFAST.spad" 251831 251839 252437 252442) (-221 "DECIMAL.spad" 249750 249758 250111 250204) (-220 "DDFACT.spad" 247571 247588 249740 249745) (-219 "DBLRESP.spad" 247171 247195 247561 247566) (-218 "DBASIS.spad" 246797 246812 247161 247166) (-217 "DBASE.spad" 245461 245471 246787 246792) (-216 "DATAARY.spad" 244947 244960 245451 245456) (-215 "D03FAFA.spad" 244775 244783 244937 244942) (-214 "D03EEFA.spad" 244595 244603 244765 244770) (-213 "D03AGNT.spad" 243681 243689 244585 244590) (-212 "D02EJFA.spad" 243143 243151 243671 243676) (-211 "D02CJFA.spad" 242621 242629 243133 243138) (-210 "D02BHFA.spad" 242111 242119 242611 242616) (-209 "D02BBFA.spad" 241601 241609 242101 242106) (-208 "D02AGNT.spad" 236471 236479 241591 241596) (-207 "D01WGTS.spad" 234790 234798 236461 236466) (-206 "D01TRNS.spad" 234767 234775 234780 234785) (-205 "D01GBFA.spad" 234289 234297 234757 234762) (-204 "D01FCFA.spad" 233811 233819 234279 234284) (-203 "D01ASFA.spad" 233279 233287 233801 233806) (-202 "D01AQFA.spad" 232733 232741 233269 233274) (-201 "D01APFA.spad" 232173 232181 232723 232728) (-200 "D01ANFA.spad" 231667 231675 232163 232168) (-199 "D01AMFA.spad" 231177 231185 231657 231662) (-198 "D01ALFA.spad" 230717 230725 231167 231172) (-197 "D01AKFA.spad" 230243 230251 230707 230712) (-196 "D01AJFA.spad" 229766 229774 230233 230238) (-195 "D01AGNT.spad" 225833 225841 229756 229761) (-194 "CYCLOTOM.spad" 225339 225347 225823 225828) (-193 "CYCLES.spad" 222131 222139 225329 225334) (-192 "CVMP.spad" 221548 221558 222121 222126) (-191 "CTRIGMNP.spad" 220048 220064 221538 221543) (-190 "CTORKIND.spad" 219651 219659 220038 220043) (-189 "CTORCAT.spad" 218892 218900 219641 219646) (-188 "CTORCAT.spad" 218131 218141 218882 218887) (-187 "CTORCALL.spad" 217720 217730 218121 218126) (-186 "CTOR.spad" 217411 217419 217710 217715) (-185 "CSTTOOLS.spad" 216656 216669 217401 217406) (-184 "CRFP.spad" 210428 210441 216646 216651) (-183 "CRCEAST.spad" 210148 210156 210418 210423) (-182 "CRAPACK.spad" 209215 209225 210138 210143) (-181 "CPMATCH.spad" 208713 208728 209134 209139) (-180 "CPIMA.spad" 208418 208437 208703 208708) (-179 "COORDSYS.spad" 203427 203437 208408 208413) (-178 "CONTOUR.spad" 202854 202862 203417 203422) (-177 "CONTFRAC.spad" 198604 198614 202756 202849) (-176 "CONDUIT.spad" 198362 198370 198594 198599) (-175 "COMRING.spad" 198036 198044 198300 198357) (-174 "COMPPROP.spad" 197554 197562 198026 198031) (-173 "COMPLPAT.spad" 197321 197336 197544 197549) (-172 "COMPLEX2.spad" 197036 197048 197311 197316) (-171 "COMPLEX.spad" 192281 192291 192525 192786) (-170 "COMPILER.spad" 191830 191838 192271 192276) (-169 "COMPFACT.spad" 191432 191446 191820 191825) (-168 "COMPCAT.spad" 189504 189514 191166 191427) (-167 "COMPCAT.spad" 187298 187310 188962 188967) (-166 "COMMUPC.spad" 187046 187064 187288 187293) (-165 "COMMONOP.spad" 186579 186587 187036 187041) (-164 "COMMAAST.spad" 186342 186350 186569 186574) (-163 "COMM.spad" 186153 186161 186332 186337) (-162 "COMBOPC.spad" 185076 185084 186143 186148) (-161 "COMBINAT.spad" 183843 183853 185066 185071) (-160 "COMBF.spad" 181265 181281 183833 183838) (-159 "COLOR.spad" 180102 180110 181255 181260) (-158 "COLONAST.spad" 179768 179776 180092 180097) (-157 "CMPLXRT.spad" 179479 179496 179758 179763) (-156 "CLLCTAST.spad" 179141 179149 179469 179474) (-155 "CLIP.spad" 175249 175257 179131 179136) (-154 "CLIF.spad" 173904 173920 175205 175244) (-153 "CLAGG.spad" 170441 170451 173894 173899) (-152 "CLAGG.spad" 166843 166855 170298 170303) (-151 "CINTSLPE.spad" 166198 166211 166833 166838) (-150 "CHVAR.spad" 164336 164358 166188 166193) (-149 "CHARZ.spad" 164251 164259 164316 164331) (-148 "CHARPOL.spad" 163777 163787 164241 164246) (-147 "CHARNZ.spad" 163530 163538 163757 163772) (-146 "CHAR.spad" 160898 160906 163520 163525) (-145 "CFCAT.spad" 160226 160234 160888 160893) (-144 "CDEN.spad" 159446 159460 160216 160221) (-143 "CCLASS.spad" 157527 157535 158789 158828) (-142 "CATEGORY.spad" 156601 156609 157517 157522) (-141 "CATCTOR.spad" 156492 156500 156591 156596) (-140 "CATAST.spad" 156118 156126 156482 156487) (-139 "CASEAST.spad" 155832 155840 156108 156113) (-138 "CARTEN2.spad" 155222 155249 155822 155827) (-137 "CARTEN.spad" 150589 150613 155212 155217) (-136 "CARD.spad" 147884 147892 150563 150584) (-135 "CAPSLAST.spad" 147666 147674 147874 147879) (-134 "CACHSET.spad" 147290 147298 147656 147661) (-133 "CABMON.spad" 146845 146853 147280 147285) (-132 "BYTEORD.spad" 146520 146528 146835 146840) (-131 "BYTEBUF.spad" 144200 144208 145486 145513) (-130 "BYTE.spad" 143675 143683 144190 144195) (-129 "BTREE.spad" 142607 142617 143141 143168) (-128 "BTOURN.spad" 141471 141481 142073 142100) (-127 "BTCAT.spad" 140863 140873 141439 141466) (-126 "BTCAT.spad" 140275 140287 140853 140858) (-125 "BTAGG.spad" 139741 139749 140243 140270) (-124 "BTAGG.spad" 139227 139237 139731 139736) (-123 "BSTREE.spad" 137827 137837 138693 138720) (-122 "BRILL.spad" 136032 136043 137817 137822) (-121 "BRAGG.spad" 134988 134998 136022 136027) (-120 "BRAGG.spad" 133908 133920 134944 134949) (-119 "BPADICRT.spad" 131676 131688 131923 132016) (-118 "BPADIC.spad" 131348 131360 131602 131671) (-117 "BOUNDZRO.spad" 131004 131021 131338 131343) (-116 "BOP1.spad" 128462 128472 130994 130999) (-115 "BOP.spad" 123596 123604 128452 128457) (-114 "BOOLEAN.spad" 123034 123042 123586 123591) (-113 "BOOLE.spad" 122684 122692 123024 123029) (-112 "BOOLE.spad" 122332 122342 122674 122679) (-111 "BMODULE.spad" 122044 122056 122300 122327) (-110 "BITS.spad" 121409 121417 121624 121651) (-109 "BINDING.spad" 120830 120838 121399 121404) (-108 "BINARY.spad" 118754 118762 119110 119203) (-107 "BGAGG.spad" 117959 117969 118734 118749) (-106 "BGAGG.spad" 117172 117184 117949 117954) (-105 "BFUNCT.spad" 116736 116744 117152 117167) (-104 "BEZOUT.spad" 115876 115903 116686 116691) (-103 "BBTREE.spad" 112612 112622 115342 115369) (-102 "BASTYPE.spad" 112108 112116 112602 112607) (-101 "BASTYPE.spad" 111602 111612 112098 112103) (-100 "BALFACT.spad" 111061 111074 111592 111597) (-99 "AUTOMOR.spad" 110512 110521 111041 111056) (-98 "ATTREG.spad" 107235 107242 110264 110507) (-97 "ATTRBUT.spad" 103258 103265 107215 107230) (-96 "ATTRAST.spad" 102975 102982 103248 103253) (-95 "ATRIG.spad" 102445 102452 102965 102970) (-94 "ATRIG.spad" 101913 101922 102435 102440) (-93 "ASTCAT.spad" 101817 101824 101903 101908) (-92 "ASTCAT.spad" 101719 101728 101807 101812) (-91 "ASTACK.spad" 100917 100926 101185 101212) (-90 "ASSOCEQ.spad" 99751 99762 100873 100878) (-89 "ASP9.spad" 98832 98845 99741 99746) (-88 "ASP80.spad" 98154 98167 98822 98827) (-87 "ASP8.spad" 97197 97210 98144 98149) (-86 "ASP78.spad" 96648 96661 97187 97192) (-85 "ASP77.spad" 96017 96030 96638 96643) (-84 "ASP74.spad" 95109 95122 96007 96012) (-83 "ASP73.spad" 94380 94393 95099 95104) (-82 "ASP7.spad" 93540 93553 94370 94375) (-81 "ASP6.spad" 92407 92420 93530 93535) (-80 "ASP55.spad" 90916 90929 92397 92402) (-79 "ASP50.spad" 88733 88746 90906 90911) (-78 "ASP49.spad" 87732 87745 88723 88728) (-77 "ASP42.spad" 86147 86186 87722 87727) (-76 "ASP41.spad" 84734 84773 86137 86142) (-75 "ASP4.spad" 84029 84042 84724 84729) (-74 "ASP35.spad" 83017 83030 84019 84024) (-73 "ASP34.spad" 82318 82331 83007 83012) (-72 "ASP33.spad" 81878 81891 82308 82313) (-71 "ASP31.spad" 81018 81031 81868 81873) (-70 "ASP30.spad" 79910 79923 81008 81013) (-69 "ASP29.spad" 79376 79389 79900 79905) (-68 "ASP28.spad" 70649 70662 79366 79371) (-67 "ASP27.spad" 69546 69559 70639 70644) (-66 "ASP24.spad" 68633 68646 69536 69541) (-65 "ASP20.spad" 68097 68110 68623 68628) (-64 "ASP19.spad" 62783 62796 68087 68092) (-63 "ASP12.spad" 62197 62210 62773 62778) (-62 "ASP10.spad" 61468 61481 62187 62192) (-61 "ASP1.spad" 60849 60862 61458 61463) (-60 "ARRAY2.spad" 60076 60085 60315 60342) (-59 "ARRAY12.spad" 58789 58800 60066 60071) (-58 "ARRAY1.spad" 57431 57440 57777 57804) (-57 "ARR2CAT.spad" 53213 53234 57399 57426) (-56 "ARR2CAT.spad" 49015 49038 53203 53208) (-55 "ARITY.spad" 48387 48394 49005 49010) (-54 "APPRULE.spad" 47671 47693 48377 48382) (-53 "APPLYORE.spad" 47290 47303 47661 47666) (-52 "ANY1.spad" 46361 46370 47280 47285) (-51 "ANY.spad" 45212 45219 46351 46356) (-50 "ANTISYM.spad" 43657 43673 45192 45207) (-49 "ANON.spad" 43366 43373 43647 43652) (-48 "AN.spad" 41669 41676 43176 43269) (-47 "AMR.spad" 39854 39865 41567 41664) (-46 "AMR.spad" 37864 37877 39579 39584) (-45 "ALIST.spad" 34644 34665 34994 35021) (-44 "ALGSC.spad" 33779 33805 34516 34569) (-43 "ALGPKG.spad" 29562 29573 33735 33740) (-42 "ALGMFACT.spad" 28755 28769 29552 29557) (-41 "ALGMANIP.spad" 26233 26248 28576 28581) (-40 "ALGFF.spad" 23802 23829 24019 24175) (-39 "ALGFACT.spad" 22921 22931 23792 23797) (-38 "ALGEBRA.spad" 22754 22763 22877 22916) (-37 "ALGEBRA.spad" 22619 22630 22744 22749) (-36 "ALAGG.spad" 22131 22152 22587 22614) (-35 "AHYP.spad" 21512 21519 22121 22126) (-34 "AGG.spad" 19845 19852 21502 21507) (-33 "AGG.spad" 18142 18151 19801 19806) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2294364 2294369 2294374 2294379) (-2 NIL 2294344 2294349 2294354 2294359) (-1 NIL 2294324 2294329 2294334 2294339) (0 NIL 2294304 2294309 2294314 2294319) (-1327 "ZMOD.spad" 2294113 2294126 2294242 2294299) (-1326 "ZLINDEP.spad" 2293211 2293222 2294103 2294108) (-1325 "ZDSOLVE.spad" 2283171 2283193 2293201 2293206) (-1324 "YSTREAM.spad" 2282666 2282677 2283161 2283166) (-1323 "YDIAGRAM.spad" 2282300 2282309 2282656 2282661) (-1322 "XRPOLY.spad" 2281520 2281540 2282156 2282225) (-1321 "XPR.spad" 2279315 2279328 2281238 2281337) (-1320 "XPOLYC.spad" 2278634 2278650 2279241 2279310) (-1319 "XPOLY.spad" 2278189 2278200 2278490 2278559) (-1318 "XPBWPOLY.spad" 2276628 2276648 2277963 2278032) (-1317 "XFALG.spad" 2273676 2273692 2276554 2276623) (-1316 "XF.spad" 2272139 2272154 2273578 2273671) (-1315 "XF.spad" 2270582 2270599 2272023 2272028) (-1314 "XEXPPKG.spad" 2269841 2269867 2270572 2270577) (-1313 "XDPOLY.spad" 2269455 2269471 2269697 2269766) (-1312 "XALG.spad" 2269123 2269134 2269411 2269450) (-1311 "WUTSET.spad" 2265093 2265110 2268724 2268751) (-1310 "WP.spad" 2264300 2264344 2264951 2265018) (-1309 "WHILEAST.spad" 2264098 2264107 2264290 2264295) (-1308 "WHEREAST.spad" 2263769 2263778 2264088 2264093) (-1307 "WFFINTBS.spad" 2261432 2261454 2263759 2263764) (-1306 "WEIER.spad" 2259654 2259665 2261422 2261427) (-1305 "VSPACE.spad" 2259327 2259338 2259622 2259649) (-1304 "VSPACE.spad" 2259020 2259033 2259317 2259322) (-1303 "VOID.spad" 2258697 2258706 2259010 2259015) (-1302 "VIEWDEF.spad" 2253898 2253907 2258687 2258692) (-1301 "VIEW3D.spad" 2237859 2237868 2253888 2253893) (-1300 "VIEW2D.spad" 2225758 2225767 2237849 2237854) (-1299 "VIEW.spad" 2223478 2223487 2225748 2225753) (-1298 "VECTOR2.spad" 2222117 2222130 2223468 2223473) (-1297 "VECTOR.spad" 2220617 2220628 2220868 2220895) (-1296 "VECTCAT.spad" 2218529 2218540 2220585 2220612) (-1295 "VECTCAT.spad" 2216248 2216261 2218306 2218311) (-1294 "VARIABLE.spad" 2216028 2216043 2216238 2216243) (-1293 "UTYPE.spad" 2215672 2215681 2216018 2216023) (-1292 "UTSODETL.spad" 2214967 2214991 2215628 2215633) (-1291 "UTSODE.spad" 2213183 2213203 2214957 2214962) (-1290 "UTSCAT.spad" 2210662 2210678 2213081 2213178) (-1289 "UTSCAT.spad" 2207761 2207779 2210182 2210187) (-1288 "UTS2.spad" 2207356 2207391 2207751 2207756) (-1287 "UTS.spad" 2202234 2202262 2205754 2205851) (-1286 "URAGG.spad" 2196955 2196966 2202224 2202229) (-1285 "URAGG.spad" 2191640 2191653 2196911 2196916) (-1284 "UPXSSING.spad" 2189258 2189284 2190694 2190827) (-1283 "UPXSCONS.spad" 2186936 2186956 2187309 2187458) (-1282 "UPXSCCA.spad" 2185507 2185527 2186782 2186931) (-1281 "UPXSCCA.spad" 2184220 2184242 2185497 2185502) (-1280 "UPXSCAT.spad" 2182809 2182825 2184066 2184215) (-1279 "UPXS2.spad" 2182352 2182405 2182799 2182804) (-1278 "UPXS.spad" 2179567 2179595 2180403 2180552) (-1277 "UPSQFREE.spad" 2177981 2177995 2179557 2179562) (-1276 "UPSCAT.spad" 2175776 2175800 2177879 2177976) (-1275 "UPSCAT.spad" 2173256 2173282 2175361 2175366) (-1274 "UPOLYC2.spad" 2172727 2172746 2173246 2173251) (-1273 "UPOLYC.spad" 2167807 2167818 2172569 2172722) (-1272 "UPOLYC.spad" 2162773 2162786 2167537 2167542) (-1271 "UPMP.spad" 2161705 2161718 2162763 2162768) (-1270 "UPDIVP.spad" 2161270 2161284 2161695 2161700) (-1269 "UPDECOMP.spad" 2159531 2159545 2161260 2161265) (-1268 "UPCDEN.spad" 2158748 2158764 2159521 2159526) (-1267 "UP2.spad" 2158112 2158133 2158738 2158743) (-1266 "UP.spad" 2155140 2155155 2155527 2155680) (-1265 "UNISEG2.spad" 2154637 2154650 2155096 2155101) (-1264 "UNISEG.spad" 2153990 2154001 2154556 2154561) (-1263 "UNIFACT.spad" 2153093 2153105 2153980 2153985) (-1262 "ULSCONS.spad" 2144005 2144025 2144375 2144524) (-1261 "ULSCCAT.spad" 2141742 2141762 2143851 2144000) (-1260 "ULSCCAT.spad" 2139587 2139609 2141698 2141703) (-1259 "ULSCAT.spad" 2137827 2137843 2139433 2139582) (-1258 "ULS2.spad" 2137341 2137394 2137817 2137822) (-1257 "ULS.spad" 2126912 2126940 2127857 2128286) (-1256 "UINT8.spad" 2126789 2126798 2126902 2126907) (-1255 "UINT64.spad" 2126665 2126674 2126779 2126784) (-1254 "UINT32.spad" 2126541 2126550 2126655 2126660) (-1253 "UINT16.spad" 2126417 2126426 2126531 2126536) (-1252 "UFD.spad" 2125482 2125491 2126343 2126412) (-1251 "UFD.spad" 2124609 2124620 2125472 2125477) (-1250 "UDVO.spad" 2123490 2123499 2124599 2124604) (-1249 "UDPO.spad" 2121071 2121082 2123446 2123451) (-1248 "TYPEAST.spad" 2120990 2120999 2121061 2121066) (-1247 "TYPE.spad" 2120922 2120931 2120980 2120985) (-1246 "TWOFACT.spad" 2119574 2119589 2120912 2120917) (-1245 "TUPLE.spad" 2119065 2119076 2119470 2119475) (-1244 "TUBETOOL.spad" 2115932 2115941 2119055 2119060) (-1243 "TUBE.spad" 2114579 2114596 2115922 2115927) (-1242 "TSETCAT.spad" 2102650 2102667 2114547 2114574) (-1241 "TSETCAT.spad" 2090707 2090726 2102606 2102611) (-1240 "TS.spad" 2089300 2089316 2090266 2090363) (-1239 "TRMANIP.spad" 2083664 2083681 2088988 2088993) (-1238 "TRIMAT.spad" 2082627 2082652 2083654 2083659) (-1237 "TRIGMNIP.spad" 2081154 2081171 2082617 2082622) (-1236 "TRIGCAT.spad" 2080666 2080675 2081144 2081149) (-1235 "TRIGCAT.spad" 2080176 2080187 2080656 2080661) (-1234 "TREE.spad" 2078622 2078633 2079654 2079681) (-1233 "TRANFUN.spad" 2078461 2078470 2078612 2078617) (-1232 "TRANFUN.spad" 2078298 2078309 2078451 2078456) (-1231 "TOPSP.spad" 2077972 2077981 2078288 2078293) (-1230 "TOOLSIGN.spad" 2077635 2077646 2077962 2077967) (-1229 "TEXTFILE.spad" 2076196 2076205 2077625 2077630) (-1228 "TEX1.spad" 2075752 2075763 2076186 2076191) (-1227 "TEX.spad" 2072946 2072955 2075742 2075747) (-1226 "TEMUTL.spad" 2072501 2072510 2072936 2072941) (-1225 "TBCMPPK.spad" 2070602 2070625 2072491 2072496) (-1224 "TBAGG.spad" 2069660 2069683 2070582 2070597) (-1223 "TBAGG.spad" 2068726 2068751 2069650 2069655) (-1222 "TANEXP.spad" 2068134 2068145 2068716 2068721) (-1221 "TALGOP.spad" 2067858 2067869 2068124 2068129) (-1220 "TABLEAU.spad" 2067339 2067350 2067848 2067853) (-1219 "TABLE.spad" 2065272 2065295 2065542 2065569) (-1218 "TABLBUMP.spad" 2062051 2062062 2065262 2065267) (-1217 "SYSTEM.spad" 2061279 2061288 2062041 2062046) (-1216 "SYSSOLP.spad" 2058762 2058773 2061269 2061274) (-1215 "SYSPTR.spad" 2058661 2058670 2058752 2058757) (-1214 "SYSNNI.spad" 2057884 2057895 2058651 2058656) (-1213 "SYSINT.spad" 2057288 2057299 2057874 2057879) (-1212 "SYNTAX.spad" 2053622 2053631 2057278 2057283) (-1211 "SYMTAB.spad" 2051690 2051699 2053612 2053617) (-1210 "SYMS.spad" 2047713 2047722 2051680 2051685) (-1209 "SYMPOLY.spad" 2046692 2046703 2046774 2046901) (-1208 "SYMFUNC.spad" 2046193 2046204 2046682 2046687) (-1207 "SYMBOL.spad" 2043688 2043697 2046183 2046188) (-1206 "SWITCH.spad" 2040459 2040468 2043678 2043683) (-1205 "SUTS.spad" 2037438 2037466 2038857 2038954) (-1204 "SUPXS.spad" 2034640 2034668 2035489 2035638) (-1203 "SUPFRACF.spad" 2033745 2033763 2034630 2034635) (-1202 "SUP2.spad" 2033137 2033150 2033735 2033740) (-1201 "SUP.spad" 2029779 2029790 2030552 2030705) (-1200 "SUMRF.spad" 2028753 2028764 2029769 2029774) (-1199 "SUMFS.spad" 2028382 2028399 2028743 2028748) (-1198 "SULS.spad" 2017940 2017968 2018898 2019327) (-1197 "SUCHTAST.spad" 2017709 2017718 2017930 2017935) (-1196 "SUCH.spad" 2017399 2017414 2017699 2017704) (-1195 "SUBSPACE.spad" 2009530 2009545 2017389 2017394) (-1194 "SUBRESP.spad" 2008700 2008714 2009486 2009491) (-1193 "STTFNC.spad" 2005168 2005184 2008690 2008695) (-1192 "STTF.spad" 2001267 2001283 2005158 2005163) (-1191 "STTAYLOR.spad" 1993912 1993923 2001142 2001147) (-1190 "STRTBL.spad" 1991927 1991944 1992076 1992103) (-1189 "STRING.spad" 1990693 1990702 1990914 1990941) (-1188 "STREAM3.spad" 1990266 1990281 1990683 1990688) (-1187 "STREAM2.spad" 1989394 1989407 1990256 1990261) (-1186 "STREAM1.spad" 1989100 1989111 1989384 1989389) (-1185 "STREAM.spad" 1985886 1985897 1988493 1988508) (-1184 "STINPROD.spad" 1984822 1984838 1985876 1985881) (-1183 "STEPAST.spad" 1984056 1984065 1984812 1984817) (-1182 "STEP.spad" 1983265 1983274 1984046 1984051) (-1181 "STBL.spad" 1981313 1981341 1981480 1981495) (-1180 "STAGG.spad" 1980388 1980399 1981303 1981308) (-1179 "STAGG.spad" 1979461 1979474 1980378 1980383) (-1178 "STACK.spad" 1978689 1978700 1978939 1978966) (-1177 "SREGSET.spad" 1976388 1976405 1978290 1978317) (-1176 "SRDCMPK.spad" 1974965 1974985 1976378 1976383) (-1175 "SRAGG.spad" 1970148 1970157 1974933 1974960) (-1174 "SRAGG.spad" 1965351 1965362 1970138 1970143) (-1173 "SQMATRIX.spad" 1962846 1962864 1963762 1963849) (-1172 "SPLTREE.spad" 1957312 1957325 1962108 1962135) (-1171 "SPLNODE.spad" 1953932 1953945 1957302 1957307) (-1170 "SPFCAT.spad" 1952741 1952750 1953922 1953927) (-1169 "SPECOUT.spad" 1951293 1951302 1952731 1952736) (-1168 "SPADXPT.spad" 1943384 1943393 1951283 1951288) (-1167 "spad-parser.spad" 1942849 1942858 1943374 1943379) (-1166 "SPADAST.spad" 1942550 1942559 1942839 1942844) (-1165 "SPACEC.spad" 1926765 1926776 1942540 1942545) (-1164 "SPACE3.spad" 1926541 1926552 1926755 1926760) (-1163 "SORTPAK.spad" 1926090 1926103 1926497 1926502) (-1162 "SOLVETRA.spad" 1923853 1923864 1926080 1926085) (-1161 "SOLVESER.spad" 1922309 1922320 1923843 1923848) (-1160 "SOLVERAD.spad" 1918335 1918346 1922299 1922304) (-1159 "SOLVEFOR.spad" 1916797 1916815 1918325 1918330) (-1158 "SNTSCAT.spad" 1916397 1916414 1916765 1916792) (-1157 "SMTS.spad" 1914679 1914705 1915956 1916053) (-1156 "SMP.spad" 1912082 1912102 1912472 1912599) (-1155 "SMITH.spad" 1910927 1910952 1912072 1912077) (-1154 "SMATCAT.spad" 1909045 1909075 1910871 1910922) (-1153 "SMATCAT.spad" 1907095 1907127 1908923 1908928) (-1152 "SKAGG.spad" 1906064 1906075 1907063 1907090) (-1151 "SINT.spad" 1905004 1905013 1905930 1906059) (-1150 "SIMPAN.spad" 1904732 1904741 1904994 1904999) (-1149 "SIGNRF.spad" 1903850 1903861 1904722 1904727) (-1148 "SIGNEF.spad" 1903129 1903146 1903840 1903845) (-1147 "SIGAST.spad" 1902546 1902555 1903119 1903124) (-1146 "SIG.spad" 1901908 1901917 1902536 1902541) (-1145 "SHP.spad" 1899852 1899867 1901864 1901869) (-1144 "SHDP.spad" 1887207 1887234 1887724 1887823) (-1143 "SGROUP.spad" 1886815 1886824 1887197 1887202) (-1142 "SGROUP.spad" 1886421 1886432 1886805 1886810) (-1141 "SGCF.spad" 1879560 1879569 1886411 1886416) (-1140 "SFRTCAT.spad" 1878506 1878523 1879528 1879555) (-1139 "SFRGCD.spad" 1877569 1877589 1878496 1878501) (-1138 "SFQCMPK.spad" 1872382 1872402 1877559 1877564) (-1137 "SFORT.spad" 1871821 1871835 1872372 1872377) (-1136 "SEXOF.spad" 1871664 1871704 1871811 1871816) (-1135 "SEXCAT.spad" 1869492 1869532 1871654 1871659) (-1134 "SEX.spad" 1869384 1869393 1869482 1869487) (-1133 "SETMN.spad" 1867842 1867859 1869374 1869379) (-1132 "SETCAT.spad" 1867327 1867336 1867832 1867837) (-1131 "SETCAT.spad" 1866810 1866821 1867317 1867322) (-1130 "SETAGG.spad" 1863359 1863370 1866790 1866805) (-1129 "SETAGG.spad" 1859916 1859929 1863349 1863354) (-1128 "SET.spad" 1858189 1858200 1859286 1859325) (-1127 "SEQAST.spad" 1857892 1857901 1858179 1858184) (-1126 "SEGXCAT.spad" 1857048 1857061 1857882 1857887) (-1125 "SEGCAT.spad" 1855973 1855984 1857038 1857043) (-1124 "SEGBIND2.spad" 1855671 1855684 1855963 1855968) (-1123 "SEGBIND.spad" 1855429 1855440 1855618 1855623) (-1122 "SEGAST.spad" 1855159 1855168 1855419 1855424) (-1121 "SEG2.spad" 1854594 1854607 1855115 1855120) (-1120 "SEG.spad" 1854407 1854418 1854513 1854518) (-1119 "SDVAR.spad" 1853683 1853694 1854397 1854402) (-1118 "SDPOL.spad" 1850938 1850949 1851229 1851356) (-1117 "SCPKG.spad" 1849027 1849038 1850928 1850933) (-1116 "SCOPE.spad" 1848204 1848213 1849017 1849022) (-1115 "SCACHE.spad" 1846900 1846911 1848194 1848199) (-1114 "SASTCAT.spad" 1846809 1846818 1846890 1846895) (-1113 "SAOS.spad" 1846681 1846690 1846799 1846804) (-1112 "SAERFFC.spad" 1846394 1846414 1846671 1846676) (-1111 "SAEFACT.spad" 1846095 1846115 1846384 1846389) (-1110 "SAE.spad" 1843529 1843545 1844140 1844275) (-1109 "RURPK.spad" 1841188 1841204 1843519 1843524) (-1108 "RULESET.spad" 1840641 1840665 1841178 1841183) (-1107 "RULECOLD.spad" 1840493 1840506 1840631 1840636) (-1106 "RULE.spad" 1838741 1838765 1840483 1840488) (-1105 "RTVALUE.spad" 1838476 1838485 1838731 1838736) (-1104 "RSTRCAST.spad" 1838193 1838202 1838466 1838471) (-1103 "RSETGCD.spad" 1834635 1834655 1838183 1838188) (-1102 "RSETCAT.spad" 1824603 1824620 1834603 1834630) (-1101 "RSETCAT.spad" 1814591 1814610 1824593 1824598) (-1100 "RSDCMPK.spad" 1813091 1813111 1814581 1814586) (-1099 "RRCC.spad" 1811475 1811505 1813081 1813086) (-1098 "RRCC.spad" 1809857 1809889 1811465 1811470) (-1097 "RPTAST.spad" 1809559 1809568 1809847 1809852) (-1096 "RPOLCAT.spad" 1789063 1789078 1809427 1809554) (-1095 "RPOLCAT.spad" 1768262 1768279 1788628 1788633) (-1094 "ROUTINE.spad" 1763663 1763672 1766411 1766438) (-1093 "ROMAN.spad" 1762991 1763000 1763529 1763658) (-1092 "ROIRC.spad" 1762071 1762103 1762981 1762986) (-1091 "RNS.spad" 1760974 1760983 1761973 1762066) (-1090 "RNS.spad" 1759963 1759974 1760964 1760969) (-1089 "RNGBIND.spad" 1759123 1759137 1759918 1759923) (-1088 "RNG.spad" 1758858 1758867 1759113 1759118) (-1087 "RMODULE.spad" 1758639 1758650 1758848 1758853) (-1086 "RMCAT2.spad" 1758059 1758116 1758629 1758634) (-1085 "RMATRIX.spad" 1756829 1756848 1757172 1757211) (-1084 "RMATCAT.spad" 1752408 1752439 1756785 1756824) (-1083 "RMATCAT.spad" 1747877 1747910 1752256 1752261) (-1082 "RLINSET.spad" 1747581 1747592 1747867 1747872) (-1081 "RINTERP.spad" 1747469 1747489 1747571 1747576) (-1080 "RING.spad" 1746939 1746948 1747449 1747464) (-1079 "RING.spad" 1746417 1746428 1746929 1746934) (-1078 "RIDIST.spad" 1745809 1745818 1746407 1746412) (-1077 "RGCHAIN.spad" 1744330 1744346 1745224 1745251) (-1076 "RGBCSPC.spad" 1744119 1744131 1744320 1744325) (-1075 "RGBCMDL.spad" 1743681 1743693 1744109 1744114) (-1074 "RFFACTOR.spad" 1743143 1743154 1743671 1743676) (-1073 "RFFACT.spad" 1742878 1742890 1743133 1743138) (-1072 "RFDIST.spad" 1741874 1741883 1742868 1742873) (-1071 "RF.spad" 1739548 1739559 1741864 1741869) (-1070 "RETSOL.spad" 1738967 1738980 1739538 1739543) (-1069 "RETRACT.spad" 1738395 1738406 1738957 1738962) (-1068 "RETRACT.spad" 1737821 1737834 1738385 1738390) (-1067 "RETAST.spad" 1737633 1737642 1737811 1737816) (-1066 "RESULT.spad" 1735195 1735204 1735782 1735809) (-1065 "RESRING.spad" 1734542 1734589 1735133 1735190) (-1064 "RESLATC.spad" 1733866 1733877 1734532 1734537) (-1063 "REPSQ.spad" 1733597 1733608 1733856 1733861) (-1062 "REPDB.spad" 1733304 1733315 1733587 1733592) (-1061 "REP2.spad" 1723018 1723029 1733146 1733151) (-1060 "REP1.spad" 1717238 1717249 1722968 1722973) (-1059 "REP.spad" 1714792 1714801 1717228 1717233) (-1058 "REGSET.spad" 1712584 1712601 1714393 1714420) (-1057 "REF.spad" 1711919 1711930 1712539 1712544) (-1056 "REDORDER.spad" 1711125 1711142 1711909 1711914) (-1055 "RECLOS.spad" 1709884 1709904 1710588 1710681) (-1054 "REALSOLV.spad" 1709024 1709033 1709874 1709879) (-1053 "REAL0Q.spad" 1706322 1706337 1709014 1709019) (-1052 "REAL0.spad" 1703166 1703181 1706312 1706317) (-1051 "REAL.spad" 1703038 1703047 1703156 1703161) (-1050 "RDUCEAST.spad" 1702759 1702768 1703028 1703033) (-1049 "RDIV.spad" 1702414 1702439 1702749 1702754) (-1048 "RDIST.spad" 1701981 1701992 1702404 1702409) (-1047 "RDETRS.spad" 1700845 1700863 1701971 1701976) (-1046 "RDETR.spad" 1698984 1699002 1700835 1700840) (-1045 "RDEEFS.spad" 1698083 1698100 1698974 1698979) (-1044 "RDEEF.spad" 1697093 1697110 1698073 1698078) (-1043 "RCFIELD.spad" 1694311 1694320 1696995 1697088) (-1042 "RCFIELD.spad" 1691615 1691626 1694301 1694306) (-1041 "RCAGG.spad" 1689551 1689562 1691605 1691610) (-1040 "RCAGG.spad" 1687414 1687427 1689470 1689475) (-1039 "RATRET.spad" 1686774 1686785 1687404 1687409) (-1038 "RATFACT.spad" 1686466 1686478 1686764 1686769) (-1037 "RANDSRC.spad" 1685785 1685794 1686456 1686461) (-1036 "RADUTIL.spad" 1685541 1685550 1685775 1685780) (-1035 "RADIX.spad" 1682320 1682334 1683866 1683959) (-1034 "RADFF.spad" 1680023 1680060 1680142 1680298) (-1033 "RADCAT.spad" 1679618 1679627 1680013 1680018) (-1032 "RADCAT.spad" 1679211 1679222 1679608 1679613) (-1031 "QUEUE.spad" 1678430 1678441 1678689 1678716) (-1030 "QUATCT2.spad" 1678050 1678069 1678420 1678425) (-1029 "QUATCAT.spad" 1676220 1676231 1677980 1678045) (-1028 "QUATCAT.spad" 1674138 1674151 1675900 1675905) (-1027 "QUAT.spad" 1672590 1672601 1672933 1672998) (-1026 "QUAGG.spad" 1671423 1671434 1672558 1672585) (-1025 "QQUTAST.spad" 1671191 1671200 1671413 1671418) (-1024 "QFORM.spad" 1670809 1670824 1671181 1671186) (-1023 "QFCAT2.spad" 1670501 1670518 1670799 1670804) (-1022 "QFCAT.spad" 1669203 1669214 1670403 1670496) (-1021 "QFCAT.spad" 1667487 1667500 1668689 1668694) (-1020 "QEQUAT.spad" 1667045 1667054 1667477 1667482) (-1019 "QCMPACK.spad" 1661959 1661979 1667035 1667040) (-1018 "QALGSET2.spad" 1659954 1659973 1661949 1661954) (-1017 "QALGSET.spad" 1656056 1656089 1659868 1659873) (-1016 "PWFFINTB.spad" 1653471 1653493 1656046 1656051) (-1015 "PUSHVAR.spad" 1652809 1652829 1653461 1653466) (-1014 "PTRANFN.spad" 1648944 1648955 1652799 1652804) (-1013 "PTPACK.spad" 1646031 1646042 1648934 1648939) (-1012 "PTFUNC2.spad" 1645853 1645868 1646021 1646026) (-1011 "PTCAT.spad" 1645107 1645118 1645821 1645848) (-1010 "PSQFR.spad" 1644421 1644446 1645097 1645102) (-1009 "PSEUDLIN.spad" 1643306 1643317 1644411 1644416) (-1008 "PSETPK.spad" 1630010 1630027 1643184 1643189) (-1007 "PSETCAT.spad" 1624409 1624433 1629990 1630005) (-1006 "PSETCAT.spad" 1618782 1618808 1624365 1624370) (-1005 "PSCURVE.spad" 1617780 1617789 1618772 1618777) (-1004 "PSCAT.spad" 1616562 1616592 1617678 1617775) (-1003 "PSCAT.spad" 1615434 1615466 1616552 1616557) (-1002 "PRTITION.spad" 1614131 1614140 1615424 1615429) (-1001 "PRTDAST.spad" 1613849 1613858 1614121 1614126) (-1000 "PRS.spad" 1603466 1603484 1613805 1613810) (-999 "PRQAGG.spad" 1602901 1602911 1603434 1603461) (-998 "PROPLOG.spad" 1602505 1602513 1602891 1602896) (-997 "PROPFUN2.spad" 1602128 1602141 1602495 1602500) (-996 "PROPFUN1.spad" 1601534 1601545 1602118 1602123) (-995 "PROPFRML.spad" 1600102 1600113 1601524 1601529) (-994 "PROPERTY.spad" 1599598 1599606 1600092 1600097) (-993 "PRODUCT.spad" 1597280 1597292 1597564 1597619) (-992 "PRINT.spad" 1597032 1597040 1597270 1597275) (-991 "PRIMES.spad" 1595293 1595303 1597022 1597027) (-990 "PRIMELT.spad" 1593414 1593428 1595283 1595288) (-989 "PRIMCAT.spad" 1593057 1593065 1593404 1593409) (-988 "PRIMARR2.spad" 1591824 1591836 1593047 1593052) (-987 "PRIMARR.spad" 1590663 1590673 1590833 1590860) (-986 "PREASSOC.spad" 1590045 1590057 1590653 1590658) (-985 "PR.spad" 1588410 1588422 1589109 1589236) (-984 "PPCURVE.spad" 1587547 1587555 1588400 1588405) (-983 "PORTNUM.spad" 1587338 1587346 1587537 1587542) (-982 "POLYROOT.spad" 1586187 1586209 1587294 1587299) (-981 "POLYLIFT.spad" 1585452 1585475 1586177 1586182) (-980 "POLYCATQ.spad" 1583578 1583600 1585442 1585447) (-979 "POLYCAT.spad" 1577080 1577101 1583446 1583573) (-978 "POLYCAT.spad" 1569878 1569901 1576246 1576251) (-977 "POLY2UP.spad" 1569330 1569344 1569868 1569873) (-976 "POLY2.spad" 1568927 1568939 1569320 1569325) (-975 "POLY.spad" 1566190 1566200 1566705 1566832) (-974 "POLUTIL.spad" 1565155 1565184 1566146 1566151) (-973 "POLTOPOL.spad" 1563903 1563918 1565145 1565150) (-972 "POINT.spad" 1562567 1562577 1562654 1562681) (-971 "PNTHEORY.spad" 1559269 1559277 1562557 1562562) (-970 "PMTOOLS.spad" 1558044 1558058 1559259 1559264) (-969 "PMSYM.spad" 1557593 1557603 1558034 1558039) (-968 "PMQFCAT.spad" 1557184 1557198 1557583 1557588) (-967 "PMPREDFS.spad" 1556646 1556668 1557174 1557179) (-966 "PMPRED.spad" 1556133 1556147 1556636 1556641) (-965 "PMPLCAT.spad" 1555210 1555228 1556062 1556067) (-964 "PMLSAGG.spad" 1554795 1554809 1555200 1555205) (-963 "PMKERNEL.spad" 1554374 1554386 1554785 1554790) (-962 "PMINS.spad" 1553954 1553964 1554364 1554369) (-961 "PMFS.spad" 1553531 1553549 1553944 1553949) (-960 "PMDOWN.spad" 1552821 1552835 1553521 1553526) (-959 "PMASSFS.spad" 1551796 1551812 1552811 1552816) (-958 "PMASS.spad" 1550814 1550822 1551786 1551791) (-957 "PLOTTOOL.spad" 1550594 1550602 1550804 1550809) (-956 "PLOT3D.spad" 1547058 1547066 1550584 1550589) (-955 "PLOT1.spad" 1546231 1546241 1547048 1547053) (-954 "PLOT.spad" 1541154 1541162 1546221 1546226) (-953 "PLEQN.spad" 1528556 1528583 1541144 1541149) (-952 "PINTERPA.spad" 1528340 1528356 1528546 1528551) (-951 "PINTERP.spad" 1527962 1527981 1528330 1528335) (-950 "PID.spad" 1526932 1526940 1527888 1527957) (-949 "PICOERCE.spad" 1526589 1526599 1526922 1526927) (-948 "PI.spad" 1526206 1526214 1526563 1526584) (-947 "PGROEB.spad" 1524815 1524829 1526196 1526201) (-946 "PGE.spad" 1516488 1516496 1524805 1524810) (-945 "PGCD.spad" 1515442 1515459 1516478 1516483) (-944 "PFRPAC.spad" 1514591 1514601 1515432 1515437) (-943 "PFR.spad" 1511294 1511304 1514493 1514586) (-942 "PFOTOOLS.spad" 1510552 1510568 1511284 1511289) (-941 "PFOQ.spad" 1509922 1509940 1510542 1510547) (-940 "PFO.spad" 1509341 1509368 1509912 1509917) (-939 "PFECAT.spad" 1507047 1507055 1509267 1509336) (-938 "PFECAT.spad" 1504781 1504791 1507003 1507008) (-937 "PFBRU.spad" 1502669 1502681 1504771 1504776) (-936 "PFBR.spad" 1500229 1500252 1502659 1502664) (-935 "PF.spad" 1499803 1499815 1500034 1500127) (-934 "PERMGRP.spad" 1494573 1494583 1499793 1499798) (-933 "PERMCAT.spad" 1493234 1493244 1494553 1494568) (-932 "PERMAN.spad" 1491790 1491804 1493224 1493229) (-931 "PERM.spad" 1487597 1487607 1491620 1491635) (-930 "PENDTREE.spad" 1486817 1486827 1487097 1487102) (-929 "PDSPC.spad" 1485630 1485640 1486807 1486812) (-928 "PDSPC.spad" 1484441 1484453 1485620 1485625) (-927 "PDRING.spad" 1484283 1484293 1484421 1484436) (-926 "PDMOD.spad" 1484099 1484111 1484251 1484278) (-925 "PDEPROB.spad" 1483114 1483122 1484089 1484094) (-924 "PDEPACK.spad" 1477250 1477258 1483104 1483109) (-923 "PDECOMP.spad" 1476720 1476737 1477240 1477245) (-922 "PDECAT.spad" 1475076 1475084 1476710 1476715) (-921 "PDDOM.spad" 1474514 1474527 1475066 1475071) (-920 "PDDOM.spad" 1473950 1473965 1474504 1474509) (-919 "PCOMP.spad" 1473803 1473816 1473940 1473945) (-918 "PBWLB.spad" 1472399 1472416 1473793 1473798) (-917 "PATTERN2.spad" 1472137 1472149 1472389 1472394) (-916 "PATTERN1.spad" 1470481 1470497 1472127 1472132) (-915 "PATTERN.spad" 1465052 1465062 1470471 1470476) (-914 "PATRES2.spad" 1464724 1464738 1465042 1465047) (-913 "PATRES.spad" 1462307 1462319 1464714 1464719) (-912 "PATMATCH.spad" 1460495 1460526 1462006 1462011) (-911 "PATMAB.spad" 1459924 1459934 1460485 1460490) (-910 "PATLRES.spad" 1459010 1459024 1459914 1459919) (-909 "PATAB.spad" 1458774 1458784 1459000 1459005) (-908 "PARTPERM.spad" 1456830 1456838 1458764 1458769) (-907 "PARSURF.spad" 1456264 1456292 1456820 1456825) (-906 "PARSU2.spad" 1456061 1456077 1456254 1456259) (-905 "script-parser.spad" 1455581 1455589 1456051 1456056) (-904 "PARSCURV.spad" 1455015 1455043 1455571 1455576) (-903 "PARSC2.spad" 1454806 1454822 1455005 1455010) (-902 "PARPCURV.spad" 1454268 1454296 1454796 1454801) (-901 "PARPC2.spad" 1454059 1454075 1454258 1454263) (-900 "PARAMAST.spad" 1453187 1453195 1454049 1454054) (-899 "PAN2EXPR.spad" 1452599 1452607 1453177 1453182) (-898 "PALETTE.spad" 1451585 1451593 1452589 1452594) (-897 "PAIR.spad" 1450592 1450605 1451161 1451166) (-896 "PADICRC.spad" 1447796 1447814 1448959 1449052) (-895 "PADICRAT.spad" 1445655 1445667 1445868 1445961) (-894 "PADICCT.spad" 1444204 1444216 1445581 1445650) (-893 "PADIC.spad" 1443907 1443919 1444130 1444199) (-892 "PADEPAC.spad" 1442596 1442615 1443897 1443902) (-891 "PADE.spad" 1441348 1441364 1442586 1442591) (-890 "OWP.spad" 1440596 1440626 1441206 1441273) (-889 "OVERSET.spad" 1440169 1440177 1440586 1440591) (-888 "OVAR.spad" 1439950 1439973 1440159 1440164) (-887 "OUTFORM.spad" 1429358 1429366 1439940 1439945) (-886 "OUTBFILE.spad" 1428792 1428800 1429348 1429353) (-885 "OUTBCON.spad" 1427862 1427870 1428782 1428787) (-884 "OUTBCON.spad" 1426930 1426940 1427852 1427857) (-883 "OUT.spad" 1426048 1426056 1426920 1426925) (-882 "OSI.spad" 1425523 1425531 1426038 1426043) (-881 "OSGROUP.spad" 1425441 1425449 1425513 1425518) (-880 "ORTHPOL.spad" 1423920 1423930 1425352 1425357) (-879 "OREUP.spad" 1423364 1423392 1423591 1423630) (-878 "ORESUP.spad" 1422656 1422680 1423035 1423074) (-877 "OREPCTO.spad" 1420545 1420557 1422576 1422581) (-876 "OREPCAT.spad" 1414732 1414742 1420501 1420540) (-875 "OREPCAT.spad" 1408809 1408821 1414580 1414585) (-874 "ORDTYPE.spad" 1408046 1408054 1408799 1408804) (-873 "ORDTYPE.spad" 1407281 1407291 1408036 1408041) (-872 "ORDSTRCT.spad" 1407051 1407066 1407214 1407219) (-871 "ORDSET.spad" 1406751 1406759 1407041 1407046) (-870 "ORDRING.spad" 1406141 1406149 1406731 1406746) (-869 "ORDRING.spad" 1405539 1405549 1406131 1406136) (-868 "ORDMON.spad" 1405394 1405402 1405529 1405534) (-867 "ORDFUNS.spad" 1404526 1404542 1405384 1405389) (-866 "ORDFIN.spad" 1404346 1404354 1404516 1404521) (-865 "ORDCOMP2.spad" 1403639 1403651 1404336 1404341) (-864 "ORDCOMP.spad" 1402092 1402102 1403174 1403203) (-863 "OPTPROB.spad" 1400730 1400738 1402082 1402087) (-862 "OPTPACK.spad" 1393139 1393147 1400720 1400725) (-861 "OPTCAT.spad" 1390818 1390826 1393129 1393134) (-860 "OPSIG.spad" 1390480 1390488 1390808 1390813) (-859 "OPQUERY.spad" 1390061 1390069 1390470 1390475) (-858 "OPERCAT.spad" 1389527 1389537 1390051 1390056) (-857 "OPERCAT.spad" 1388991 1389003 1389517 1389522) (-856 "OP.spad" 1388733 1388743 1388813 1388880) (-855 "ONECOMP2.spad" 1388157 1388169 1388723 1388728) (-854 "ONECOMP.spad" 1386890 1386900 1387692 1387721) (-853 "OMSERVER.spad" 1385896 1385904 1386880 1386885) (-852 "OMSAGG.spad" 1385684 1385694 1385852 1385891) (-851 "OMPKG.spad" 1384316 1384324 1385674 1385679) (-850 "OMLO.spad" 1383749 1383761 1384202 1384241) (-849 "OMEXPR.spad" 1383583 1383593 1383739 1383744) (-848 "OMERRK.spad" 1382633 1382641 1383573 1383578) (-847 "OMERR.spad" 1382178 1382186 1382623 1382628) (-846 "OMENC.spad" 1381530 1381538 1382168 1382173) (-845 "OMDEV.spad" 1375863 1375871 1381520 1381525) (-844 "OMCONN.spad" 1375272 1375280 1375853 1375858) (-843 "OM.spad" 1374269 1374277 1375262 1375267) (-842 "OINTDOM.spad" 1374032 1374040 1374195 1374264) (-841 "OFMONOID.spad" 1372171 1372181 1373988 1373993) (-840 "ODVAR.spad" 1371432 1371442 1372161 1372166) (-839 "ODR.spad" 1371076 1371102 1371244 1371393) (-838 "ODPOL.spad" 1368287 1368297 1368627 1368754) (-837 "ODP.spad" 1355786 1355806 1356159 1356258) (-836 "ODETOOLS.spad" 1354435 1354454 1355776 1355781) (-835 "ODESYS.spad" 1352129 1352146 1354425 1354430) (-834 "ODERTRIC.spad" 1348162 1348179 1352086 1352091) (-833 "ODERED.spad" 1347561 1347585 1348152 1348157) (-832 "ODERAT.spad" 1345192 1345209 1347551 1347556) (-831 "ODEPRRIC.spad" 1342285 1342307 1345182 1345187) (-830 "ODEPROB.spad" 1341542 1341550 1342275 1342280) (-829 "ODEPRIM.spad" 1338940 1338962 1341532 1341537) (-828 "ODEPAL.spad" 1338326 1338350 1338930 1338935) (-827 "ODEPACK.spad" 1325056 1325064 1338316 1338321) (-826 "ODEINT.spad" 1324491 1324507 1325046 1325051) (-825 "ODEIFTBL.spad" 1321894 1321902 1324481 1324486) (-824 "ODEEF.spad" 1317385 1317401 1321884 1321889) (-823 "ODECONST.spad" 1316930 1316948 1317375 1317380) (-822 "ODECAT.spad" 1315528 1315536 1316920 1316925) (-821 "OCTCT2.spad" 1315166 1315187 1315518 1315523) (-820 "OCT.spad" 1313254 1313264 1313968 1314007) (-819 "OCAMON.spad" 1313102 1313110 1313244 1313249) (-818 "OC.spad" 1310898 1310908 1313058 1313097) (-817 "OC.spad" 1308416 1308428 1310578 1310583) (-816 "OASGP.spad" 1308231 1308239 1308406 1308411) (-815 "OAMONS.spad" 1307753 1307761 1308221 1308226) (-814 "OAMON.spad" 1307614 1307622 1307743 1307748) (-813 "OAGROUP.spad" 1307476 1307484 1307604 1307609) (-812 "NUMTUBE.spad" 1307067 1307083 1307466 1307471) (-811 "NUMQUAD.spad" 1295043 1295051 1307057 1307062) (-810 "NUMODE.spad" 1286395 1286403 1295033 1295038) (-809 "NUMINT.spad" 1283961 1283969 1286385 1286390) (-808 "NUMFMT.spad" 1282801 1282809 1283951 1283956) (-807 "NUMERIC.spad" 1274915 1274925 1282606 1282611) (-806 "NTSCAT.spad" 1273423 1273439 1274883 1274910) (-805 "NTPOLFN.spad" 1272968 1272978 1273334 1273339) (-804 "NSUP2.spad" 1272360 1272372 1272958 1272963) (-803 "NSUP.spad" 1265355 1265365 1269775 1269928) (-802 "NSMP.spad" 1261454 1261473 1261746 1261873) (-801 "NREP.spad" 1259856 1259870 1261444 1261449) (-800 "NPCOEF.spad" 1259102 1259122 1259846 1259851) (-799 "NORMRETR.spad" 1258700 1258739 1259092 1259097) (-798 "NORMPK.spad" 1256642 1256661 1258690 1258695) (-797 "NORMMA.spad" 1256330 1256356 1256632 1256637) (-796 "NONE1.spad" 1256006 1256016 1256320 1256325) (-795 "NONE.spad" 1255747 1255755 1255996 1256001) (-794 "NODE1.spad" 1255234 1255250 1255737 1255742) (-793 "NNI.spad" 1254129 1254137 1255208 1255229) (-792 "NLINSOL.spad" 1252755 1252765 1254119 1254124) (-791 "NIPROB.spad" 1251296 1251304 1252745 1252750) (-790 "NFINTBAS.spad" 1248856 1248873 1251286 1251291) (-789 "NETCLT.spad" 1248830 1248841 1248846 1248851) (-788 "NCODIV.spad" 1247054 1247070 1248820 1248825) (-787 "NCNTFRAC.spad" 1246696 1246710 1247044 1247049) (-786 "NCEP.spad" 1244862 1244876 1246686 1246691) (-785 "NASRING.spad" 1244466 1244474 1244852 1244857) (-784 "NASRING.spad" 1244068 1244078 1244456 1244461) (-783 "NARNG.spad" 1243468 1243476 1244058 1244063) (-782 "NARNG.spad" 1242866 1242876 1243458 1243463) (-781 "NAGSP.spad" 1241943 1241951 1242856 1242861) (-780 "NAGS.spad" 1231660 1231668 1241933 1241938) (-779 "NAGF07.spad" 1230091 1230099 1231650 1231655) (-778 "NAGF04.spad" 1224493 1224501 1230081 1230086) (-777 "NAGF02.spad" 1218586 1218594 1224483 1224488) (-776 "NAGF01.spad" 1214355 1214363 1218576 1218581) (-775 "NAGE04.spad" 1208063 1208071 1214345 1214350) (-774 "NAGE02.spad" 1198715 1198723 1208053 1208058) (-773 "NAGE01.spad" 1194709 1194717 1198705 1198710) (-772 "NAGD03.spad" 1192705 1192713 1194699 1194704) (-771 "NAGD02.spad" 1185436 1185444 1192695 1192700) (-770 "NAGD01.spad" 1179721 1179729 1185426 1185431) (-769 "NAGC06.spad" 1175588 1175596 1179711 1179716) (-768 "NAGC05.spad" 1174081 1174089 1175578 1175583) (-767 "NAGC02.spad" 1173356 1173364 1174071 1174076) (-766 "NAALG.spad" 1172921 1172931 1173324 1173351) (-765 "NAALG.spad" 1172506 1172518 1172911 1172916) (-764 "MULTSQFR.spad" 1169464 1169481 1172496 1172501) (-763 "MULTFACT.spad" 1168847 1168864 1169454 1169459) (-762 "MTSCAT.spad" 1166941 1166962 1168745 1168842) (-761 "MTHING.spad" 1166600 1166610 1166931 1166936) (-760 "MSYSCMD.spad" 1166034 1166042 1166590 1166595) (-759 "MSETAGG.spad" 1165879 1165889 1166002 1166029) (-758 "MSET.spad" 1163792 1163802 1165540 1165579) (-757 "MRING.spad" 1160769 1160781 1163500 1163567) (-756 "MRF2.spad" 1160331 1160345 1160759 1160764) (-755 "MRATFAC.spad" 1159877 1159894 1160321 1160326) (-754 "MPRFF.spad" 1157917 1157936 1159867 1159872) (-753 "MPOLY.spad" 1155316 1155331 1155675 1155802) (-752 "MPCPF.spad" 1154580 1154599 1155306 1155311) (-751 "MPC3.spad" 1154397 1154437 1154570 1154575) (-750 "MPC2.spad" 1154050 1154083 1154387 1154392) (-749 "MONOTOOL.spad" 1152401 1152418 1154040 1154045) (-748 "MONOID.spad" 1151720 1151728 1152391 1152396) (-747 "MONOID.spad" 1151037 1151047 1151710 1151715) (-746 "MONOGEN.spad" 1149785 1149798 1150897 1151032) (-745 "MONOGEN.spad" 1148555 1148570 1149669 1149674) (-744 "MONADWU.spad" 1146633 1146641 1148545 1148550) (-743 "MONADWU.spad" 1144709 1144719 1146623 1146628) (-742 "MONAD.spad" 1143869 1143877 1144699 1144704) (-741 "MONAD.spad" 1143027 1143037 1143859 1143864) (-740 "MOEBIUS.spad" 1141763 1141777 1143007 1143022) (-739 "MODULE.spad" 1141633 1141643 1141731 1141758) (-738 "MODULE.spad" 1141523 1141535 1141623 1141628) (-737 "MODRING.spad" 1140858 1140897 1141503 1141518) (-736 "MODOP.spad" 1139515 1139527 1140680 1140747) (-735 "MODMONOM.spad" 1139246 1139264 1139505 1139510) (-734 "MODMON.spad" 1135870 1135886 1136589 1136742) (-733 "MODFIELD.spad" 1135232 1135271 1135772 1135865) (-732 "MMLFORM.spad" 1134092 1134100 1135222 1135227) (-731 "MMAP.spad" 1133834 1133868 1134082 1134087) (-730 "MLO.spad" 1132293 1132303 1133790 1133829) (-729 "MLIFT.spad" 1130905 1130922 1132283 1132288) (-728 "MKUCFUNC.spad" 1130440 1130458 1130895 1130900) (-727 "MKRECORD.spad" 1130028 1130041 1130430 1130435) (-726 "MKFUNC.spad" 1129435 1129445 1130018 1130023) (-725 "MKFLCFN.spad" 1128403 1128413 1129425 1129430) (-724 "MKBCFUNC.spad" 1127898 1127916 1128393 1128398) (-723 "MINT.spad" 1127337 1127345 1127800 1127893) (-722 "MHROWRED.spad" 1125848 1125858 1127327 1127332) (-721 "MFLOAT.spad" 1124368 1124376 1125738 1125843) (-720 "MFINFACT.spad" 1123768 1123790 1124358 1124363) (-719 "MESH.spad" 1121558 1121566 1123758 1123763) (-718 "MDDFACT.spad" 1119777 1119787 1121548 1121553) (-717 "MDAGG.spad" 1119068 1119078 1119757 1119772) (-716 "MCMPLX.spad" 1114433 1114441 1115047 1115248) (-715 "MCDEN.spad" 1113643 1113655 1114423 1114428) (-714 "MCALCFN.spad" 1110741 1110767 1113633 1113638) (-713 "MAYBE.spad" 1110041 1110052 1110731 1110736) (-712 "MATSTOR.spad" 1107357 1107367 1110031 1110036) (-711 "MATRIX.spad" 1105923 1105933 1106407 1106434) (-710 "MATLIN.spad" 1103291 1103315 1105807 1105812) (-709 "MATCAT2.spad" 1102573 1102621 1103281 1103286) (-708 "MATCAT.spad" 1094135 1094157 1102541 1102568) (-707 "MATCAT.spad" 1085569 1085593 1093977 1093982) (-706 "MAPPKG3.spad" 1084484 1084498 1085559 1085564) (-705 "MAPPKG2.spad" 1083822 1083834 1084474 1084479) (-704 "MAPPKG1.spad" 1082650 1082660 1083812 1083817) (-703 "MAPPAST.spad" 1081989 1081997 1082640 1082645) (-702 "MAPHACK3.spad" 1081801 1081815 1081979 1081984) (-701 "MAPHACK2.spad" 1081570 1081582 1081791 1081796) (-700 "MAPHACK1.spad" 1081214 1081224 1081560 1081565) (-699 "MAGMA.spad" 1079020 1079037 1081204 1081209) (-698 "MACROAST.spad" 1078615 1078623 1079010 1079015) (-697 "M3D.spad" 1076200 1076210 1077858 1077863) (-696 "LZSTAGG.spad" 1073454 1073464 1076190 1076195) (-695 "LZSTAGG.spad" 1070706 1070718 1073444 1073449) (-694 "LWORD.spad" 1067451 1067468 1070696 1070701) (-693 "LSTAST.spad" 1067235 1067243 1067441 1067446) (-692 "LSQM.spad" 1065347 1065361 1065741 1065792) (-691 "LSPP.spad" 1064882 1064899 1065337 1065342) (-690 "LSMP1.spad" 1062708 1062722 1064872 1064877) (-689 "LSMP.spad" 1061558 1061586 1062698 1062703) (-688 "LSAGG.spad" 1061227 1061237 1061526 1061553) (-687 "LSAGG.spad" 1060916 1060928 1061217 1061222) (-686 "LPOLY.spad" 1059878 1059897 1060772 1060841) (-685 "LPEFRAC.spad" 1059149 1059159 1059868 1059873) (-684 "LOGIC.spad" 1058751 1058759 1059139 1059144) (-683 "LOGIC.spad" 1058351 1058361 1058741 1058746) (-682 "LODOOPS.spad" 1057281 1057293 1058341 1058346) (-681 "LODOF.spad" 1056327 1056344 1057238 1057243) (-680 "LODOCAT.spad" 1054993 1055003 1056283 1056322) (-679 "LODOCAT.spad" 1053657 1053669 1054949 1054954) (-678 "LODO2.spad" 1052921 1052933 1053328 1053367) (-677 "LODO1.spad" 1052312 1052322 1052592 1052631) (-676 "LODO.spad" 1051687 1051703 1051983 1052022) (-675 "LODEEF.spad" 1050489 1050507 1051677 1051682) (-674 "LO.spad" 1049890 1049904 1050423 1050450) (-673 "LNAGG.spad" 1046077 1046087 1049880 1049885) (-672 "LNAGG.spad" 1042228 1042240 1046033 1046038) (-671 "LMOPS.spad" 1038996 1039013 1042218 1042223) (-670 "LMODULE.spad" 1038780 1038790 1038986 1038991) (-669 "LMDICT.spad" 1037951 1037961 1038199 1038226) (-668 "LLINSET.spad" 1037658 1037668 1037941 1037946) (-667 "LITERAL.spad" 1037564 1037575 1037648 1037653) (-666 "LIST3.spad" 1036875 1036889 1037554 1037559) (-665 "LIST2MAP.spad" 1033802 1033814 1036865 1036870) (-664 "LIST2.spad" 1032504 1032516 1033792 1033797) (-663 "LIST.spad" 1030065 1030075 1031477 1031504) (-662 "LINSET.spad" 1029844 1029854 1030055 1030060) (-661 "LINFORM.spad" 1029307 1029319 1029812 1029839) (-660 "LINEXP.spad" 1028050 1028060 1029297 1029302) (-659 "LINELT.spad" 1027421 1027433 1027933 1027960) (-658 "LINDEP.spad" 1026270 1026282 1027333 1027338) (-657 "LINBASIS.spad" 1025906 1025921 1026260 1026265) (-656 "LIMITRF.spad" 1023834 1023844 1025896 1025901) (-655 "LIMITPS.spad" 1022737 1022750 1023824 1023829) (-654 "LIECAT.spad" 1022221 1022231 1022663 1022732) (-653 "LIECAT.spad" 1021733 1021745 1022177 1022182) (-652 "LIE.spad" 1019728 1019740 1021002 1021147) (-651 "LIB.spad" 1017443 1017451 1017889 1017904) (-650 "LGROBP.spad" 1014796 1014815 1017433 1017438) (-649 "LFCAT.spad" 1013855 1013863 1014786 1014791) (-648 "LF.spad" 1012810 1012826 1013845 1013850) (-647 "LEXTRIPK.spad" 1008433 1008448 1012800 1012805) (-646 "LEXP.spad" 1006452 1006479 1008413 1008428) (-645 "LETAST.spad" 1006151 1006159 1006442 1006447) (-644 "LEADCDET.spad" 1004557 1004574 1006141 1006146) (-643 "LAZM3PK.spad" 1003301 1003323 1004547 1004552) (-642 "LAUPOL.spad" 1001886 1001899 1002786 1002855) (-641 "LAPLACE.spad" 1001469 1001485 1001876 1001881) (-640 "LALG.spad" 1001245 1001255 1001449 1001464) (-639 "LALG.spad" 1001029 1001041 1001235 1001240) (-638 "LA.spad" 1000469 1000483 1000951 1000990) (-637 "KVTFROM.spad" 1000212 1000222 1000459 1000464) (-636 "KTVLOGIC.spad" 999756 999764 1000202 1000207) (-635 "KRCFROM.spad" 999502 999512 999746 999751) (-634 "KOVACIC.spad" 998233 998250 999492 999497) (-633 "KONVERT.spad" 997955 997965 998223 998228) (-632 "KOERCE.spad" 997692 997702 997945 997950) (-631 "KERNEL2.spad" 997395 997407 997682 997687) (-630 "KERNEL.spad" 996035 996045 997164 997169) (-629 "KDAGG.spad" 995144 995166 996015 996030) (-628 "KDAGG.spad" 994261 994285 995134 995139) (-627 "KAFILE.spad" 993091 993107 993326 993353) (-626 "JVMOP.spad" 993004 993012 993081 993086) (-625 "JVMMDACC.spad" 992058 992066 992994 992999) (-624 "JVMFDACC.spad" 991374 991382 992048 992053) (-623 "JVMCSTTG.spad" 990103 990111 991364 991369) (-622 "JVMCFACC.spad" 989549 989557 990093 990098) (-621 "JVMBCODE.spad" 989460 989468 989539 989544) (-620 "JORDAN.spad" 987268 987280 988729 988874) (-619 "JOINAST.spad" 986970 986978 987258 987263) (-618 "IXAGG.spad" 985103 985127 986960 986965) (-617 "IXAGG.spad" 983091 983117 984950 984955) (-616 "IVECTOR.spad" 981687 981702 981842 981869) (-615 "ITUPLE.spad" 980863 980873 981677 981682) (-614 "ITRIGMNP.spad" 979710 979729 980853 980858) (-613 "ITFUN3.spad" 979216 979230 979700 979705) (-612 "ITFUN2.spad" 978960 978972 979206 979211) (-611 "ITFORM.spad" 978315 978323 978950 978955) (-610 "ITAYLOR.spad" 976309 976324 978179 978276) (-609 "ISUPS.spad" 968707 968722 975244 975341) (-608 "ISUMP.spad" 968208 968224 968697 968702) (-607 "ISTRING.spad" 967114 967127 967195 967222) (-606 "ISAST.spad" 966833 966841 967104 967109) (-605 "IRURPK.spad" 965550 965569 966823 966828) (-604 "IRSN.spad" 963554 963562 965540 965545) (-603 "IRRF2F.spad" 962047 962057 963510 963515) (-602 "IRREDFFX.spad" 961648 961659 962037 962042) (-601 "IROOT.spad" 959987 959997 961638 961643) (-600 "IRFORM.spad" 959311 959319 959977 959982) (-599 "IR2F.spad" 958525 958541 959301 959306) (-598 "IR2.spad" 957553 957569 958515 958520) (-597 "IR.spad" 955356 955370 957402 957429) (-596 "IPRNTPK.spad" 955116 955124 955346 955351) (-595 "IPF.spad" 954681 954693 954921 955014) (-594 "IPADIC.spad" 954450 954476 954607 954676) (-593 "IP4ADDR.spad" 954007 954015 954440 954445) (-592 "IOMODE.spad" 953529 953537 953997 954002) (-591 "IOBFILE.spad" 952914 952922 953519 953524) (-590 "IOBCON.spad" 952779 952787 952904 952909) (-589 "INVLAPLA.spad" 952428 952444 952769 952774) (-588 "INTTR.spad" 945810 945827 952418 952423) (-587 "INTTOOLS.spad" 943553 943569 945372 945377) (-586 "INTSLPE.spad" 942881 942889 943543 943548) (-585 "INTRVL.spad" 942447 942457 942795 942876) (-584 "INTRF.spad" 940879 940893 942437 942442) (-583 "INTRET.spad" 940311 940321 940869 940874) (-582 "INTRAT.spad" 939046 939063 940301 940306) (-581 "INTPM.spad" 937413 937429 938671 938676) (-580 "INTPAF.spad" 935282 935300 937342 937347) (-579 "INTPACK.spad" 925848 925856 935272 935277) (-578 "INTHERTR.spad" 925122 925139 925838 925843) (-577 "INTHERAL.spad" 924792 924816 925112 925117) (-576 "INTHEORY.spad" 921231 921239 924782 924787) (-575 "INTG0.spad" 914977 914995 921160 921165) (-574 "INTFTBL.spad" 909006 909014 914967 914972) (-573 "INTFACT.spad" 908073 908083 908996 909001) (-572 "INTEF.spad" 906482 906498 908063 908068) (-571 "INTDOM.spad" 905105 905113 906408 906477) (-570 "INTDOM.spad" 903790 903800 905095 905100) (-569 "INTCAT.spad" 902057 902067 903704 903785) (-568 "INTBIT.spad" 901564 901572 902047 902052) (-567 "INTALG.spad" 900752 900779 901554 901559) (-566 "INTAF.spad" 900252 900268 900742 900747) (-565 "INTABL.spad" 898292 898323 898455 898482) (-564 "INT8.spad" 898172 898180 898282 898287) (-563 "INT64.spad" 898051 898059 898162 898167) (-562 "INT32.spad" 897930 897938 898041 898046) (-561 "INT16.spad" 897809 897817 897920 897925) (-560 "INT.spad" 897257 897265 897663 897804) (-559 "INS.spad" 894760 894768 897159 897252) (-558 "INS.spad" 892349 892359 894750 894755) (-557 "INPSIGN.spad" 891797 891810 892339 892344) (-556 "INPRODPF.spad" 890893 890912 891787 891792) (-555 "INPRODFF.spad" 889981 890005 890883 890888) (-554 "INNMFACT.spad" 888956 888973 889971 889976) (-553 "INMODGCD.spad" 888460 888490 888946 888951) (-552 "INFSP.spad" 886757 886779 888450 888455) (-551 "INFPROD0.spad" 885837 885856 886747 886752) (-550 "INFORM1.spad" 885462 885472 885827 885832) (-549 "INFORM.spad" 882669 882677 885452 885457) (-548 "INFINITY.spad" 882221 882229 882659 882664) (-547 "INETCLTS.spad" 882198 882206 882211 882216) (-546 "INEP.spad" 880744 880766 882188 882193) (-545 "INDE.spad" 880393 880410 880654 880659) (-544 "INCRMAPS.spad" 879830 879840 880383 880388) (-543 "INBFILE.spad" 878926 878934 879820 879825) (-542 "INBFF.spad" 874776 874787 878916 878921) (-541 "INBCON.spad" 873042 873050 874766 874771) (-540 "INBCON.spad" 871306 871316 873032 873037) (-539 "INAST.spad" 870967 870975 871296 871301) (-538 "IMPTAST.spad" 870675 870683 870957 870962) (-537 "IMATRIX.spad" 869491 869517 870003 870030) (-536 "IMATQF.spad" 868585 868629 869447 869452) (-535 "IMATLIN.spad" 867206 867230 868541 868546) (-534 "ILIST.spad" 865690 865705 866215 866242) (-533 "IIARRAY2.spad" 864965 865003 865168 865195) (-532 "IFF.spad" 864375 864391 864646 864739) (-531 "IFAST.spad" 863989 863997 864365 864370) (-530 "IFARRAY.spad" 861300 861315 862998 863025) (-529 "IFAMON.spad" 861162 861179 861256 861261) (-528 "IEVALAB.spad" 860575 860587 861152 861157) (-527 "IEVALAB.spad" 859986 860000 860565 860570) (-526 "IDPOAMS.spad" 859664 859676 859898 859903) (-525 "IDPOAM.spad" 859306 859318 859576 859581) (-524 "IDPO.spad" 859041 859053 859218 859223) (-523 "IDPC.spad" 857770 857782 859031 859036) (-522 "IDPAM.spad" 857437 857449 857682 857687) (-521 "IDPAG.spad" 857106 857118 857349 857354) (-520 "IDENT.spad" 856756 856764 857096 857101) (-519 "IDECOMP.spad" 853995 854013 856746 856751) (-518 "IDEAL.spad" 848941 848980 853927 853932) (-517 "ICDEN.spad" 848154 848170 848931 848936) (-516 "ICARD.spad" 847345 847353 848144 848149) (-515 "IBPTOOLS.spad" 845952 845969 847335 847340) (-514 "IBITS.spad" 845108 845121 845541 845568) (-513 "IBATOOL.spad" 842093 842112 845098 845103) (-512 "IBACHIN.spad" 840600 840615 842083 842088) (-511 "IARRAY2.spad" 839467 839493 840078 840105) (-510 "IARRAY1.spad" 838330 838345 838476 838503) (-509 "IAN.spad" 836550 836558 838143 838236) (-508 "IALGFACT.spad" 836161 836194 836540 836545) (-507 "HYPCAT.spad" 835585 835593 836151 836156) (-506 "HYPCAT.spad" 835007 835017 835575 835580) (-505 "HOSTNAME.spad" 834823 834831 834997 835002) (-504 "HOMOTOP.spad" 834566 834576 834813 834818) (-503 "HOAGG.spad" 831848 831858 834556 834561) (-502 "HOAGG.spad" 828863 828875 831573 831578) (-501 "HEXADEC.spad" 826823 826831 827188 827281) (-500 "HEUGCD.spad" 825914 825925 826813 826818) (-499 "HELLFDIV.spad" 825520 825544 825904 825909) (-498 "HEAP.spad" 824783 824793 824998 825025) (-497 "HEADAST.spad" 824324 824332 824773 824778) (-496 "HDP.spad" 811819 811835 812196 812295) (-495 "HDMP.spad" 808961 808976 809577 809704) (-494 "HB.spad" 807236 807244 808951 808956) (-493 "HASHTBL.spad" 805228 805259 805439 805466) (-492 "HASAST.spad" 804944 804952 805218 805223) (-491 "HACKPI.spad" 804435 804443 804846 804939) (-490 "GTSET.spad" 803329 803345 804036 804063) (-489 "GSTBL.spad" 801370 801405 801544 801559) (-488 "GSERIES.spad" 798602 798629 799421 799570) (-487 "GROUP.spad" 797875 797883 798582 798597) (-486 "GROUP.spad" 797156 797166 797865 797870) (-485 "GROEBSOL.spad" 795650 795671 797146 797151) (-484 "GRMOD.spad" 794229 794241 795640 795645) (-483 "GRMOD.spad" 792806 792820 794219 794224) (-482 "GRIMAGE.spad" 785719 785727 792796 792801) (-481 "GRDEF.spad" 784098 784106 785709 785714) (-480 "GRAY.spad" 782569 782577 784088 784093) (-479 "GRALG.spad" 781662 781674 782559 782564) (-478 "GRALG.spad" 780753 780767 781652 781657) (-477 "GPOLSET.spad" 780178 780201 780390 780417) (-476 "GOSPER.spad" 779455 779473 780168 780173) (-475 "GMODPOL.spad" 778603 778630 779423 779450) (-474 "GHENSEL.spad" 777686 777700 778593 778598) (-473 "GENUPS.spad" 773979 773992 777676 777681) (-472 "GENUFACT.spad" 773556 773566 773969 773974) (-471 "GENPGCD.spad" 773158 773175 773546 773551) (-470 "GENMFACT.spad" 772610 772629 773148 773153) (-469 "GENEEZ.spad" 770569 770582 772600 772605) (-468 "GDMP.spad" 767553 767570 768327 768454) (-467 "GCNAALG.spad" 761476 761503 767347 767414) (-466 "GCDDOM.spad" 760668 760676 761402 761471) (-465 "GCDDOM.spad" 759922 759932 760658 760663) (-464 "GBINTERN.spad" 755942 755980 759912 759917) (-463 "GBF.spad" 751725 751763 755932 755937) (-462 "GBEUCLID.spad" 749607 749645 751715 751720) (-461 "GB.spad" 747133 747171 749563 749568) (-460 "GAUSSFAC.spad" 746446 746454 747123 747128) (-459 "GALUTIL.spad" 744772 744782 746402 746407) (-458 "GALPOLYU.spad" 743226 743239 744762 744767) (-457 "GALFACTU.spad" 741439 741458 743216 743221) (-456 "GALFACT.spad" 731652 731663 741429 741434) (-455 "FVFUN.spad" 728675 728683 731642 731647) (-454 "FVC.spad" 727727 727735 728665 728670) (-453 "FUNDESC.spad" 727405 727413 727717 727722) (-452 "FUNCTION.spad" 727254 727266 727395 727400) (-451 "FTEM.spad" 726419 726427 727244 727249) (-450 "FT.spad" 724716 724724 726409 726414) (-449 "FSUPFACT.spad" 723613 723632 724649 724654) (-448 "FST.spad" 721699 721707 723603 723608) (-447 "FSRED.spad" 721179 721195 721689 721694) (-446 "FSPRMELT.spad" 720045 720061 721136 721141) (-445 "FSPECF.spad" 718136 718152 720035 720040) (-444 "FSINT.spad" 717796 717812 718126 718131) (-443 "FSERIES.spad" 716987 716999 717616 717715) (-442 "FSCINT.spad" 716304 716320 716977 716982) (-441 "FSAGG2.spad" 715039 715055 716294 716299) (-440 "FSAGG.spad" 714156 714166 714995 715034) (-439 "FSAGG.spad" 713235 713247 714076 714081) (-438 "FS2UPS.spad" 707750 707784 713225 713230) (-437 "FS2EXPXP.spad" 706891 706914 707740 707745) (-436 "FS2.spad" 706546 706562 706881 706886) (-435 "FS.spad" 700814 700824 706321 706541) (-434 "FS.spad" 694854 694866 700363 700368) (-433 "FRUTIL.spad" 693808 693818 694844 694849) (-432 "FRNAALG.spad" 689085 689095 693750 693803) (-431 "FRNAALG.spad" 684374 684386 689041 689046) (-430 "FRNAAF2.spad" 683822 683840 684364 684369) (-429 "FRMOD.spad" 683229 683259 683750 683755) (-428 "FRIDEAL2.spad" 682833 682865 683219 683224) (-427 "FRIDEAL.spad" 682058 682079 682813 682828) (-426 "FRETRCT.spad" 681577 681587 682048 682053) (-425 "FRETRCT.spad" 680953 680965 681426 681431) (-424 "FRAMALG.spad" 679333 679346 680909 680948) (-423 "FRAMALG.spad" 677745 677760 679323 679328) (-422 "FRAC2.spad" 677350 677362 677735 677740) (-421 "FRAC.spad" 674309 674319 674696 674869) (-420 "FR2.spad" 673645 673657 674299 674304) (-419 "FR.spad" 667240 667250 672540 672609) (-418 "FPS.spad" 664079 664087 667130 667235) (-417 "FPS.spad" 660946 660956 663999 664004) (-416 "FPC.spad" 659992 660000 660848 660941) (-415 "FPC.spad" 659124 659134 659982 659987) (-414 "FPATMAB.spad" 658886 658896 659114 659119) (-413 "FPARFRAC.spad" 657728 657745 658876 658881) (-412 "FORTRAN.spad" 656234 656277 657718 657723) (-411 "FORTFN.spad" 653404 653412 656224 656229) (-410 "FORTCAT.spad" 653088 653096 653394 653399) (-409 "FORT.spad" 652037 652045 653078 653083) (-408 "FORMULA1.spad" 651516 651526 652027 652032) (-407 "FORMULA.spad" 648990 648998 651506 651511) (-406 "FORDER.spad" 648681 648705 648980 648985) (-405 "FOP.spad" 647882 647890 648671 648676) (-404 "FNLA.spad" 647306 647328 647850 647877) (-403 "FNCAT.spad" 645901 645909 647296 647301) (-402 "FNAME.spad" 645793 645801 645891 645896) (-401 "FMTC.spad" 645591 645599 645719 645788) (-400 "FMONOID.spad" 645272 645282 645547 645552) (-399 "FMONCAT.spad" 642441 642451 645262 645267) (-398 "FMFUN.spad" 639471 639479 642431 642436) (-397 "FMCAT.spad" 637147 637165 639439 639466) (-396 "FMC.spad" 636199 636207 637137 637142) (-395 "FM1.spad" 635564 635576 636133 636160) (-394 "FM.spad" 635179 635191 635418 635445) (-393 "FLOATRP.spad" 632922 632936 635169 635174) (-392 "FLOATCP.spad" 630361 630375 632912 632917) (-391 "FLOAT.spad" 623675 623683 630227 630356) (-390 "FLINEXP.spad" 623397 623407 623665 623670) (-389 "FLINEXP.spad" 623060 623072 623330 623335) (-388 "FLASORT.spad" 622386 622398 623050 623055) (-387 "FLALG.spad" 620056 620075 622312 622381) (-386 "FLAGG2.spad" 618773 618789 620046 620051) (-385 "FLAGG.spad" 615839 615849 618753 618768) (-384 "FLAGG.spad" 612806 612818 615722 615727) (-383 "FINRALG.spad" 610891 610904 612762 612801) (-382 "FINRALG.spad" 608902 608917 610775 610780) (-381 "FINITE.spad" 608054 608062 608892 608897) (-380 "FINAALG.spad" 597239 597249 607996 608049) (-379 "FINAALG.spad" 586436 586448 597195 597200) (-378 "FILECAT.spad" 584970 584987 586426 586431) (-377 "FILE.spad" 584553 584563 584960 584965) (-376 "FIELD.spad" 583959 583967 584455 584548) (-375 "FIELD.spad" 583451 583461 583949 583954) (-374 "FGROUP.spad" 582114 582124 583431 583446) (-373 "FGLMICPK.spad" 580909 580924 582104 582109) (-372 "FFX.spad" 580292 580307 580625 580718) (-371 "FFSLPE.spad" 579803 579824 580282 580287) (-370 "FFPOLY2.spad" 578863 578880 579793 579798) (-369 "FFPOLY.spad" 570205 570216 578853 578858) (-368 "FFP.spad" 569610 569630 569921 570014) (-367 "FFNBX.spad" 568130 568150 569326 569419) (-366 "FFNBP.spad" 566651 566668 567846 567939) (-365 "FFNB.spad" 565116 565137 566332 566425) (-364 "FFINTBAS.spad" 562630 562649 565106 565111) (-363 "FFIELDC.spad" 560215 560223 562532 562625) (-362 "FFIELDC.spad" 557886 557896 560205 560210) (-361 "FFHOM.spad" 556658 556675 557876 557881) (-360 "FFF.spad" 554101 554112 556648 556653) (-359 "FFCGX.spad" 552956 552976 553817 553910) (-358 "FFCGP.spad" 551853 551873 552672 552765) (-357 "FFCG.spad" 550645 550666 551534 551627) (-356 "FFCAT2.spad" 550392 550432 550635 550640) (-355 "FFCAT.spad" 543557 543579 550231 550387) (-354 "FFCAT.spad" 536801 536825 543477 543482) (-353 "FF.spad" 536249 536265 536482 536575) (-352 "FEXPR.spad" 527949 527995 535996 536035) (-351 "FEVALAB.spad" 527657 527667 527939 527944) (-350 "FEVALAB.spad" 527141 527153 527425 527430) (-349 "FDIVCAT.spad" 525237 525261 527131 527136) (-348 "FDIVCAT.spad" 523331 523357 525227 525232) (-347 "FDIV2.spad" 522987 523027 523321 523326) (-346 "FDIV.spad" 522445 522469 522977 522982) (-345 "FCTRDATA.spad" 521453 521461 522435 522440) (-344 "FCPAK1.spad" 519988 519996 521443 521448) (-343 "FCOMP.spad" 519367 519377 519978 519983) (-342 "FC.spad" 509374 509382 519357 519362) (-341 "FAXF.spad" 502409 502423 509276 509369) (-340 "FAXF.spad" 495496 495512 502365 502370) (-339 "FARRAY.spad" 493472 493482 494505 494532) (-338 "FAMR.spad" 491616 491628 493370 493467) (-337 "FAMR.spad" 489744 489758 491500 491505) (-336 "FAMONOID.spad" 489428 489438 489698 489703) (-335 "FAMONC.spad" 487748 487760 489418 489423) (-334 "FAGROUP.spad" 487388 487398 487644 487671) (-333 "FACUTIL.spad" 485600 485617 487378 487383) (-332 "FACTFUNC.spad" 484802 484812 485590 485595) (-331 "EXPUPXS.spad" 481554 481577 482853 483002) (-330 "EXPRTUBE.spad" 478842 478850 481544 481549) (-329 "EXPRODE.spad" 476010 476026 478832 478837) (-328 "EXPR2UPS.spad" 472132 472145 476000 476005) (-327 "EXPR2.spad" 471837 471849 472122 472127) (-326 "EXPR.spad" 466922 466932 467636 467931) (-325 "EXPEXPAN.spad" 463666 463691 464298 464391) (-324 "EXITAST.spad" 463402 463410 463656 463661) (-323 "EXIT.spad" 463073 463081 463392 463397) (-322 "EVALCYC.spad" 462533 462547 463063 463068) (-321 "EVALAB.spad" 462113 462123 462523 462528) (-320 "EVALAB.spad" 461691 461703 462103 462108) (-319 "EUCDOM.spad" 459281 459289 461617 461686) (-318 "EUCDOM.spad" 456933 456943 459271 459276) (-317 "ESTOOLS2.spad" 456528 456542 456923 456928) (-316 "ESTOOLS1.spad" 456205 456216 456518 456523) (-315 "ESTOOLS.spad" 448083 448091 456195 456200) (-314 "ESCONT1.spad" 447824 447836 448073 448078) (-313 "ESCONT.spad" 444617 444625 447814 447819) (-312 "ES2.spad" 444130 444146 444607 444612) (-311 "ES1.spad" 443700 443716 444120 444125) (-310 "ES.spad" 436571 436579 443690 443695) (-309 "ES.spad" 429345 429355 436466 436471) (-308 "ERROR.spad" 426672 426680 429335 429340) (-307 "EQTBL.spad" 424666 424688 424875 424902) (-306 "EQ2.spad" 424384 424396 424656 424661) (-305 "EQ.spad" 419160 419170 421955 422067) (-304 "EP.spad" 415486 415496 419150 419155) (-303 "ENV.spad" 414164 414172 415476 415481) (-302 "ENTIRER.spad" 413832 413840 414108 414159) (-301 "EMR.spad" 413120 413161 413758 413827) (-300 "ELTAGG.spad" 411374 411393 413110 413115) (-299 "ELTAGG.spad" 409592 409613 411330 411335) (-298 "ELTAB.spad" 409067 409080 409582 409587) (-297 "ELFUTS.spad" 408502 408521 409057 409062) (-296 "ELEMFUN.spad" 408191 408199 408492 408497) (-295 "ELEMFUN.spad" 407878 407888 408181 408186) (-294 "ELAGG.spad" 405849 405859 407858 407873) (-293 "ELAGG.spad" 403757 403769 405768 405773) (-292 "ELABOR.spad" 403103 403111 403747 403752) (-291 "ELABEXPR.spad" 402035 402043 403093 403098) (-290 "EFUPXS.spad" 398811 398841 401991 401996) (-289 "EFULS.spad" 395647 395670 398767 398772) (-288 "EFSTRUC.spad" 393662 393678 395637 395642) (-287 "EF.spad" 388438 388454 393652 393657) (-286 "EAB.spad" 386738 386746 388428 388433) (-285 "E04UCFA.spad" 386274 386282 386728 386733) (-284 "E04NAFA.spad" 385851 385859 386264 386269) (-283 "E04MBFA.spad" 385431 385439 385841 385846) (-282 "E04JAFA.spad" 384967 384975 385421 385426) (-281 "E04GCFA.spad" 384503 384511 384957 384962) (-280 "E04FDFA.spad" 384039 384047 384493 384498) (-279 "E04DGFA.spad" 383575 383583 384029 384034) (-278 "E04AGNT.spad" 379449 379457 383565 383570) (-277 "DVARCAT.spad" 376339 376349 379439 379444) (-276 "DVARCAT.spad" 373227 373239 376329 376334) (-275 "DSMP.spad" 370523 370537 370828 370955) (-274 "DSEXT.spad" 369825 369835 370513 370518) (-273 "DSEXT.spad" 369031 369043 369721 369726) (-272 "DROPT1.spad" 368696 368706 369021 369026) (-271 "DROPT0.spad" 363561 363569 368686 368691) (-270 "DROPT.spad" 357520 357528 363551 363556) (-269 "DRAWPT.spad" 355693 355701 357510 357515) (-268 "DRAWHACK.spad" 355001 355011 355683 355688) (-267 "DRAWCX.spad" 352479 352487 354991 354996) (-266 "DRAWCURV.spad" 352026 352041 352469 352474) (-265 "DRAWCFUN.spad" 341558 341566 352016 352021) (-264 "DRAW.spad" 334434 334447 341548 341553) (-263 "DQAGG.spad" 332612 332622 334402 334429) (-262 "DPOLCAT.spad" 327969 327985 332480 332607) (-261 "DPOLCAT.spad" 323412 323430 327925 327930) (-260 "DPMO.spad" 314935 314951 315073 315286) (-259 "DPMM.spad" 306471 306489 306596 306809) (-258 "DOMTMPLT.spad" 306242 306250 306461 306466) (-257 "DOMCTOR.spad" 305997 306005 306232 306237) (-256 "DOMAIN.spad" 305108 305116 305987 305992) (-255 "DMP.spad" 302296 302311 302866 302993) (-254 "DMEXT.spad" 302163 302173 302264 302291) (-253 "DLP.spad" 301523 301533 302153 302158) (-252 "DLIST.spad" 299928 299938 300532 300559) (-251 "DLAGG.spad" 298345 298355 299918 299923) (-250 "DIVRING.spad" 297887 297895 298289 298340) (-249 "DIVRING.spad" 297473 297483 297877 297882) (-248 "DISPLAY.spad" 295663 295671 297463 297468) (-247 "DIRPROD2.spad" 294481 294499 295653 295658) (-246 "DIRPROD.spad" 281713 281729 282353 282452) (-245 "DIRPCAT.spad" 280906 280922 281609 281708) (-244 "DIRPCAT.spad" 279726 279744 280431 280436) (-243 "DIOSP.spad" 278551 278559 279716 279721) (-242 "DIOPS.spad" 277547 277557 278531 278546) (-241 "DIOPS.spad" 276517 276529 277503 277508) (-240 "DIFRING.spad" 276355 276363 276497 276512) (-239 "DIFFSPC.spad" 275934 275942 276345 276350) (-238 "DIFFSPC.spad" 275511 275521 275924 275929) (-237 "DIFFMOD.spad" 275000 275010 275479 275506) (-236 "DIFFDOM.spad" 274165 274176 274990 274995) (-235 "DIFFDOM.spad" 273328 273341 274155 274160) (-234 "DIFEXT.spad" 273147 273157 273308 273323) (-233 "DIAGG.spad" 272777 272787 273127 273142) (-232 "DIAGG.spad" 272415 272427 272767 272772) (-231 "DHMATRIX.spad" 270598 270608 271743 271770) (-230 "DFSFUN.spad" 264238 264246 270588 270593) (-229 "DFLOAT.spad" 260969 260977 264128 264233) (-228 "DFINTTLS.spad" 259200 259216 260959 260964) (-227 "DERHAM.spad" 257114 257146 259180 259195) (-226 "DEQUEUE.spad" 256309 256319 256592 256619) (-225 "DEGRED.spad" 255926 255940 256299 256304) (-224 "DEFINTRF.spad" 253463 253473 255916 255921) (-223 "DEFINTEF.spad" 251973 251989 253453 253458) (-222 "DEFAST.spad" 251357 251365 251963 251968) (-221 "DECIMAL.spad" 249321 249329 249682 249775) (-220 "DDFACT.spad" 247142 247159 249311 249316) (-219 "DBLRESP.spad" 246742 246766 247132 247137) (-218 "DBASIS.spad" 246368 246383 246732 246737) (-217 "DBASE.spad" 245032 245042 246358 246363) (-216 "DATAARY.spad" 244518 244531 245022 245027) (-215 "D03FAFA.spad" 244346 244354 244508 244513) (-214 "D03EEFA.spad" 244166 244174 244336 244341) (-213 "D03AGNT.spad" 243252 243260 244156 244161) (-212 "D02EJFA.spad" 242714 242722 243242 243247) (-211 "D02CJFA.spad" 242192 242200 242704 242709) (-210 "D02BHFA.spad" 241682 241690 242182 242187) (-209 "D02BBFA.spad" 241172 241180 241672 241677) (-208 "D02AGNT.spad" 236042 236050 241162 241167) (-207 "D01WGTS.spad" 234361 234369 236032 236037) (-206 "D01TRNS.spad" 234338 234346 234351 234356) (-205 "D01GBFA.spad" 233860 233868 234328 234333) (-204 "D01FCFA.spad" 233382 233390 233850 233855) (-203 "D01ASFA.spad" 232850 232858 233372 233377) (-202 "D01AQFA.spad" 232304 232312 232840 232845) (-201 "D01APFA.spad" 231744 231752 232294 232299) (-200 "D01ANFA.spad" 231238 231246 231734 231739) (-199 "D01AMFA.spad" 230748 230756 231228 231233) (-198 "D01ALFA.spad" 230288 230296 230738 230743) (-197 "D01AKFA.spad" 229814 229822 230278 230283) (-196 "D01AJFA.spad" 229337 229345 229804 229809) (-195 "D01AGNT.spad" 225404 225412 229327 229332) (-194 "CYCLOTOM.spad" 224910 224918 225394 225399) (-193 "CYCLES.spad" 221702 221710 224900 224905) (-192 "CVMP.spad" 221119 221129 221692 221697) (-191 "CTRIGMNP.spad" 219619 219635 221109 221114) (-190 "CTORKIND.spad" 219222 219230 219609 219614) (-189 "CTORCAT.spad" 218463 218471 219212 219217) (-188 "CTORCAT.spad" 217702 217712 218453 218458) (-187 "CTORCALL.spad" 217291 217301 217692 217697) (-186 "CTOR.spad" 216982 216990 217281 217286) (-185 "CSTTOOLS.spad" 216227 216240 216972 216977) (-184 "CRFP.spad" 209999 210012 216217 216222) (-183 "CRCEAST.spad" 209719 209727 209989 209994) (-182 "CRAPACK.spad" 208786 208796 209709 209714) (-181 "CPMATCH.spad" 208287 208302 208708 208713) (-180 "CPIMA.spad" 207992 208011 208277 208282) (-179 "COORDSYS.spad" 203001 203011 207982 207987) (-178 "CONTOUR.spad" 202428 202436 202991 202996) (-177 "CONTFRAC.spad" 198178 198188 202330 202423) (-176 "CONDUIT.spad" 197936 197944 198168 198173) (-175 "COMRING.spad" 197610 197618 197874 197931) (-174 "COMPPROP.spad" 197128 197136 197600 197605) (-173 "COMPLPAT.spad" 196895 196910 197118 197123) (-172 "COMPLEX2.spad" 196610 196622 196885 196890) (-171 "COMPLEX.spad" 191921 191931 192165 192426) (-170 "COMPILER.spad" 191470 191478 191911 191916) (-169 "COMPFACT.spad" 191072 191086 191460 191465) (-168 "COMPCAT.spad" 189144 189154 190806 191067) (-167 "COMPCAT.spad" 186941 186953 188605 188610) (-166 "COMMUPC.spad" 186689 186707 186931 186936) (-165 "COMMONOP.spad" 186222 186230 186679 186684) (-164 "COMMAAST.spad" 185985 185993 186212 186217) (-163 "COMM.spad" 185796 185804 185975 185980) (-162 "COMBOPC.spad" 184719 184727 185786 185791) (-161 "COMBINAT.spad" 183486 183496 184709 184714) (-160 "COMBF.spad" 180908 180924 183476 183481) (-159 "COLOR.spad" 179745 179753 180898 180903) (-158 "COLONAST.spad" 179411 179419 179735 179740) (-157 "CMPLXRT.spad" 179122 179139 179401 179406) (-156 "CLLCTAST.spad" 178784 178792 179112 179117) (-155 "CLIP.spad" 174892 174900 178774 178779) (-154 "CLIF.spad" 173547 173563 174848 174887) (-153 "CLAGG.spad" 170084 170094 173537 173542) (-152 "CLAGG.spad" 166489 166501 169944 169949) (-151 "CINTSLPE.spad" 165844 165857 166479 166484) (-150 "CHVAR.spad" 163982 164004 165834 165839) (-149 "CHARZ.spad" 163897 163905 163962 163977) (-148 "CHARPOL.spad" 163423 163433 163887 163892) (-147 "CHARNZ.spad" 163176 163184 163403 163418) (-146 "CHAR.spad" 160544 160552 163166 163171) (-145 "CFCAT.spad" 159872 159880 160534 160539) (-144 "CDEN.spad" 159092 159106 159862 159867) (-143 "CCLASS.spad" 157188 157196 158450 158489) (-142 "CATEGORY.spad" 156262 156270 157178 157183) (-141 "CATCTOR.spad" 156153 156161 156252 156257) (-140 "CATAST.spad" 155779 155787 156143 156148) (-139 "CASEAST.spad" 155493 155501 155769 155774) (-138 "CARTEN2.spad" 154883 154910 155483 155488) (-137 "CARTEN.spad" 150250 150274 154873 154878) (-136 "CARD.spad" 147545 147553 150224 150245) (-135 "CAPSLAST.spad" 147327 147335 147535 147540) (-134 "CACHSET.spad" 146951 146959 147317 147322) (-133 "CABMON.spad" 146506 146514 146941 146946) (-132 "BYTEORD.spad" 146181 146189 146496 146501) (-131 "BYTEBUF.spad" 143882 143890 145168 145195) (-130 "BYTE.spad" 143357 143365 143872 143877) (-129 "BTREE.spad" 142301 142311 142835 142862) (-128 "BTOURN.spad" 141177 141187 141779 141806) (-127 "BTCAT.spad" 140569 140579 141145 141172) (-126 "BTCAT.spad" 139981 139993 140559 140564) (-125 "BTAGG.spad" 139447 139455 139949 139976) (-124 "BTAGG.spad" 138933 138943 139437 139442) (-123 "BSTREE.spad" 137545 137555 138411 138438) (-122 "BRILL.spad" 135750 135761 137535 137540) (-121 "BRAGG.spad" 134706 134716 135740 135745) (-120 "BRAGG.spad" 133626 133638 134662 134667) (-119 "BPADICRT.spad" 131451 131463 131698 131791) (-118 "BPADIC.spad" 131123 131135 131377 131446) (-117 "BOUNDZRO.spad" 130779 130796 131113 131118) (-116 "BOP1.spad" 128237 128247 130769 130774) (-115 "BOP.spad" 123371 123379 128227 128232) (-114 "BOOLEAN.spad" 122809 122817 123361 123366) (-113 "BOOLE.spad" 122459 122467 122799 122804) (-112 "BOOLE.spad" 122107 122117 122449 122454) (-111 "BMODULE.spad" 121819 121831 122075 122102) (-110 "BITS.spad" 121193 121201 121408 121435) (-109 "BINDING.spad" 120614 120622 121183 121188) (-108 "BINARY.spad" 118583 118591 118939 119032) (-107 "BGAGG.spad" 117788 117798 118563 118578) (-106 "BGAGG.spad" 117001 117013 117778 117783) (-105 "BFUNCT.spad" 116565 116573 116981 116996) (-104 "BEZOUT.spad" 115705 115732 116515 116520) (-103 "BBTREE.spad" 112453 112463 115183 115210) (-102 "BASTYPE.spad" 111949 111957 112443 112448) (-101 "BASTYPE.spad" 111443 111453 111939 111944) (-100 "BALFACT.spad" 110902 110915 111433 111438) (-99 "AUTOMOR.spad" 110353 110362 110882 110897) (-98 "ATTREG.spad" 107076 107083 110105 110348) (-97 "ATTRBUT.spad" 103099 103106 107056 107071) (-96 "ATTRAST.spad" 102816 102823 103089 103094) (-95 "ATRIG.spad" 102286 102293 102806 102811) (-94 "ATRIG.spad" 101754 101763 102276 102281) (-93 "ASTCAT.spad" 101658 101665 101744 101749) (-92 "ASTCAT.spad" 101560 101569 101648 101653) (-91 "ASTACK.spad" 100770 100779 101038 101065) (-90 "ASSOCEQ.spad" 99604 99615 100726 100731) (-89 "ASP9.spad" 98685 98698 99594 99599) (-88 "ASP80.spad" 98007 98020 98675 98680) (-87 "ASP8.spad" 97050 97063 97997 98002) (-86 "ASP78.spad" 96501 96514 97040 97045) (-85 "ASP77.spad" 95870 95883 96491 96496) (-84 "ASP74.spad" 94962 94975 95860 95865) (-83 "ASP73.spad" 94233 94246 94952 94957) (-82 "ASP7.spad" 93393 93406 94223 94228) (-81 "ASP6.spad" 92260 92273 93383 93388) (-80 "ASP55.spad" 90769 90782 92250 92255) (-79 "ASP50.spad" 88586 88599 90759 90764) (-78 "ASP49.spad" 87585 87598 88576 88581) (-77 "ASP42.spad" 86000 86039 87575 87580) (-76 "ASP41.spad" 84587 84626 85990 85995) (-75 "ASP4.spad" 83882 83895 84577 84582) (-74 "ASP35.spad" 82870 82883 83872 83877) (-73 "ASP34.spad" 82171 82184 82860 82865) (-72 "ASP33.spad" 81731 81744 82161 82166) (-71 "ASP31.spad" 80871 80884 81721 81726) (-70 "ASP30.spad" 79763 79776 80861 80866) (-69 "ASP29.spad" 79229 79242 79753 79758) (-68 "ASP28.spad" 70502 70515 79219 79224) (-67 "ASP27.spad" 69399 69412 70492 70497) (-66 "ASP24.spad" 68486 68499 69389 69394) (-65 "ASP20.spad" 67950 67963 68476 68481) (-64 "ASP19.spad" 62636 62649 67940 67945) (-63 "ASP12.spad" 62050 62063 62626 62631) (-62 "ASP10.spad" 61321 61334 62040 62045) (-61 "ASP1.spad" 60702 60715 61311 61316) (-60 "ARRAY2.spad" 59941 59950 60180 60207) (-59 "ARRAY12.spad" 58654 58665 59931 59936) (-58 "ARRAY1.spad" 57317 57326 57663 57690) (-57 "ARR2CAT.spad" 53099 53120 57285 57312) (-56 "ARR2CAT.spad" 48901 48924 53089 53094) (-55 "ARITY.spad" 48273 48280 48891 48896) (-54 "APPRULE.spad" 47557 47579 48263 48268) (-53 "APPLYORE.spad" 47176 47189 47547 47552) (-52 "ANY1.spad" 46247 46256 47166 47171) (-51 "ANY.spad" 45098 45105 46237 46242) (-50 "ANTISYM.spad" 43543 43559 45078 45093) (-49 "ANON.spad" 43252 43259 43533 43538) (-48 "AN.spad" 41558 41565 43065 43158) (-47 "AMR.spad" 39743 39754 41456 41553) (-46 "AMR.spad" 37759 37772 39474 39479) (-45 "ALIST.spad" 34599 34620 34949 34976) (-44 "ALGSC.spad" 33734 33760 34471 34524) (-43 "ALGPKG.spad" 29517 29528 33690 33695) (-42 "ALGMFACT.spad" 28710 28724 29507 29512) (-41 "ALGMANIP.spad" 26194 26209 28537 28542) (-40 "ALGFF.spad" 23799 23826 24016 24172) (-39 "ALGFACT.spad" 22918 22928 23789 23794) (-38 "ALGEBRA.spad" 22751 22760 22874 22913) (-37 "ALGEBRA.spad" 22616 22627 22741 22746) (-36 "ALAGG.spad" 22128 22149 22584 22611) (-35 "AHYP.spad" 21509 21516 22118 22123) (-34 "AGG.spad" 19842 19849 21499 21504) (-33 "AGG.spad" 18139 18148 19798 19803) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file |